# **OBJECT-BASED LAND USE MAP OF KHOREZM**

Table of contents

- I. Object based land use map of Khorezm
  - 1.1. Introduction
  - 1.2. Methodology
  - 1.3. Results
    - 1.3.1. Ground sampling methods and accuracy assessment matrix
    - 1.3.2. Land use map
    - 1.3.3. Land use statistics
  - 1.4. Discussion

## I. OBJECT BASED LAND USE MAP OF KHOREZM

### 1.1 Introduction

In recent decades, multi-spectral and hyper-spectral remotely sensed imageries with high and modern spatial resolutions at sufficient time-series interval have been developed. This allows for detecting crop types and its distribution over large areas and at short time intervals. Among the advantages of remote sensing technologies are its cost effective evaluation over extensive areas and the ability to provide reliable information on land surface conditions. This is useful also for areas with sporadic information on the spatial extent of croplands effected by for instance water scarcity. The elaboration of sustainable natural resource management that demands a judicious management of land and fresh water, requires accurate information on status of these croplands. For classifying on field basis, agricultural fields were digitized based on very high spatial resolution SPOT 5 imageries. For the actual land use classification, 5 time-series images were used for the growing period in 2013. In order to consider accuracy assessment of classified training data, the random forest confusion matrix was implemented and training data allowed to classify an accuracy of 93 percent.

## 1.2 Methodology

### Satellite data and preprocessing.

Analyses were based on Landsat 8 OLI images (path 159, raw 31), recorded in 2013. For this year, cloud-free images were available to cover crop growing stages, from the late of spring (mid of May), early summer (beginning/mid of June), mid of summer (beginning/mid of July), late summer (mid/end of August) and early autumn (beginning of September).

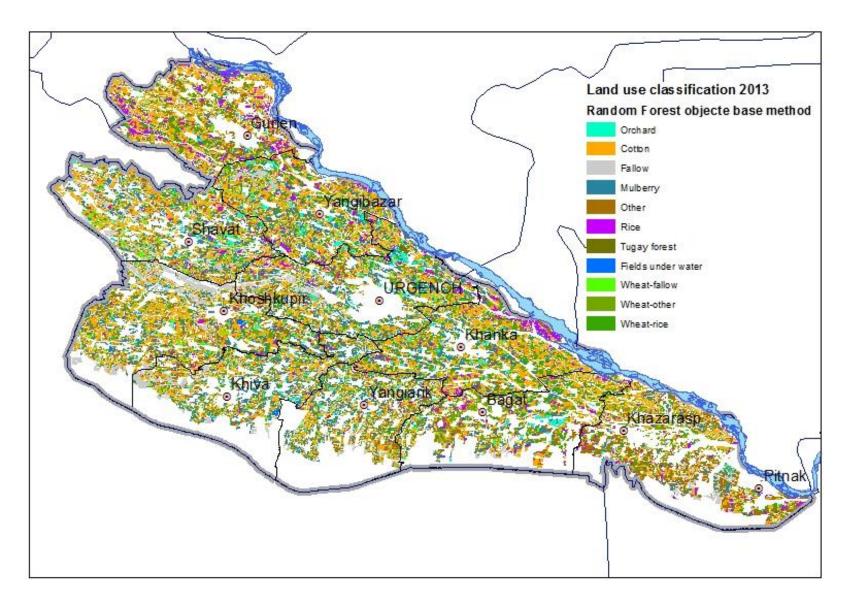
All images were geometrically adjusted to 30-meter Landsat 8 OLI scene, projected to UTM coordinate system (zone 41) and radiometrically corrected.

Table 1. Landsat OLI images, used in the study

| First scene | Second scene |
|-------------|--------------|
| 15 May      | 24 May       |

| 31 May    | 9 June      |
|-----------|-------------|
| 9 July    | 11 July     |
| 12 August | 19 August   |
| 28 August | 4 September |

### 1.1 Results


**1.3.1 Ground sampling methods and accuracy assessment matrix** Totally, 143 ground samplings were used to detect crop types using Maximum Likelihood classification method with the help of GIS, ArcMap 10.0 version.

