## **ICARDA – JICA Training Program**

Training Course:

Improving Agricultural Water Productivity (*with emphasis on rainfed production systems*) 24 April – 12 May 2016, ICARDA, Amman, Jordan

Topic:

Design and Analysis of Water Resources Experiments

Murari Singh

Biometrics and Statistics Section Office of DDG-Research

Schedule: 11:00 -13:30 h on 9 May 2016 (Monday) Design and Analysis of Water Resources Experiments

- 1. Basic principles of experimental designs
- 2. Design and analysis of experiments in RCB
- 3. Design and analysis of two-factor factorial experiments in RCB
- 4. Design and analysis of split-plot experiments in RCB
- 5. Design and analysis of strip-plot experiments in RCB

## **1. Basic principles of experimental designs**

- An experiment
- Basic elements of experimental design
- Requirements of a Good Experiment
- Fisher's 3Rs: Basic principles
- Illustration through an RCBD
- Experimental Process

## 2. Design and analysis of experiments in RCB

- Analysis of Data from Designed Experiments
- Assumptions
- An example
- Genstat demonstration
  - Randomized plan
  - Analysis of data

#### **BASIC PRINCIPLES OF EXPERIMENTAL DESIGNS**

#### **Resources:**

Cochran, W.G. and Cox, G.M. (1957). *Experimental Designs*, (New York: John Wiley and Sons Inc)

Cox, D. R. (1958). *Planning of Experiments*. (New York: John Wiley and Sons Inc)

Kempthorne, O., 1983. *The Design and Analysis of Experiments*. R.E. Krieger Publishing Co., Malabar, Florida.

Gomez, K.A. & Gomez, A.A. 1984. *Statistical procedures for agricultural research*. (New York: John Wiley and Sons Inc)

Hinkelmann, K.H., Kempthorne, O., 2005. *Design and Analysis of Experiments*. Volume 2: Advanced Experimental Design. John Wiley & Sons, New York.

An Example

- In agricultural field trials, an **objective** may be
  - to assess or compare a number of varieties of wheat, or a number of fertilizer treatments, or a number of systems of land and water management, or a number of disease control methods etc.
- The area allotted for the trial is generally divided into plots and the treatments (e.g. varieties) are allotted to these plots -- one treatment to one plot basis.
- The crop response (in terms of yield, days to fifty percent flowering, etc) is measured.
- These observations, particularly their variability, form the basis of comparisons of the varieties or treatments.

#### **Treatments:**

The different factors or procedures intended to create variation in a response (responses) in an experiment, e.g. varieties, fertilizers, etc.

#### **Experimental Unit:**

Smallest division of experimental area (material) such that any two units may receive different treatments. For example, plots (but not samples in a plot).

#### **Experimental Material:**

Collection of all experimental units, the experimental area.

#### Variability in the response

• Even if we grow the same variety of a crop over all experimental units, the variation in the response may exist.

Following may be the reasons.

(i) There may be the systematic fertility trends or local periodic variation present in the field,

(ii) Responses in neighbor plots are more similar in comparison to the distant plots,

(iii) If the experiment is repeated over time and location, the variation in the mean response occurs.

• Experimental procedures are needed for separating precisely the variety effects (differences) from uncontrolled variation.

#### **Requirements of a Good Experiment**

Comparison of treatments should be free from systematic errors, estimates should have high precision, conclusion to be widely valid, uncertainties in the conclusion assessable, and the experimental arrangement simple and operationally convenient.

#### (a) Systematic Error

- Experimental units should differ in no systematic way.
- Units under one treatments should show only random differences from the units under any other treatments and
- should respond independently of one another.
- In the absence of this,
  - i. possible variables be measured
  - ii. and/or plot history be used to reflect the systematic difference.
- Randomization minimizes the influence of systematic errors.

#### (b) Precision:

- In the absence of systematic errors, the bias in treatment differences (contrasts) is from the random error.
- The magnitude of such error is measured by standard errors giving an idea of the precision of experiment. This depends on :
  - (i) inherent variability, or the experimental variability and accuracy of the experimental work.
  - (ii) number of experimental units.
  - (iii) the design of experiments.

The standard error (SE or se) of mean is

$$SE(mean) = \frac{\sigma}{\sqrt{r}}$$

where  $\sigma$  = per plot error standard deviation,

r = the number of replications the mean is based on.

#### (c) Range of Validity:

Conclusions drawn from one or few experiments should be generalized or applied to some new conditions. Given the population of conditions/environments the proper sampling of conditions may be done for validation of the conclusions, or the experiment be conducted in wide range of conditions.

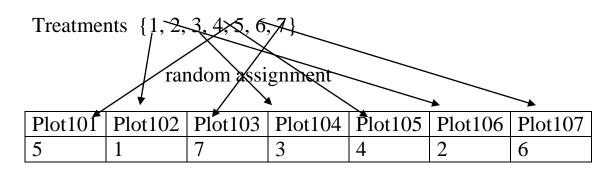
#### (d) Uncertainty:

The experiments should provide a valid (statistical) estimate of error (or standard error of the differences), to compute limits (confidence limits) for true differences of treatment effects and to perform the test of significance.

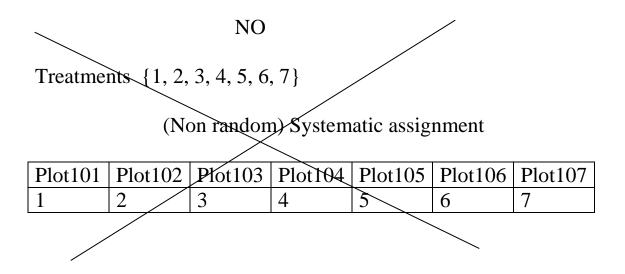
#### (e) Operational Convenience:

Easy operation for field preparation, preparing field books, seed packets preparation, and sorting packets for machine sowing, and measurements, etc.

## **Fisher's Principles of Experimentation**


These are

- randomization,
- replication, and
- local control


also called Fisher's 3Rs for experimentation.

## Randomization:

• random allotment of the treatments to the experimental unit



- Representative responses
- Validity of estimates of effects and errors
- Minimizes bias (effect of systematic errors) in presence of replications
- Test of significance (enhances random order in uncontrolled errors of any patterns)



## Replications

• The application of a treatment to more than one unit

T1 T2 T3

| T1 | T2 | T3 | T1 | T2 |
|----|----|----|----|----|
| T3 | T2 | T1 | T3 | T1 |
| T1 | T3 | T2 | T1 | T3 |

Homogeneous experimental material

Experimental errors:

- <u>Variation in responses on the experimental units under the</u> <u>same treatment</u>
- We observe variation in the response even if the same treatment is applied on different experimental units.
- This variation, arising from chances causes/random error, is called happening due to experimental error (not any 'mistake' on experimenter's part)
- To measure experimental error, we thus need more than one exp. unit receiving the same treatments

Such a variation would be required

• to measure precision of an estimate of a given treatment,

SE(mean) = 
$$\frac{\sigma}{\sqrt{r}}$$

• to compare two or more treatments

Such a variation could be used to determine number of replications for a set standard in terms of precision of treatment effect.

Formula:

$$r = \frac{\theta^2 t^2}{\varepsilon^2}$$

where

 $\theta$  = coefficient of variation  $(\frac{\sigma}{\mu})$ 

t = critical value of t- distribution (r- 1 df) and approximated at 2 for 5% level of significance,

 $\mathcal{E}_{=\text{maximum error set}}, \left|\frac{\overline{x}-\mu}{\mu}\right|$ , where  $\overline{x}$  is sample mean expected from r- replications,  $\mu$  is the population mean (unknown)

#### **Local Control or Reduction of Error:**

An accounting of systematic variation in the experimental material at

- design stage
- measurement /analysis stage

Consider a situation:

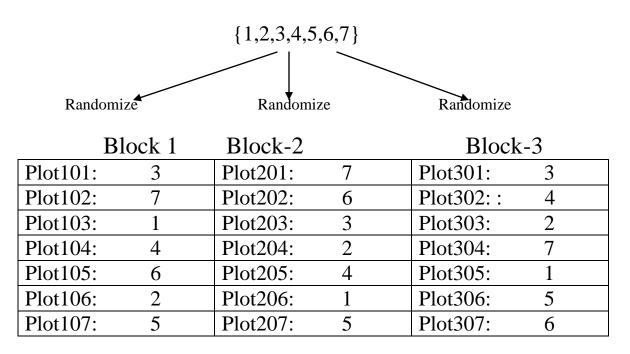
Experimental material is not fully homogeneous/heterogeneous

- possible to group in the experimental units in homogeneous groups called **blocks**
- the allocation of treatments to the units within groups is made through randomization.
- Account for variation due to groups/blocks
- This helps reduce the experimental error.

