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Abstract 

Viable management and policy options for sustaining smallholder farming systems in grain 

legume and dry cereal production regions need special attention. Although a great deal of 

knowledge on ways to efficiently agronomic measures exists, too few studies seek to 

understand how agricultural policy, financial services, farming technologies, local capabilities 

interactively affect smallholders’ decision about farming system management. As a 

methodological opportunity, multi-agent system (MAS) or agent-based model (ABM) has 

been recently recognized as a promising approach for explaining complex human-

environment interactions in agroecosystems. This report presents the concept, framework 

and theoretical parameterization of a MAS/ABM for the typical coupled community-

landscape system that can be used for ex-ante assessment of long-term impacts of 

management and policy options on soil fertility, food productivity and profitability of 

smallholder agroecosystems in different geographic regions. The goal is to provide insights 

into appropriate strategies for promoting the viability of smallholder agricultural livelihoods 

over the long term.  

 

Keywords: Agricultural livelihood system, socio-ecological system, complex system, grain 

legumes, dry cereals, multi-agent system, agent-based modelling, decision making 
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1. Needs and methodological opportunities in modelling research for 

supporting sustainable agricultural livelihood system 

1.1. A shift to socio-ecological system investigations with a focus on decision 

making 

Given that human and environmental dimensions of agricultural livelihood system are 

inextricably intertwined, efforts to promote sustainable system management needs to 

examine the socio-ecological system (SES) at hand. Farmers’ decisions are affected by a 

portfolio of political, social, economic and biophysical driving forces. Changes in farming 

patterns, management and practice affect soil fertility, food productivity and profitability. 

Accumulation of these effects over space and time will in the long-term lead to changes in 

the greater social-ecological landscape that in turn reshape decisions of smallholders and 

other involved actors. Recognizing that substantial socio-ecological systems relationships, 

researchers have been advocating for more interdisciplinary research about nutrient 

recycling and management issues that explores interactions between different components 

of farm system, such as livestock, crops, and soil, and also human actors’ decision making at 

different hierarchical levels, such as policy makers, fertilizer suppliers, and farmers (Craswell 

et al., 2004) (Matthews and Selman, 2006); (Vitousek et al., 2009). Attempts to transform 

these smallholders from the current difficulties to more sustainability require the 

consideration of not only technical nutrient management options, but as well the social and 

policy framing conditions that are beyond of the farm domain. Such interactions explain for 

ecosystem regime shifts, thus must be focused in diagnosing problems of human-

environment systems (Scheffer and Carpenter, 2003; Foley et al., 2011). 

Although a great deal of agronomic knowledge exists, so far not many studies seek to assess 

combining effects of different conditions/drivers (e.g. technological intervention, 

agricultural policy, financial and extension services, environmental conditions and farmer 

profile) on their decision on livelihood strategy and farm management. Improved 

understanding of farmers’ decisions will provide insight into what types of appropriate 

coping strategies might be taken at the local and regional scale. At the same time, 

assessment of impacts that changing farm management and practices have on the 

environment and on overall productivity and profitability is also crucial (Schlecht and 

Hiernaux, 2004). 
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1.2 The need for a conceptual framework for investigations of complex 

social-ecological interactions in smallholder agricultural livelihood system 

An increasing number of studies are integrating social and natural sciences (Belcher, 2004; 

Matthews and Selman, 2006; Gaube et al., 2009). These interdisciplinary efforts integrate 

tools and techniques from ecological and social sciences, such as geographic information 

systems (Grimm et al., 2006), system modelling and simulation, and survey research, to 

anticipate long-term outcomes, identify threshold points for agro-ecosystem regime shifts, 

pinpoint system feedback loops and time lags, and characterize numerous non-linear 

human-environment relationships (Liu et al., 2007).    