| Correc            | Instan    | ces    | 130   |         | 93.5 % |        |        |              |
|-------------------|-----------|--------|-------|---------|--------|--------|--------|--------------|
| Incorrectly Class | sified Ir | stance | es    | 9       | 6.4    | 4748 % |        |              |
| Kappa statistic   |           |        | 0.922 | 2       |        |        |        |              |
|                   | TP        | 'F     | FP I  | Precis. | Recall | F-m.   | roc-ar | ea           |
|                   | 0.        | 85 0.  | .03   | 0.73    | 0.85   | 0.79   | 0.99   | apple garden |
|                   |           | 1      | 0     | 1       | 1      | 1      | 1      | cotton       |
|                   |           | 1      | 0.01  | 0.9     | 1      | 0.96   | 1      | fallow       |
|                   |           | 0.8    | 0.02  | 0.86    | 0.8    | 0.83   | 0.99   | mulberry     |
|                   |           | 0.79   | 0.01  | 0.92    | 0.79   | 0.85   | 0.97   | other        |
|                   |           | 1      | 0.01  | 0.93    | 1      | 0.97   | 0.99   | rice         |
|                   |           | 1      | 0     | 1       | 1      | 1      | 1      | tugay        |
|                   | 1         | 0      | 1     | 1       | 1      | 1      | water  |              |
|                   |           | 1      | 0     | 1       | 1      | 1      | 1      | weat-fallow  |
|                   | 0.9       | 0      | 1     | 0.9     | 0.9    | 5 0.9  | 99 wea | t-rice       |
| Weighted Avg.     | 0.94      | 0.01   | 0.94  | 4 0.94  | 4 0.9  | 4 0.   | 995    |              |

Table 2. Ground sampling accuracy assessment matrix

1.3.2 Land use map

### Fig.3. Map of agricultural crop types



### 1.3.3 Land use statistics

| Districts/crop | Cotton | Rice  | Fields<br>under<br>water | Wheat-<br>fallow | Wheat-<br>other | Wheat-<br>rice | Orchard | Mulberry | Tugay<br>forest | Fallow | Other |  |
|----------------|--------|-------|--------------------------|------------------|-----------------|----------------|---------|----------|-----------------|--------|-------|--|
| Bag'at         | 6959   | 1513  |                          | 390              | 3385            | 2989           | 829     | 2454     |                 | 610    | 2652  |  |
| Gurlen         | 12109  | 4139  |                          | 360              | 1759            | 3855           | 344     | 1330     |                 | 137    | 3980  |  |
| Khanka         | 11505  | 2263  | 10                       | 187              | 3599            | 4286           | 748     | 4153     |                 | 66     | 1534  |  |
| Khazarasp      | 6958   | 1655  | 12                       | 219              | 2170            | 2183           | 424     | 1726     | 20              | 1530   | 8239  |  |
| Khiva          | 7529   | 433   | 196                      | 539              | 1192            | 1824           | 862     | 5539     | 2               | 1885   | 1435  |  |
| Khushkupir     | 13647  | 667   | 174                      | 1706             | 1541            | 1743           | 679     | 6836     | 31              | 4205   | 3584  |  |
| Shavat         | 11960  | 895   | 12                       | 2494             | 1124            | 822            | 1288    | 6910     | 35              | 1695   | 2813  |  |
| Urgench        | 10318  | 1418  | 11                       | 834              | 1913            | 3032           | 1594    | 6865     | 244             | 1310   | 2002  |  |
| Yangiarik      | 6149   | 345   | 13                       | 571              | 1086            | 1582           | 683     | 4609     | 30              | 876    | 2848  |  |
| Yangibazar     | 10118  | 1472  |                          | 726              | 1399            | 2959           | 1200    | 4576     | 18              | 849    | 2278  |  |
| Grand Total    | 97251  | 14801 | 429                      | 8026             | 19168           | 25277          | 8652    | 44997    | 380             | 13163  | 31363 |  |
| Percentage     | 36.9   | 5.6   | 0.2                      | 3.0              | 7.3             | 9.6            | 3.3     | 17.1     | 0.1             | 5.0    | 11.9  |  |
|                |        |       |                          |                  |                 |                |         |          |                 |        |       |  |

Grand Total

Table 4. Cropped area by district wise scale for dominant crops in hectare.

### 1.4. Discussion

The findings showed that object-based land use classification contributes very precise and reliable information regarding intensive irrigated agricultural lands. As Landsat 8 OLI provides 16 days interval time-series data quite sufficient for identifying crop types according to differentiations of crop growing stages and cloud free images favors to 90 percent of them efficiently. In terms of ground samplings regarding crop growing stages and crop rotation, at least at two time schedules end of May and mid of August were best times to field survey in Khorezm region. To detect most dominant crops cotton, winter wheat and rice were observed everywhere and classified almost 100 percent correctly as is shown in table 2. However, minor crops such as vegetable, maize, alfalfa were difficult to collect sufficient ground samplings and results were not satisfy. In general, statistics in table 4 contributes more reliable data sets compared to official statistics reported by state.