## Randomized Complete Block Design (RCBD, RCB)

## Fertility gradient

| High | Medium | Low |  |
|------|--------|-----|--|


| Block 1  | Block-2  | Block-3  |
|----------|----------|----------|
| Plot101: | Plot201: | Plot301: |
| Plot102: | Plot202: | Plot302: |
| Plot103: | Plot203: | Plot303: |
| Plot104: | Plot204: | Plot304: |
| Plot105: | Plot205: | Plot305: |
| Plot106: | Plot206: | Plot306: |
| Plot107: | Plot207: | Plot307: |

Field-plot preparation

- Field
- Prepare/mark the blocks (Complete blocks are also called replicates)
- Prepare/mark the plots within each block

#### Randomization

- Randomly assign treatments to the plots within each blocks
- Carry out independent randomization for plots of each block



## **Experiment Process**

Design of experiments

Experiment management

- Planting
- Crop husbandry
- Etc

Data collection

Data Entry

Data Management Transformation to units for analysis

Statistical Analysis

Presentation of results

Publication

#### Analysis of Data from Designed Experiments

Consider a certain response (y) being obtained on experimental units under the treatments applied according to a block design.

• Variability in the response generally form, the basis of analysis of treatment differences and the estimation of experimental error variation.

• A response model is needed Response (data) = general mean + effect of blocking factor(s) + effect of treatment applied + experimental error

- ANOVA (Analysis of variance, AOV) A method which partitions the total variation in the response into the components (sources of variation) in the above model is called the analysis of variance (ANOVA).
- ANOVA assumptions:
  - (i) additivity of factors effects
  - (ii) constancy of error variance
  - (iii) normality of experimental errors
  - (iv) independence of experimental errors

## An Example:

Data from a chickpea yield trial conducted at Helhadya, Aleppo, Syria, spring sown, 1995/96.

| PLOT REP |   | ENTRY GYLD |
|----------|---|------------|
|          |   | (kg/ha)    |
| 101      | 1 | 14 1147    |
| 102      | 1 | 15 1180    |
| 103      | 1 | 12 1153    |
| 104      | 1 | 10 1563    |
| 105      | 1 | 2 904      |
| 106      | 1 | 19 1208    |
| 107      | 1 | 4 1616     |
| 108      | 1 | 5 1535     |
| 109      | 1 | 18 1635    |
| 110      | 1 | 11 1420    |
| 111      | 1 | 13 1288    |
| 112      | 1 | 1 1482     |
| 113      | 1 | 21 1586    |
| 114      | 1 | 9 1922     |
| 115      | 1 | 7 1894     |
| 116      | 1 | 17 1633    |
| 117      | 1 | 6 1639     |
| 118      | 1 | 3 1357     |
| 119      | 1 | 20 1392    |
| 120      | 1 | 23 1651    |
| 121      | 1 | 24 2312    |
| 122      | 1 | 22 1949    |
| 123      | 1 | 8 1584     |
| 124      | 1 | 16 1420    |
| 201      | 2 | 12 1447    |
| 202      | 2 | 11 1365    |
| 203      | 2 | 13 1457    |

| 204 | 2 | 3  | 1345 |
|-----|---|----|------|
| 205 | 2 | 23 | 1643 |
| 206 | 2 | 17 | 1667 |
| 207 | 2 | 6  | 1543 |
| 208 | 2 | 19 | 1290 |
| 209 | 2 | 21 | 1661 |
| 210 | 2 | 2  | 1104 |
| 211 | 2 | 5  | 1629 |
| 212 | 2 | 16 | 1416 |
| 213 | 2 | 9  | 1765 |
| 214 | 2 | 7  | 1682 |
| 215 | 2 | 24 | 1963 |
| 216 | 2 | 4  | 1880 |
| 217 | 2 | 15 | 1594 |
| 218 | 2 | 8  | 1796 |
| 219 | 2 | 20 | 1404 |
| 220 | 2 | 22 | 1776 |
| 221 | 2 | 1  | 1539 |
| 222 | 2 | 10 | 1759 |
| 223 | 2 | 18 | 1565 |
| 224 | 2 | 14 | 1329 |
| 301 | 3 | 5  | 1488 |
| 302 | 3 | 13 | 1310 |
| 303 | 3 | 22 | 1741 |
| 304 | 3 | 23 | 1790 |
| 305 | 3 | 6  | 1647 |
| 306 | 3 | 19 | 1343 |
| 307 | 3 | 10 | 1957 |
| 308 | 3 | 1  | 1406 |
| 309 | 3 | 7  | 1751 |
| 310 | 3 | 14 | 1298 |
| 311 | 3 | 16 | 1431 |
| 312 | 3 | 21 | 1553 |
|     |   |    |      |

| 313 | 3 | 17 | 1724 |
|-----|---|----|------|
| 314 | 3 | 12 | 1335 |
| 315 | 3 | 4  | 1651 |
| 316 | 3 | 8  | 1531 |
| 317 | 3 | 15 | 1416 |
| 318 | 3 | 24 | 2043 |
| 319 | 3 | 2  | 1006 |
| 320 | 3 | 11 | 1290 |
| 321 | 3 | 9  | 1541 |
| 322 | 3 | 3  | 1263 |
| 323 | 3 | 18 | 1386 |
| 324 | 3 | 20 | 1224 |

## **ANALYSIS OF DATA**

## • MENU driven

## • Codes

"One-way ANOVA (in Randomized Blocks)."

BLOCK Rep

## **TREATMENTS** Genotype

COVARIATE "No Covariate"

ANOVA\ [PRINT=aovtable,information,means,%cv;\ FPROB=yes; PSE=lsd,means;\ LSDLEVEL=5] YieldKgHa

## 1) Analysis of variance

| **** Analysis of variance *****                      |      |          |         |       |       |  |
|------------------------------------------------------|------|----------|---------|-------|-------|--|
| Variate: YieldKgHa                                   |      |          |         |       |       |  |
| Source of variation                                  | d.f. | S.S.     | m.s.    | v.r.  | F pr. |  |
| Rep stratum                                          | 2    | 50990.   | 25495.  | 1.93  |       |  |
| Rep.*Units* stratum                                  |      |          |         |       |       |  |
| Genotype                                             | 23   | 3942156. | 171398. | 12.97 | <.001 |  |
| Residual                                             | 46   | 607884.  | 13215.  |       |       |  |
| Total                                                | 71   | 4601030. |         |       |       |  |
| * MESSAGE: the following units have large residuals. |      |          |         |       |       |  |

| Rep | 1 | *units* | 21 | 217. | s.e. | 92. |
|-----|---|---------|----|------|------|-----|
| Rep | 3 | *units* | 7  | 223. | s.e. | 92. |

#### 2) \*\*\*\*\* Tables of means \*\*\*\*\*

#### Variate: YieldKgHa

Grand mean 1531.

