

RESEARCH PROGRAMON Dryland Systems

Food security and better livelihoods for rural dryland communities

How to present MAS modelling work and results

Quang Bao Le CRP-DS Agricultural Livelihood Systems

Cairo, 13-21 September, 2015

www.drylandsystems.cgiar.org

ODD protocol

•	Please compreher		and
	- General intro Grimm et al		
	- ODD-related protocol.pd note)		
	- Some exa ODD: e.g. in	mples Le et a	of using al. (2010)
	ease ask me. estions.	lf you	have any

	Purpose		
Overview	Entities, state variables and scales		
	Process overview and scheduling		
Design concepts	 Emergence Adaptation Objectives Learning Prediction Sensing Interaction Stochasticity Collectives Observation 		
	Initialization		
Details	Input data		
	Submodels		

How to present and analyze your simulation results in an <u>insightful</u> and <u>effective</u> way?

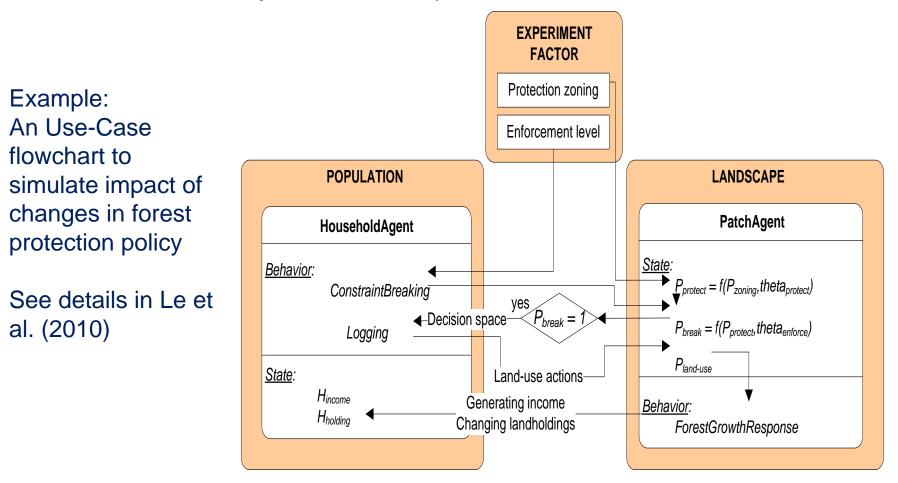
- 1. Describe properly your experiment:
 - Justify the relevance/plausibility of your study issue → define experiment factors → define experiment parameters
 - Streamline the affecting pathways: to what way the change in your experimental factor leads to change in agent's behavior? (Use-case flow diagram)
 - Clearly state your simulation experiments (e.g. **summary table**)
 - Clearly state your impact variables (brief definition & unit)
 - If stochasticity is used, please describe how you measure the uncertainty of the simulation outputs (replicated runs, mean, confidence interval of the mean)

Example of Experiment Issue, Factors, and Parameters

- Issue: Proper regulation governing villagers' access to forest timber (i.e. forest protection regulation). Why?
 - Forbidden all access \rightarrow harm community livelihood
 - Uncontrolled/free access \rightarrow high risk of deforestation
- Factors: What aspects policy-makers care in their protection policy?

(1) Target area: Amount & location of protected forest

(2) Enforcement of the protection regulation


- Parameters: What variables can help defining the experiment factors?
 - (1) "**Slope-threshold":** user-defined slope threshold for controlling the spatial extent of protected area.

E.g. IF p_slope > "slope-threshold" THEN p_protect = 1

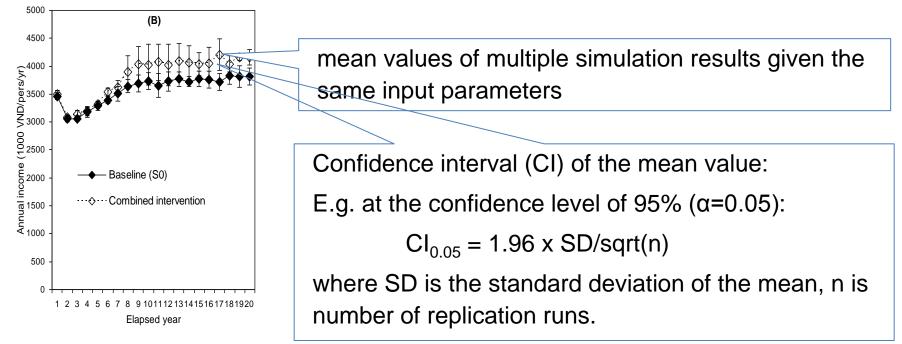
(2) "**Protection-power**": User-defined probability representing enforcement degree of forest protection law

Streamline the affecting pathways: Simulation Use-Case flowchart

To what way the change in your experimental factor leads to change in agent's behavior and elementary environmental processes?