A major challenge with human-environment investigations is to effectively integrate 

knowledge (epistemic) and methods of various scientific disciplines, and from different 

societal domains. As suggested by (Scholz et al., 2011), a conceptual framework for 

considering socio-ecological system in-transition, such as smallholder agricultural livelihood 

systems, would be at least based on the following postulates: human and environment sub-

systems  are coupled; system hierarchies exist that often experience interferences; feedback 

loops, human decision-making and human awareness of their biophysical and social 

environments are parts of the system.  

 

1.3 Multi-agent systems (MAS) as a methodological opportunity for 

modelling social-ecological interactions and system transition with a focus on 

adaptive decision/behaviours 

There is an emerging recognition in the scientific community of the capability and utility that 

multi-agent simulations (MAS), or agent-based models (ABM) offer for understanding the 

complexity of energy, nutrient and material flows that result from rich interactions and 

feedback among social and natural processes (Bousquet and Le Page, 2004; Gaube et al., 

2009). In an MAS/ABM model, the human-environmental system is described through 

autonomous ‘agents’, which can be defined to represent human actors such as a farm 

household, a company, or biophysical entities such as a crop field. Compared to other 

modelling approaches, MAS/ABM can better support interdisciplinary, long-term, multi-

level, participatory studies with prominent uncertainties (Boulanger and Brechet, 2005). 
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Because it can incorporate the heterogeneity of social and ecological components, MAS 

represent individual behaviors, enabling, for example, simulation of collective use of 

common resources.  

Great progress has been made in applying MAS to study land use change over the last 10 

years. Recent versions of some MAS models are being used to examine specific real-world 

questions that can inform, for example, land use policy decisions ((Le et al., 2008; Gaube et 

al., 2009; Le et al., 2010), technology diffusion (Schreinemachers and Berger, 2011). Le et al. 

(2005, 2008, 2010, 2012) developed LUDAS (Land-Use Dynamics Simulator), an agent-based 

model to anticipate outcomes of alternative land use policies in in forest margins and 

agrarian community-landscape systems, offering one of the most integrated couplings of 

human drivers and natural constraints to date. Gaube et al. (2009) employed agent-based 

modeling and stakeholder involvement in the Reichraming area of Upper Austria to assess 

outcomes of alternative future land use scenarios, and demonstrate innovative scenario 

development. Berger et al. (2010) introduced MP-MAS (Mathematical Programming-based 

Multi-Agent System) as a tool for simulating sustainable resource use in agriculture and 

forestry, and uses mathematically programming to simulate human decision-making. 

Matthews (2006) reported People And Landscape Model (PALM) that simulates water, 

carbon, nitrogen, labour, and financial flows through a rural subsistence community using 

agent-based modelling.  

However, the MAS/ABM model is still in an early stage of development for smallholder 

agricultural livelihood systems: the farmers’ decision-making is modelled in a too simple 

way that has not yet sufficiently supported system transition options. Still, long-term and 

secondary feedback loops are often not adequately conceptualized and modelled. 

 

1.4 The need of multi-stakeholder involvement in SES modelling research 

To allow for well-informed modelling of the human agent (e.g. farmers decision on P use), 

close interaction with respective real-world stakeholders is indispensable: firstly to gain 

insights into their decision behaviour, secondly to verify the developed model and thirdly to 

allow for a potential adaption of their action given their exposure to the results of the 

modeling exercise (Voinov and Bousquet, 2010; Le et al., 2012). Stakeholder involvement in 

a research process must be guided by functionality, i.e. level of involvement (information, 
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consultation, collaboration, and empowerment) must appropriately fit the issue, step in the 

process, and concrete project task (Krütli et al., 2010). Transdisciplinarity (Td), a protocol of 

processes for collaborative science-society research, offers ways to engage stakeholders in 

studying human-environment systems, in integrating layperson and scientific knowledge, to 

improve environmental awareness and learning about the issue, as well as support to policy 

decisions (Scholz, 2011). Experts agree that stakeholders involvement and input leads to 

more sound, more acceptable policy decisions. The scientific challenge includes how to 

organize multi-stakeholder dialogues (transdisciplinary discourses) and mutual learning 

along the model development process (a) to improve the contextual validity of the model 

and (b) to increase system understanding of key stakeholder groups that need for 

developing rational decisions. 