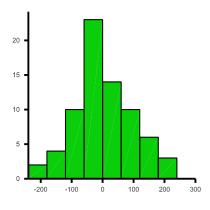
| Genotype | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|----------|-------|-------|-------|-------|-------|-------|-------|
|          | 1476. | 1005. | 1322. | 1716. | 1551. | 1610. | 1776. |
| Genotype | 8     | 9     | 10    | 11    | 12    | 13    | 14    |
|          | 1637. | 1743. | 1760. | 1358. | 1312. | 1352. | 1258. |
| Genotype | 15    | 16    | 17    | 18    | 19    | 20    | 21    |
|          | 1397. | 1422. | 1675. | 1529. | 1280. | 1340. | 1600. |
| Genotype | 22    | 23    | 24    |       |       |       |       |
|          | 1822. | 1695. | 2106. |       |       |       |       |

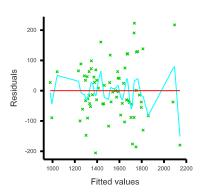
\*\*\* Standard errors of means \*\*\*

| Table  | Genotype |
|--------|----------|
| rep.   | 3        |
| d.f.   | 46       |
| e.s.e. | 66.4     |

\*\*\* Least significant differences of means (5% level) \*\*\*

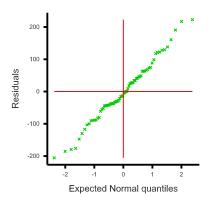
| Table  | Genotype |
|--------|----------|
| rep.   | 3        |
| d.f.   | 46       |
| l.s.d. | 188.9    |

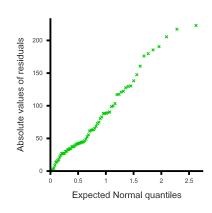

\*\*\*\*\* Stratum standard errors and coefficients of variation \*\*\*\*\*


Variate: YieldKgHa

| Stratum     | d.f. | s.e.  | CV 8 |
|-------------|------|-------|------|
| Rep         | 2    | 32.6  | 2.1  |
| Rep.*Units* | 46   | 115.0 | 7.5  |

#### Histogram of residuals


Fitted-value plot














#### 3. Presentation

Table 1. Mean yields of chickpea genotypes evaluated in spring sown International Yield Trial at Tel Hadya, Aleppo, Syria, 1995/96.

| Genotype   | Yield(kg/ha) |
|------------|--------------|
| 1          | 1476         |
| 2          | 1005         |
| 3          | 1322         |
| 4          | 1716         |
| 5          | 1551         |
| 6          | 1610         |
| 7          | 1776         |
| 8          | 1637         |
| 9          | 1743         |
| 10         | 1760         |
| 11         | 1358         |
| 12         | 1312         |
| 13         | 1352         |
| 14         | 1258         |
| 15         | 1397         |
| 16         | 1422         |
| 17         | 1675         |
| 18         | 1529         |
| 19         | 1280         |
| 20         | 1340         |
| 21         | 1600         |
| 22         | 1822         |
| 23         | 1695         |
| 24         | 2106         |
| SE         | ±66          |
| Grand mean | 1531         |
| CV%        | 7.5          |
|            |              |

Table 1. Mean yields of chickpea genotypes evaluated in spring sown International Yield Trial at Tel Hadya, Aleppo, Syria, 1995/96.

| Genotype   | Yield(t/ha) |
|------------|-------------|
| 1          | 1.48        |
| 2          | 1.00        |
| 3          | 1.32        |
| 4          | 1.72        |
| 5          | 1.72        |
| 6          | 1.61        |
| 7          | 1.78        |
| 8          | 1.64        |
| o<br>9     | 1.64        |
| -          |             |
| 10         | 1.76        |
| 11         | 1.36        |
| 12         | 1.31        |
| 13         | 1.35        |
| 14         | 1.26        |
| 15         | 1.40        |
| 16         | 1.42        |
| 17         | 1.67        |
| 18         | 1.53        |
| 19         | 1.28        |
| 20         | 1.34        |
| 21         | 1.60        |
| 22         | 1.82        |
| 23         | 1.69        |
| 24         | 2.11        |
| SE         | ±0.66       |
| Grand mean | 1.53        |
| CV%        | 7.5         |
|            |             |

# **3.** Design and analysis of two-factor factorial experiments in randomized complete blocks

- Factors of Crop Productivity
- Approaches of evaluation of multi-factors
- An example
- Interaction
- Design: Randomization schema
- An experiment: Data
- Analysis
- Presentation

#### **Factors/components of Crop Productivity**

Crop (Germplasm) Variety/genotype (stable, high yielding)

Resource management Land preparation methods Seed treatments Date of planting Sowing/planting methods Spacing (plot geometry) Fertilizer rates Irrigation methods Others

Crop protection methods Disease control Insect control Weed control others

## **Approaches of evaluation of multi-factors**

- Vary the level of one factor at a time, while keeping other factors fixed
  - No assessment of interactions
- Vary all the factors together, take all possible combinations
  - Too many combinations
  - Heterogeneous blocks/incomplete blocks
  - Confounding of effects
- Vary all the factors together, take a **fraction** of all possible combinations
  - Heterogeneous blocks/incomplete blocks
  - Confounding of effects

## An example:

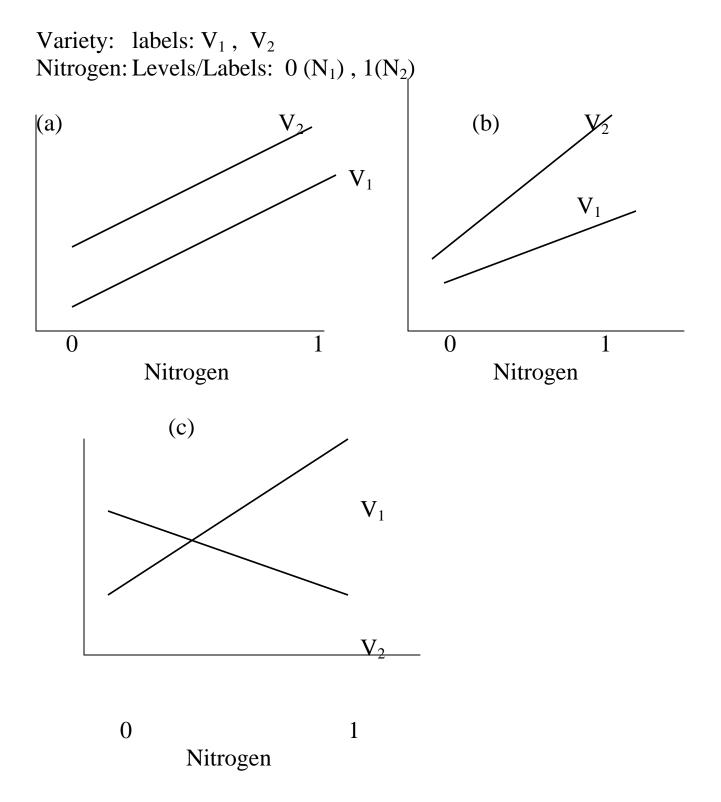
## **Two factors**:

## 1) Variety (qualitative factor)

| Labels         | $\mathbf{V}_1$ | $V_2$ | V <sub>3</sub> |
|----------------|----------------|-------|----------------|
| Levels         | 1              | 2     | 3              |
| ordinal levels | 1              | 2     | 3              |

2) Nitrogen (quantitative factor)

| Labels         | $N_1$ | $N_2$ | N <sub>3</sub> | $N_4$ |
|----------------|-------|-------|----------------|-------|
| Levels(kg/ha)  | 0     | 30    | 60             | 90    |
| Ordinal levels | 1     | 2     | 3              | 4     |


#### Controls

| 1) Variety:  | $V_1 = local variety$         |
|--------------|-------------------------------|
| 2) Nitrogen: | $N_1 = 0$ kg/ha : no nitrogen |

**Combinations** of Variety and Nitrogen: 3 x 4 = 12

| $V_1N_1$ | $V_1N_2$ | $V_1N_3$ | $V_1N_4$ |
|----------|----------|----------|----------|
| $V_2N_1$ | $V_2N_2$ | $V_2N_3$ | $V_2N_4$ |
| $V_3N_1$ | $V_3N_2$ | $V_3N_3$ | $V_3N_4$ |

#### Interaction between two factors: A schema



(a): No interaction. (b, c): interactions

Treatments design (nature of the treatment factors) Environmental/field design

Example:

Two factors: 1) Nitrogen (N): Labels:  $N_1$ ,  $N_2$ ,  $N_3$ ,  $N_4$ 2) Wheat variety (V):  $V_1$ ,  $V_2$ ,  $V_3$ 