Designing your simulation experiments

Different settings for defining the protected area

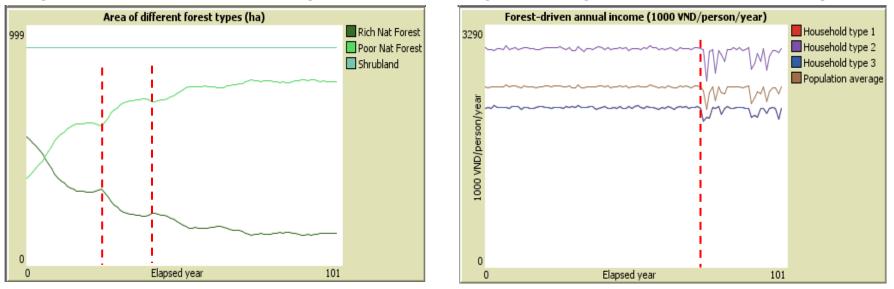

Experiment factor	"Slope-threshold"
No explicit target area	0
Targeting at least critical area	15
Targeting only very critical area	25

Different settings of law enforcement

Experiment factor	"Protection-power'
No enforcement ("only-on-paper" policy)	0%
Weak enforcement	50%
Strong enforcement	90%

If stochasticity is used, please describe how you measure the uncertainty of the simulation outputs

- Replicated runs
- Calculate mean value and its confidence interval (CI)


 If the uncertainty bands of two trajectories (of two different scenarios) overlap, there is no confidence to conclude a significant impact caused by your experiment factor.

How to present and analyze your simulation results in an <u>insightful</u> and <u>effective</u> way?

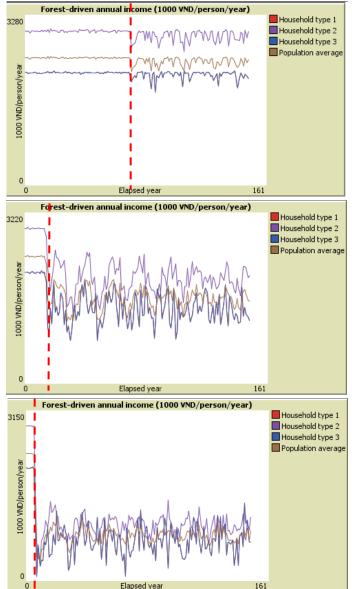
- 2. To what aspects considered in your simulation results:
 - Overall (linear) trend (increase/decrease/steady)
 - Overall non-linear trend (convex/concave increase/decrease)
 - Scale-specific changes
 - Phasing changes
 - Delayed effects
 - Trade-offs between different outcomes (e.g. income gain/lost vs. rich forest gain/lost)
 - Etc. (your creative thinking, please!)

Phasing changes

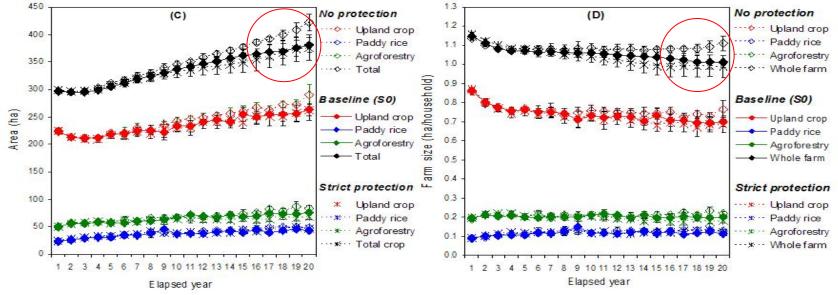
E.g. Simulation results using "landuse_change4.1.nlogo", free-access setting.

Different phases of growth/degradation

Stable phase - instable phase of annual inc


- Reasons of phase changes: changing equilibriums, etc.
- Anticipation of the 'tipping points' (e.g. the time points marked by red dash lines above) is crucial for supporting sustainable development.

Phasing changes: an example of logging mechanization impact


No mechanization (30 days to log a tree and saw it into wood panels)

Medium mechanization (20 days to ...)

High mechanization (10 days to ...)

→ Technological intervention to better timber withdraw alone likely causes an earlier onset of the crisis phase for forest dependents

Delayed/legacy effects

E.g. Shift of forest protection regime likely causes significant impacts on the total farmland area and farm size after 15-17 years (see Le et al., 2010).

- Reasons of delayed effects: buffering and elastic capacities caused by heterogeneous interactions within the coupled HES.
- Implications for sustainability research: multi-generation externalities and long-term benefits, etc.

How to present and analyze your simulation results in an <u>insightful</u> and <u>effective</u> way?

3. Discussions about your simulation results

- What changes are theoretically understandable/explainable ? (intended/expected/common sense changes)
- Is there any changes that are counter-intuitive?

Scientifically discovered, truths are often called *counter-intuitive* when intuition, emotion and other cognitive processes outside of deductive rationality interpret them to be wrong. However, the subjective nature of intuition limits the objectivity of what to call *counter-intuitive* because what is counter-intuitive for one may be intuitive for another (Source: Wikipedia).

Counter-intuitive in science:

Many scientific ideas that are generally accepted by people today were formerly considered to be contrary to intuition and common sense.

- What do the results suggest for (1) better management, planning, etc. and (2) new research questions and hypotheses?
- ... (your creative thinking, please!)