 

2. Conceptual MAS/ABM model design 

We develop a MAS/ABM by adapt the LUDAS (Land Use DynAmic Simulator) to the GL/DC 

production landscapes in SSA. The detailed description and theoretical specification of 

LUDAS model are shown in Le et al. (2008, 2010, 2012) (first version), Villamor et al. (2014) 

and Miyasaka et al. (2017) (other variants). We  describe systematically the concept, 

structure and detailed specification of the model using the ODD (Overview, Design concepts, 

and Details), a standard protocol for describing agent-based models (Grimm et al., 2006). 

ODD has been more widely applied to ensure the descriptions of such complex models are 

readable and complete for the purposes of understanding the model application and 

replication (Müller et al., 2014). The MAS/ABM model described here is named as GLDC-

LUDAS. The model description along seven elements of the ODD protocol is as follows. 

2.1. Purpose 

Primarily, the GLDC-LUDAS model is designed to support management and policy options for 

smallholder GL/DC-based community-landscape based on its capabilities as follows: 

• To explore the magnitude of possible socio-ecological changes over space and 

time driven from different management/policy interventions,  

• To identify the most affected system’s components (what), locations (where), 

actor groups (who) and periods (when) with respect to specific policy 

interventions, 
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• To highlight sound management/policy interventions that likely enhance 

environmental, socio-economic benefit at least cost in a long run, and  

• To explore the potential trade-offs and synergies of the management/policy 

interventions over different objectives and social groups. 

 

2.2. Agents, their state variables and scales 

At agent scale: 

GLDC-LUDAS comprises a human-environment landscape consisting of (1) human agents 

that represent farming households, and (2) landscape agents that are congruent 

autonomous land pixels (Figure 1, the lower part).   

 

Figure 4. Agents, its variables and sub-models, interactions and feedbacks over across scales 

presented in GLDC-LUDAS model. Source: Adapted from Le et al. (2010). 

 

The state variables of these agents are as given below.  

(1) Human agents: The state variables of these agents capture the sustainable livelihood 

capitals of each household. This includes social identity (or simply the identification 

number), age, group membership, and human resources (e.g., household size, 

dependency ratio and education), land and natural resources (e.g., land holdings and 

land structures), financial capital (e.g., gross income and gross income per capita), 

Household agent

Household variables

Decision-making 
models

Landscape agent

Ecological variables

Ecological models

Social group/Neighbourhood dynamics

Catchment/Community dynamics

Agent dynamics

Temporal accumulation

Spatial aggregation

Temporal accumulation

Spatial aggregation

Feedback 
(constraints/opportunities)

Feedback 
(constraints/opportunities)

Tenure relationships

Land-use activities
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physical capital (e.g., access to market and distance to town), and households’ 

accessibilities to certain rural services (e.g. extension services, credit schemes), 

agricultural institutions, and policy (e.g. subsidies of farming inputs) (see Figure 2). 

 

Figure 2. Diagram shows state variables of household agents. Source: adapted from Le 

(2005). 

 

(2) Landscape agents: State variables of landscape agents are corresponding to GIS-raster 

layers of biophysical spatial-variables (e.g. land cover, topographical attributes, soil 

quality level, cropping type and responsive yield), economical spatial-variables (e.g. 

proximate distance to roads), institutional spatial-variables (e.g. owner, village 

territory, protection zoning class), and histories of particular patch properties (see 

Figure 3).  
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Figure 3. Diagram shows state variables of landscape agents (patch variables). Source: 

adapted from Le (2005) 

 

Regarding their dynamics, there are two types of state variables of agents: (1) static 

variables and (2) dynamic variables.  

(1) Static variables, including some landscape variables such as topographical attributes, 

proximities/distances to the nearest town and road. 