**Combinations** of Nitrogen and Variety: 3 x 4 =12

| $V_1N_1$                                    | $V_1N_2$        | $V_1N_3$ | $V_1N_4$ |
|---------------------------------------------|-----------------|----------|----------|
| $V_2N_1$                                    | $V_2N_2$        | $V_2N_3$ | $V_2N_4$ |
| $V_3N_1$                                    | $V_3N_2$        | $V_3N_3$ | $V_3N_4$ |
| Main effects<br>Main effects<br>Interaction | V<br>N<br>V x N |          |          |

Experimental designs:

## Treatment design: All combinations of Nitrogen and the Variety Field design: RCBD for the combinations of N and V

Schema:

Rep 1

| N <sub>3</sub> | <b>N</b> <sub>1</sub>                  | $N_2$ | $N_1$ | $N_4$ | $N_3$ | $N_2$ | <b>N</b> <sub>1</sub> | $N_4$ | $N_2$ | $N_3$ | $N_4$          |
|----------------|----------------------------------------|-------|-------|-------|-------|-------|-----------------------|-------|-------|-------|----------------|
| $V_2$          | $egin{array}{c} N_1 \ V_3 \end{array}$ | $V_2$ | $V_1$ | $V_2$ | $V_1$ | $V_3$ | $V_2$                 | $V_3$ | $V_1$ | $V_3$ | $\mathbf{V}_1$ |

| Dar | 2                |
|-----|------------------|
| кер | $\boldsymbol{L}$ |

| <br>http:// |  |  |  |  |  |  |  |  |  |  |
|-------------|--|--|--|--|--|--|--|--|--|--|
|             |  |  |  |  |  |  |  |  |  |  |
|             |  |  |  |  |  |  |  |  |  |  |
| <br>:       |  |  |  |  |  |  |  |  |  |  |

Example 1: (details unknown)

Design: Two factors factorial in randomized complete blocks.

Factors: SeedRate: Seed rate (2 levels), SowDepth: sowing depth (4 levels), Rep: replications (3).

Variables: KGY: Grain yield (kg/ha), KST: Straw yield (kg/ha), KBio: Biomass (kg/ha)

# Data

| Rep | SowDepth | SeedRa | ate Kbio | KGY  | KSt  |
|-----|----------|--------|----------|------|------|
| 1   | 1        | 1      | 11810    | 4735 | 7075 |
| 2   | 1        | 1      | 11850    | 4550 | 7300 |
| 3   | 1        | 1      | 8800     | 4010 | 4790 |
| 1   | 1        | 2      | 12790    | 4550 | 8240 |
| 2   | 1        | 2      | 12130    | 5100 | 7030 |
| 3   | 1        | 2      | 13440    | 4750 | 8690 |
| 1   | 2        | 1      | 13260    | 5540 | 7720 |
| 2   | 2        | 1      | 11405    | 4605 | 6800 |
| 3   | 2        | 1      | 10495    | 4200 | 6295 |
| 1   | 2        | 2      | 14390    | 5510 | 8880 |
| 2   | 2        | 2      | 11860    | 4640 | 7220 |
| 3   | 2        | 2      | 10640    | 4365 | 6275 |
| 1   | 3        | 1      | 10205    | 4505 | 5700 |
| 2   | 3        | 1      | 9680     | 5045 | 4635 |
| 3   | 3        | 1      | 10140    | 3795 | 6345 |
| 1   | 3        | 2      | 11285    | 4780 | 6505 |
| 2   | 3        | 2      | 10685    | 4560 | 6125 |
| 3   | 3        | 2      | 9450     | 4160 | 5290 |
| 1   | 4        | 1      | 8535     | 3925 | 4610 |
| 2   | 4        | 1      | 7790     | 3070 | 4720 |
| 3   | 4        | 1      | 6975     | 3710 | 3265 |
| 1   | 4        | 2      | 10010    | 4965 | 5045 |
| 2   | 4        | 2      | 9330     | 3630 | 5700 |
| 3   | 4        | 2      | 10610    | 4250 | 6360 |

# Analysis of data on grain yield

#### \*\*\*\*\* Analysis of variance \*\*\*\*\*

Variate: KGY

| Source of variation | d.f. | S.S.     | m.s.    | v.r. | F pr. |
|---------------------|------|----------|---------|------|-------|
| Rep stratum         | 2    | 1773775. | 886888. | 4.78 |       |
| Rep.*Units* stratum |      |          |         |      |       |
| SeedRate            | 1    | 531038.  | 531038. | 2.86 | 0.113 |
| SowDepth            | 3    | 2598921. | 866307. | 4.67 | 0.018 |
| SeedRate.SowDepth   | 3    | 444554.  | 148185. | 0.80 | 0.515 |
| Residual            | 14   | 2596075. | 185434. |      |       |
| Total               | 23   | 7944362. |         |      |       |

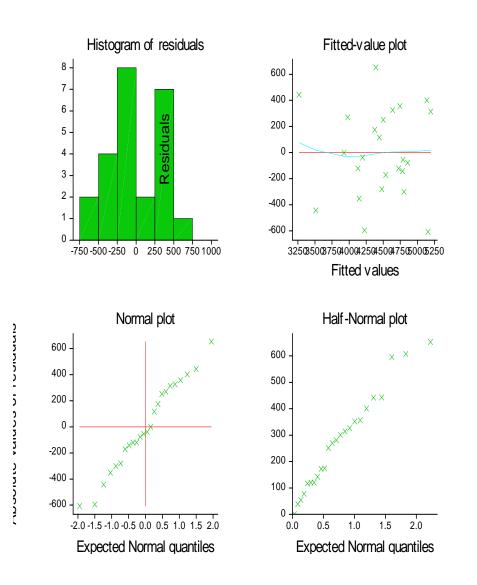
| ****  | Tabl | Les | of | means | **** |
|-------|------|-----|----|-------|------|
| Varia | ate: | KGY | ζ  |       |      |

Grand mean 4456.

| SeedRate | 1        | 2     |       |       |       |
|----------|----------|-------|-------|-------|-------|
|          | 4308.    | 4605. |       |       |       |
| SowDepth | 1        | 2     | 3     | 4     |       |
|          | 4616.    | 4810. | 4474. | 3925. |       |
| SeedRate | SowDepth | 1     | 2     | 3     | 4     |
| 1        |          | 4432. | 4782. | 4448. | 3568. |
| 2        |          | 4800. | 4838. | 4500. | 4282. |

#### \*\*\* Standard errors of means \*\*\*

| Table  | SeedRate | SowDepth | SeedRate |
|--------|----------|----------|----------|
|        |          |          | SowDepth |
| rep.   | 12       | 6        | 3        |
| d.f.   | 14       | 14       | 14       |
| e.s.e. | 124.3    | 175.8    | 248.6    |


\*\*\* Least significant differences of means (5% level) \*\*\*

| Table  | SeedRate | SowDepth | SeedRate |
|--------|----------|----------|----------|
|        |          |          | SowDepth |
| rep.   | 12       | 6        | 3        |
| d.f.   | 14       | 14       | 14       |
| l.s.d. | 377.1    | 533.2    | 754.1    |

**\*\*\*\*\*** Stratum standard errors and coefficients of variation **\*\*\*\*\*** 

Variate: KGY

| Stratum     | d.f. | s.e.  | CV <sup>8</sup> |  |
|-------------|------|-------|-----------------|--|
| Rep         | 2    | 333.0 | 7.5             |  |
| Rep.*Units* | 14   | 430.6 | 9.7             |  |



# Example 2:

An experiment was conducted on durum wheat (Cham 1 cultivar) to evaluate the response of nitrogen and phosphorus fertilizers in 4 levels of N (0, 40, 80, 120 kg N /ha as ammonium nitrate) and 4 levels of P (0, 20, 40, and 80 Kg  $P_2 O_5$  /ha as triple super-phosphate). The 16 combinations of N and P were randomly applied to the plots of RCBD with two replications.

The data on grain yield was analyzed and presented as follows.

Table 1. Cham-1 (a durum wheat cultivar) grain yields (t/ha) from four rates of nitrogen and four rates of phosphorus, Khan Shekhoun, Hama, 1989.

| Nitrogon              |      | $P_2 O_5 (kg/ha)$ |        |      |             |  |  |
|-----------------------|------|-------------------|--------|------|-------------|--|--|
| Nitrogen<br>N (kg/ha) | 0    | 20                | 40     | 80   | Mean        |  |  |
| 0                     | 1.57 | 1.51              | 1.14   | 1.97 | 1.55        |  |  |
| 40                    | 1.79 | 1.60              | 1.93   | 2.03 | 1.84        |  |  |
| 80                    | 1.72 | 1.81              | 2.09   | 1.80 | 1.86        |  |  |
| 120                   | 1.81 | 1.76              | 1.42   | 2.09 | 1.72        |  |  |
| SE                    |      |                   | ±0.14  |      | $\pm 0.071$ |  |  |
| Mean                  | 1.72 | 1.67              | 1.65   | 1.97 | 1.75        |  |  |
| SE                    |      |                   | -0.071 |      |             |  |  |

## 4. Design and Analysis of Split-plot Experiments in Randomized Complete Blocks

- Factors of Crop Productivity
- Approaches of evaluation of multi-factors
- An example
- Interaction
- Design: Randomization schema
- An experiment: Data
- Analysis
- Presentation

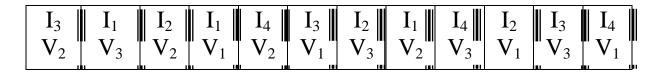
- Treatments design (nature of the treatment factors)
- Environmental/field design

Example:

Two factors: 1) Irrigation (I): Labels:  $I_1$ ,  $I_2$ ,  $I_3$ ,  $I_4$ 2) Wheat variety (V):  $V_1$ ,  $V_2$ ,  $V_3$ 

### **Combinations** of Irrigation and Variety: 3 x 4 = 12

|                                             | $V_1I_1$ | $V_1I_2$        | $V_1I_3$ | $V_1I_4$ |
|---------------------------------------------|----------|-----------------|----------|----------|
|                                             | $V_2I_1$ | $V_2I_2$        | $V_2I_3$ | $V_2I_4$ |
|                                             | $V_3I_1$ | $V_3I_2$        | $V_3I_3$ | $V_3I_4$ |
| Main effects<br>Main effects<br>Interaction |          | V<br>I<br>V x I |          |          |


Experimental designs:

Option 1:

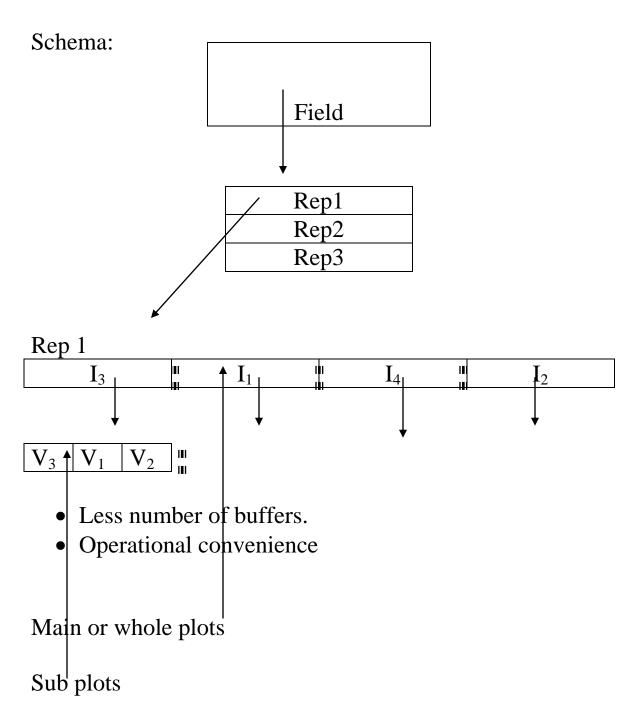
Treatment design: All combinations of Irrigation and the cultivars Field design: RCBD for the combinations of I and V

Schema:

Rep 1






| • | 1 |   |  |  |  |  |
|---|---|---|--|--|--|--|
|   |   |   |  |  |  |  |
|   |   | • |  |  |  |  |
|   |   |   |  |  |  |  |
|   |   |   |  |  |  |  |
|   |   |   |  |  |  |  |

Option 2:

Treatment design:

All combinations of Irrigation and the cultivars Field design: RCBD for I

Vs within each level of I.



Split-plot experiments in a given field design/ RCBD

# Generation of randomized plan for a split-plot experiment in RCBD

Identify – the factor to be assigned to main-plots – the factor to be assigned to sub-plots determine the field design for main-plot factor .

Randomization:

- Field
- Form replicates/blocks
- Randomly assign main-plot treatment factor to the main-plots; independently within each replicate/block
- Randomly assign sub-plot treatment factor to the subplots within each main-plot and within each replicate/block.

Use Genstat Menu

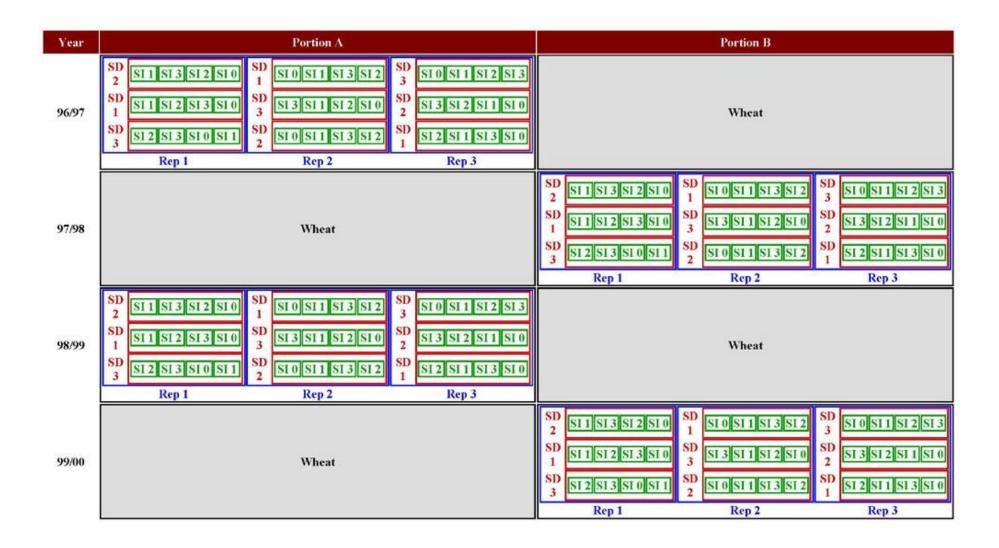



Table1. Plot-wise yields of a lentil genotype under three dates of sowing in main-plots and four levels of supplemental irrigation in sub-plots at Tel Hadya, 1996/97 in a split-plot experiment in randomized complete blocks with three replications.

| Rep | Plot | Sowing | Suppl.     | Grain   | Biomass |
|-----|------|--------|------------|---------|---------|
|     | No.  | Date   | Irrigation | Yield   | (kg/ha) |
|     |      |        |            | (kg/ha) |         |
| 1   | 101  | 3      | 2          | 1464    | 4134    |
| 1   | 102  | 3      | 3          | 1852    | 5164    |
| 1   | 103  | 3      | 0          | 1076    | 3654    |
| 1   | 104  | 3      | 1          | 1146    | 3481    |
| 1   | 105  | 1      | 0          | 931     | 5319    |
| 1   | 106  | 1      | 3          | 1753    | 6899    |
| 1   | 107  | 1      | 2          | 2564    | 8667    |
| 1   | 108  | 1      | 1          | 1481    | 7465    |
| 1   | 109  | 2      | 1          | 1721    | 6596    |
| 1   | 110  | 2      | 3          | 1975    | 6801    |
| 1   | 111  | 2      | 2          | 1855    | 6787    |
| 1   | 112  | 2      | 0          | 864     | 5005    |
| 2   | 201  | 2      | 0          | 896     | 4684    |
| 2   | 202  | 2      | 1          | 1065    | 5101    |
| 2   | 203  | 2      | 3          | 1577    | 6289    |
| 2   | 204  | 2      | 2          | 1566    | 6557    |
| 2   | 205  | 3      | 0          | 1002    | 3139    |
| 2   | 206  | 3      | 2          | 1446    | 3922    |
| 2   | 207  | 3      | 1          | 1390    | 4247    |
| 2   | 208  | 3      | 3          | 1340    | 4018    |
| 2   | 209  | 1      | 0          | 1005    | 5919    |

| 2 | 210 | 1 | 1 | 829  | 6074 |
|---|-----|---|---|------|------|
| 2 | 211 | 1 | 3 | 1785 | 7714 |
| 2 | 212 | 1 | 2 | 1672 | 7376 |
| 3 | 301 | 1 | 2 | 1157 | 6067 |
| 3 | 302 | 1 | 1 | 907  | 5975 |
| 3 | 303 | 1 | 3 | 1002 | 6444 |
| 3 | 304 | 1 | 0 | 395  | 5337 |
| 3 | 305 | 2 | 0 | 681  | 5252 |
| 3 | 306 | 2 | 1 | 907  | 5986 |
| 3 | 307 | 2 | 2 | 1189 | 5354 |
| 3 | 308 | 2 | 3 | 1884 | 6677 |
| 3 | 309 | 3 | 0 | 790  | 3037 |
| 3 | 310 | 3 | 1 | 1005 | 4067 |
| 3 | 311 | 3 | 2 | 1422 | 4854 |
| 3 | 312 | 3 | 3 | 1601 | 4741 |

Sowing dates:

1: Mid November

2: Late December

3: Mid February

## **Statistical Analysis:**

- Partitioning of variability :ANOVA
- Estimation of error variability (ies)
- Estimation of means (main effects and interactions)
- Standard errors
- Coefficient of variation
- Presentation of results

Demonstration using Genstat Menu system

"Split-Plot Design." BLOCK Rep/SD/Irr TREATMENTS SD\*Irr COVARIATE "No Covariate" ANOVA [PRINT=aovtable,information,means,%cv; FACT=32; FPROB=yes; PSE=lsd,means; LSDLEVEL=5] GY • Partitioning of variability

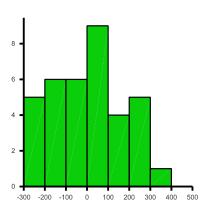
| **** Analysis of variance ***** |      |          |          |       |       |  |  |
|---------------------------------|------|----------|----------|-------|-------|--|--|
| Variate: GY                     |      |          |          |       |       |  |  |
| Source of variation             | d.f. | S.S.     | m.s.     | v.r.  | F pr. |  |  |
| Rep stratum                     | 2    | 1376920. | 688460.  | 6.19  |       |  |  |
| Rep.SD stratum                  |      |          |          |       |       |  |  |
| SD                              | 2    | 25242.   | 12621.   | 0.11  | 0.896 |  |  |
| Residual                        | 4    | 445217.  | 111304.  | 1.96  |       |  |  |
| Rep.SD.Irr stratum              |      |          |          |       |       |  |  |
| Irr                             | 3    | 3818509. | 1272836. | 22.44 | <.001 |  |  |
| SD.Irr                          | 6    | 411849.  | 68641.   | 1.21  | 0.346 |  |  |
| Residual                        | 18   | 1020779. | 56710.   |       |       |  |  |
| Total                           | 35   | 7098517. |          |       |       |  |  |

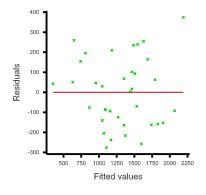
**Tables of means** 

Variate: GY

Grand mean 1311.

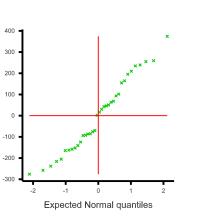
| SD  | 1     | 2     | 3     |       |       |
|-----|-------|-------|-------|-------|-------|
|     | 1290. | 1348. | 1294. |       |       |
| Irr | 0.00  | 1.00  | 2.00  | 3.00  |       |
|     | 849.  | 1161. | 1593. | 1641. |       |
| SD  | Irr   | 0.00  | 1.00  | 2.00  | 3.00  |
| 1   |       | 777.  | 1072. | 1798. | 1513. |
| 2   |       | 814.  | 1231. | 1537. | 1812. |
| 3   |       | 956.  | 1180. | 1444. | 1598. |


| *** Standard errors   | of means **; | k        |             |
|-----------------------|--------------|----------|-------------|
| Table                 | SD           | Irr      | SD          |
|                       |              |          | Irr         |
| rep.                  | 12           | 9        | 3           |
| e.s.e.                | 96.3         | 79.4     | 153.1       |
| d.f.                  | 4            | 18       | 16.83       |
| Except when comparing | means with   | the same | level(s) of |
| SD                    |              |          | 137.5       |
| d.f.                  |              |          | 18          |

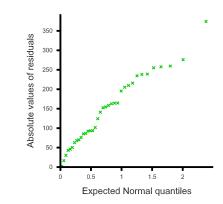

\*\*\* Least significant differences of means (5% level) \*\*\* Table SD SD Irr Irr 3 12 9 rep. 378.1 1.s.d. 235.8 457.3 d.f. 16.83 4 18 Except when comparing means with the same level(s) of 408.5 SD d.f. 18

| ***** Stratum standard erro | ers and coeffic | cients of vari | ation ***** |
|-----------------------------|-----------------|----------------|-------------|
| Variate: GY                 |                 |                |             |
| Stratum                     | d.f.            | s.e.           | CA&         |
| Rep                         | 2               | 239.5          | 18.3        |
| Rep.SD                      | 4               | 166.8          | 12.7        |
| Rep.SD.Irr                  | 18              | 238.1          | 18.2        |










Residuals







• Presentation of results

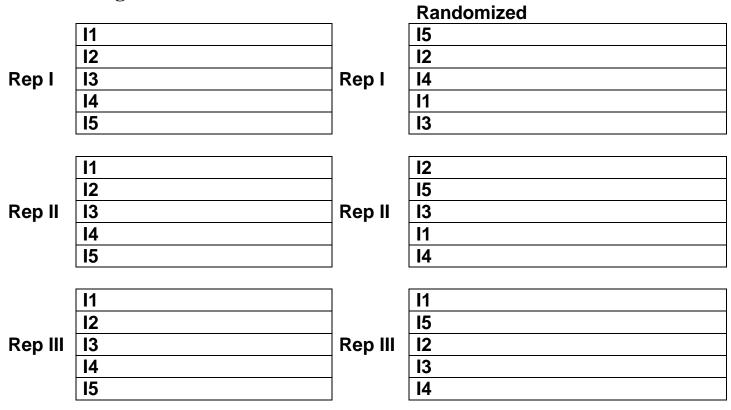
Table 1. Mean grain yield (kg/ha) of a lentil genotype under three dates of sowing and four levels of supplemental irrigation at Tel Hadya, 1996/97.

| Supplemental | Sowing dates               |          |          | Mean |
|--------------|----------------------------|----------|----------|------|
| Irrigation   |                            |          |          |      |
|              | Mid                        | Late     | Mid      |      |
|              | November                   | December | February |      |
| 0(rainfed)   | 777                        | 814      | 956      | 849  |
| 1(33% of     | 1072                       | 1231     | 1180     | 1161 |
| requirement) |                            |          |          |      |
| 2(66% of     | 1798                       | 1537     | 1444     | 1593 |
| requirement) |                            |          |          |      |
| 3(full       | 1513                       | 1812     | 1598     | 1641 |
| irrigation)  |                            |          |          |      |
| SE           | ±153 (±138 <sup>\$</sup> ) |          |          | ±79  |
| Mean         | 1290                       | 1348     | 1294     | 1311 |
| SE           |                            | ±96      |          |      |

<sup>\$</sup>: for comparing irrigation levels at same sowing dates.

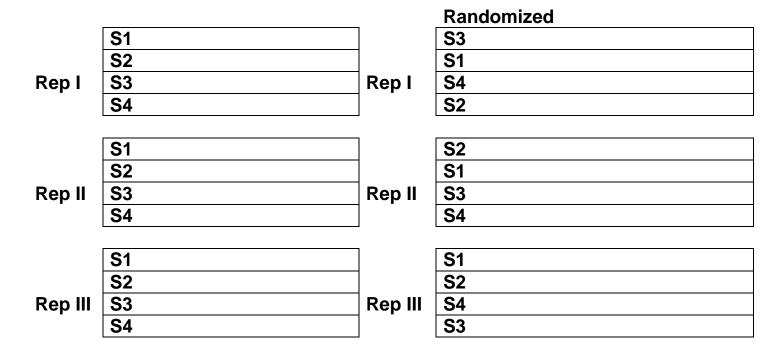
Experimental design was a split-plot experiment, with sowing dates in main-plots and supplemental irrigation in sub-plots, conducted in a randomized complete blocks with three replications.

Table 1. Mean grain yield (t/ha) of a lentil genotype under three dates of sowing and four levels of supplemental irrigation at Tel Hadya, 1996/97.

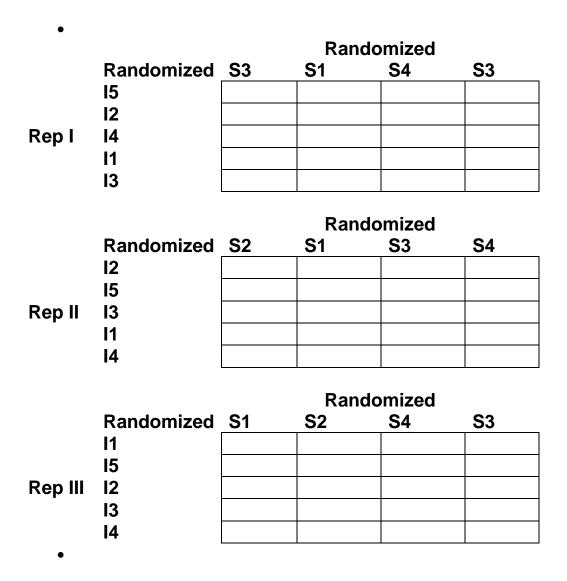

| Supplemental | S                           | Mean     |          |       |
|--------------|-----------------------------|----------|----------|-------|
| Irrigation   |                             |          |          |       |
|              | Mid                         | Late     | Mid      |       |
|              | November                    | December | February |       |
| 0(rainfed)   | 0.78                        | 0.81     | 0.96     | 0.85  |
| 1(33% of     | 1.07                        | 1.23     | 1.18     | 1.16  |
| requirement) |                             |          |          |       |
| 2(66% of     | 1.80                        | 1.54     | 1.44     | 1.59  |
| requirement) |                             |          |          |       |
| 3(full       | 1.51                        | 1.81     | 1.60     | 1.64  |
| irrigation)  |                             |          |          |       |
| SE           | ±0.15(±0.14 <sup>\$</sup> ) |          |          | ±0.79 |
| Mean         | 1.29                        | 1.35     | 1.29     | 1.31  |
| SE           |                             | ±0.96    |          |       |

<sup>\$</sup>: for comparing irrigation levels at same sowing dates. Experimental design was a split-plot experiment, with sowing dates in main-plots and supplemental irrigation in sub-plots, conducted in a randomized complete blocks with three replications.

### 5. Design and analysis of strip-plot experiments in RCB


- Nature of the factors
- Review of the nature of factors in
  - factorial combinations in randomized complete blocks (RCB)
  - split-plots in RCB
- Consider two factors e.g. Irrigation methods, and tillage methods. Both of these two factor require large areas for their operation.
- How to design such an experiment? and analyze the data?
- Let Irrigation be at 5 levels (I1,I2,I3,I4,I5)
- Let Soil tillage be at 4 levels (S1, S2, S3, S4)

#### • RCB designs for these factors would look like:




### **Irrigation:**

#### • Soil tillage methods



• Placing two together is possible if they could be laid out in orthogonal/ perpendicular directions



An example:

An agronomist wanted to measure the effect of two Autumn or Fall tillage treatments and three Spring tillage treatments on the yield of wheat. Because of the size of machinery involved, the Spring treatments were applied to strips of plots at right angels to the Autumn treatments. He used the following treatments:

Factor A = Autumn (fall) tillage :  $F_1$  = Chisel,  $F_2$  = Subsoil Factor B = Spring tillage  $S_1$  = Plow,  $S_2$  = Sweep,  $S_3$  = Offset disk.

The experiment was run in three blocks. The field lay-out and yield (Kg/Hectare) were

| Ι                      | Plow $S_1$ | Disk $S_3$ | Sweep $S_2$ |
|------------------------|------------|------------|-------------|
| Chisel F <sub>1</sub>  | 312        | 315        | 278         |
|                        |            |            |             |
|                        |            |            |             |
| Subsoil F <sub>2</sub> | 318        | 222        | 267         |
|                        |            |            |             |

| II                    | Disk $S_3$ | Plow $S_1$ | Sweep $S_2$ |
|-----------------------|------------|------------|-------------|
| Subsoil $F_2$         | 334        | 374        | 296         |
|                       |            |            |             |
| Chisel F <sub>1</sub> | 314        | 350        | 286         |
|                       |            |            |             |

| III                    | Disk $S_3$ | Sweep $S_2$ | Plow $S_1$ |
|------------------------|------------|-------------|------------|
| Subsoil F <sub>2</sub> | 298        | 228         | 384        |
|                        |            |             |            |
| Chisel F <sub>1</sub>  | 312        | 309         | 361        |
|                        |            |             |            |

• Spread-sheet

| Pon | AutumnTill | SpringTill | YieldKgHa |
|-----|------------|------------|-----------|
| Rep |            | SpringTill |           |
| 1   | Chisel     | Plow       | 312       |
| 1   | Chisel     | Disk       | 315       |
| 1   | Chisel     | Sweep      | 278       |
| 1   | SubSoil    | Plow       | 318       |
| 1   | SubSoil    | Disk       | 222       |
| 1   | SubSoil    | Sweep      | 267       |
| 2   | SubSoil    | Disk       | 334       |
| 2   | SubSoil    | Plow       | 374       |
| 2   | SubSoil    | Sweep      | 296       |
| 2   | Chisel     | Disk       | 314       |
| 2   | Chisel     | Plow       | 350       |
| 2   | Chisel     | Sweep      | 286       |
| 3   | SubSoil    | Disk       | 298       |
| 3   | SubSoil    | Sweep      | 228       |
| 3   | SubSoil    | Plow       | 384       |
| 3   | Chisel     | Disk       | 312       |
| 3   | Chisel     | Sweep      | 309       |
| 3   | Chisel     | Plow       | 361       |

٠

# Analysis of variance

Variate: YieldKgHa

| Source of variation       | d.f.                              | S.S.    | m.s.   | v.r. F pr.  |  |  |  |
|---------------------------|-----------------------------------|---------|--------|-------------|--|--|--|
| Rep stratum               | 2                                 | 5267.1  | 2633.6 |             |  |  |  |
| Rep.AutumnTill stratum    |                                   |         |        |             |  |  |  |
| AutumnTill                | 1                                 | 747.6   | 747.6  | 0.68 0.497  |  |  |  |
| Residual                  | 2                                 | 2203.1  | 1101.6 | 1.25        |  |  |  |
| Rep.SpringTill stratum    |                                   |         |        |             |  |  |  |
| SpringTill                | 2                                 | 16600.1 | 8300.1 | 14.81 0.014 |  |  |  |
| Residual                  | 4                                 | 2241.9  | 560.5  | 0.63        |  |  |  |
| Rep.AutumnTill.SpringTill | Rep.AutumnTill.SpringTill stratum |         |        |             |  |  |  |
| AutumnTill.SpringTill     | 2                                 |         | 1051.4 | 1.19 0.393  |  |  |  |
| Residual                  | 4                                 | 3530.6  | 882.6  |             |  |  |  |
| Total                     | 17                                | 32693.1 |        |             |  |  |  |

#### Tables of means

Variate: YieldKgHa

Grand mean 308.8

AutumnTill Chisel SubSoil 315.2 302.3

| SpringTill | Disk  | Plow  | Sweep |
|------------|-------|-------|-------|
|            | 299.2 | 349.8 | 277.3 |

| AutumnTillSpringTill | Disk  | Plow  | Sweep |
|----------------------|-------|-------|-------|
| Chisel               | 313.7 | 341.0 | 291.0 |
| SubSoil              | 284.7 | 358.7 | 263.7 |

#### Standard errors of means

| Table       | AutumnTill  | II SpringTillAutumnTill |            |               |  |
|-------------|-------------|-------------------------|------------|---------------|--|
|             |             | SpringTill              |            |               |  |
| rep.        | 9           | 6                       | 3          |               |  |
| e.s.e.      | 11.06       | 9.66                    | 16.27      |               |  |
| d.f.        | 2           | 4                       | 6.83       |               |  |
| Except when | n comparing | means with              | n the same | e level(s) of |  |
| AutumnTill  |             |                         | 15.51      |               |  |
| d.f.        |             |                         | 7.62       |               |  |
| SpringTill  |             |                         | 17.85      |               |  |
| d.f.        |             |                         | 5.93       |               |  |

#### Least significant differences of means (5% level)

| Table       | AutumnTill  | SpringTill/ | AutumnTill |             |
|-------------|-------------|-------------|------------|-------------|
|             |             |             | SpringTill |             |
| rep.        | 9           | 6           | 3          |             |
| l.s.d.      | 67.32       | 37.95       | 54.70      |             |
| d.f.        | 2           | 4           | 6.83       |             |
| Except when | o comparing | means with  | h the same | level(s) of |
| AutumnTill  |             |             | 51.02      |             |
| d.f.        |             |             | 7.62       |             |
| SpringTill  |             |             | 61.94      |             |
| d.f.        |             |             | 5.93       |             |

#### Stratum standard errors and coefficients of variation

Variate: YieldKgHa

| Stratum                   | d.f. | s.e.  | cv% |
|---------------------------|------|-------|-----|
| Rep                       | 2    | 20.95 | 6.8 |
| Rep.AutumnTill            | 2    | 19.16 | 6.2 |
| Rep.SpringTill            | 4    | 16.74 | 5.4 |
| Rep.AutumnTill.SpringTill | 4    | 29.71 | 9.6 |

• (source: George Ghannoun's experiments)

Example from Line source experiment.

| 31                      |        |          |         |       |       |  |
|-------------------------|--------|----------|---------|-------|-------|--|
| ***** Analysis of varia | nce ** | ***      |         |       |       |  |
| Variate: SDWTPPLN       |        |          |         |       |       |  |
| Source of variation     | d.f.   | S.S.     | m.s.    | v.r.  | F pr. |  |
| Rep stratum             | 2      | 30.2821  | 15.1411 |       |       |  |
| Rep.Trt stratum         |        |          |         |       |       |  |
| Trt                     | 5      | 236.9607 | 47.3921 | 26.00 | <.001 |  |
| Residual                | 10     | 18.2255  | 1.8225  | 2.48  |       |  |
| Rep.Variety stratum     |        |          |         |       |       |  |
| Variety                 | 14     | 63.3211  | 4.5229  | 2.48  | 0.020 |  |
| Residual                | 28     | 51.1278  | 1.8260  | 2.49  |       |  |
| Rep.Trt.Variety stratum |        |          |         |       |       |  |
| Trt.Variety             | 70     | 58.3190  | 0.8331  | 1.14  | 0.261 |  |
| Residual                | 140    | 102.7254 | 0.7338  |       |       |  |
| Total                   | 269    | 560.9616 |         |       |       |  |

\*\*\*\*\* Tables of means \*\*\*\*\*

#### Variate: SDWTPPLN

Grand mean 4.072

| Trt     | L1<br>4.941      | L2<br>5.221      | L3<br>4.562      | L4<br>3.893      | L5<br>3.233      | L6<br>2.584      |                  |
|---------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Variety | 72.00<br>3.780   | 452.00<br>4.311  | 1929.00<br>4.528 | 2293.00<br>3.779 | 2799.00<br>3.106 | 3193.00<br>4.223 | 3279.00<br>3.893 |
| Variety | 3764.00<br>4.801 | 4162.00<br>4.643 | 4236.00<br>4.635 |                  | 4463.00<br>4.315 |                  | 8759.00<br>3.175 |
| Variety | 8785.00<br>3.974 |                  |                  |                  |                  |                  |                  |
| Trt     | Variety          | 72.00            | 452.00           | 1929.00          | 2293.00          | 2799.00          | 3193.00          |
| L1      | _                | 4.923            | 6.143            | 4.690            | 4.387            | 3.450            | 4.833            |
| L2      |                  | 5.857            | 5.540            | 6.153            | 4.873            | 3.463            | 5.143            |
| L3      |                  | 4.437            | 4.067            | 5.410            | 3.843            | 3.717            | 5.000            |
| L4      |                  | 3.860            | 3.730            | 4.370            | 2.927            | 2.740            | 4.663            |
| L5      |                  | 2.230            | 3.127            | 3.200            | 3.680            | 2.763            | 3.173            |
| L6      |                  | 1.373            | 3.260            | 3.347            | 2.967            | 2.500            | 2.527            |
| Trt     | Variety          | 3279.00          | 3764.00          | 4162.00          | 4236.00          | 4446.00          | 4463.00          |
| L1      | _                | 4.913            | 6.293            | 5.767            | 5.427            | 5.090            | 5.230            |
| L2      |                  | 6.053            | 6.517            | 5.850            | 5.527            | 4.640            | 5.777            |
| L3      |                  | 4.757            | 5.767            | 5.570            | 5.007            | 4.927            | 4.437            |
| L4      |                  | 3.457            | 3.690            | 4.527            | 4.797            | 3.960            | 4.227            |

| L5  |         | 2.637   | 3.777   | 3.353   | 3.583 | 3.400 | 3.383 |
|-----|---------|---------|---------|---------|-------|-------|-------|
| L6  |         | 1.543   | 2.760   | 2.790   | 3.470 | 2.350 | 2.837 |
| Trt | Variety | 4958.00 | 8759.00 | 8785.00 |       |       |       |
| L1  | -       | 4.313   | 3.930   | 4.723   |       |       |       |
| L2  |         | 4.660   | 3.833   | 4.430   |       |       |       |
| L3  |         | 3.840   | 3.620   | 4.027   |       |       |       |
| L4  |         | 3.930   | 3.207   | 4.310   |       |       |       |
| L5  |         | 4.097   | 2.680   | 3.407   |       |       |       |
| L6  |         | 2.307   | 1.780   | 2.950   |       |       |       |

#### \*\*\* Standard errors of means \*\*\*

| Table       | Trt             | Variety       | Trt         |
|-------------|-----------------|---------------|-------------|
|             |                 |               | Variety     |
| rep.        | 45              | 18            | 3           |
| e.s.e.      | 0.2012          | 0.3185        | 0.5740      |
| d.f.        | 10              | 28            | 138.67      |
| Except when | comparing means | with the same | level(s) of |
| Trt         |                 |               | 0.5525      |
| d.f.        |                 |               | 140.28      |
| Variety     |                 |               | 0.5184      |
| d.f.        |                 |               | 134.72      |

#### \*\*\* Standard errors of differences of means \*\*\*

| Table       | Trt             | Variety       | Trt         |
|-------------|-----------------|---------------|-------------|
|             |                 |               | Variety     |
| rep.        | 45              | 18            | 3           |
| s.e.d.      | 0.2846          | 0.4504        | 0.8117      |
| d.f.        | 10              | 28            | 138.67      |
| Except when | comparing means | with the same | level(s) of |
| Trt         |                 |               | 0.7814      |
| d.f.        |                 |               | 140.28      |
| Variety     |                 |               | 0.7332      |
| d.f.        |                 |               | 134.72      |

#### \*\*\* Least significant differences of means \*\*\*

| Table       | Trt             | Variety       | Trt         |
|-------------|-----------------|---------------|-------------|
|             |                 |               | Variety     |
| rep.        | 45              | 18            | 3           |
| l.s.d.      | 0.6341          | 0.9227        | 1.6050      |
| d.f.        | 10              | 28            | 138.67      |
| Except when | comparing means | with the same | level(s) of |
| Trt         |                 |               | 1.5448      |
| d.f.        |                 |               | 140.28      |
| Variety     |                 |               | 1.4500      |
| d.f.        |                 |               | 134.72      |

\*\*\*\*\* Stratum standard errors and coefficients of variation \*\*\*\*\*