(2) The dynamic variables have two sub-types:  

• dynamic variables driven by natural process that beyond human’s control, 

such as the age of the household agents and natural vegetation growth of 

naturally vegetative pixels, 

• dynamic variables induced by household decisions or policy interventions, 

such as land holdings and income of household agents; cover type, crop yield 

and protection code of land pixel. Dynamic variables can act simultaneously 

as causes for some particular processes and consequences from other 

processes. 
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In GLDC-LUDAS, because the behavioral strategy of a household agent can changes over 

time, parameters specifying household behavior are also treated as state variables 

characterizing household behavior and stored in the memory of household agents. These 

behavioral variables include:  

(1) a set of preference coefficients (or weights) reflecting the relative importance of 

various environmental, socio-economic and policy factors in household decision 

about land uses, and 

(2) a set of ratios determining the amount of labor allocated for each branch of 

livelihood activities. 

 

At agent groups’ scale (i.e. landscape neighborhoods and household groups) and whole 

population-landscape scale: 

State variables for the entire (or sub-sets) of landscape and human community are emerged 

from interactions between human and landscape agents. Since neighborhood interactions 

are taken into account in the modelling of farming decision and farm type transition, 

changes in landscape and/or community status feedback to household- and pixel-based 

processes (Figure 1, the right part). 

 

2.3. Process overview and scheduling 

In a GLDC-LUDAS run, the coupled human-environment system is annually successive. The 

initial grid-based landscape is given by GIS raster files of corresponding variables. The initial 

population is generated from data of sampled households.  For each time step, sequential 

tasks are done within the annual production cycle (Fig. 4), in which household decisions are 

linked with concurrent processes in landscape agents. In most cases, all household and 

landscape agents are called upon on perform tasks in parallel (i.e. synchronizing actions). 

The current version of GLDC-LUDAS is coded using NetLogo 6.0 (Wilenski, 1999). 
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Figure 4. Flow chart showing main steps of the simulation/scheduling program in GLDC-
LUDAS (Source: modified from Le et al. (2008, 2010)). 
 

2.4. Design concepts 

The modelled units in GLDC-LUDAS are landscape and household agents. Landscape agents 

are regular land grids with their own attributes and ecological response mechanisms to 

Management/policy parameters

(Deactivated if 
there’s no 

forest/woodland)

s

(if forest exists) 
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environmental changes and human interventions. Household agents have their own state 

and decision-making mechanisms about land uses.  

 

Emergence 

Livelihood performance of the entire household population or social groups (e.g. average 

household income, income structure and inequality) truly emerges from household’s 

decisions that integrate household characteristics, surrounding dynamic environment and 

policy information (Fig. 1, the right part). However, population dynamics are modelled by an 

empirical equation estimated from historical data, thus are not an emergence property from 

micro interactions.  In general, agent’s interactions generate community and landscape 

changes and such macro changes create new opportunities or constraints for the agent-

based processes, thus forming cross-scale feedback loops (Fig. 2, the right part). 

 

Adaptation 

The GLDC-LUDAS model includes human adaptation mainly in the land-use decision process 

and the change of behavioral strategy.  

(1) Household agents adapt to current socio-ecological condition by choosing the best 

land-use in the best location in term of utility.  

(2) Household agents can changes their behavior strategy (i.e. structure of labor 

allocation and preference coefficients in land-use/crop/management choice 

functions) by imitating the strategy of the household group who is most similar to it. 

 

Fitness (goal orientation) 

Goal-seeking in land-use decisions by household agents is explicitly modelled, in which 

households calculate utilities - expressed in a probability term - for all land-use and location 

alternatives and “likely” select the alternative with the highest utility. However, by applying 

an ordered choice algorithm described in Benenson and Torrens (2004), and Le et al. (2008), 

concrete household decisions in GLDC-LUDAS are bounded-rational rather than purely 

rational. This bounded optimization holds the risk that some household agents select a land-

use/crop/management type that may not be the best alternative, but the chance for 

choosing the best alternative is high. 
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Interactions 

In GLDC-LUDAS, agents interact indirectly or directly. Indirect interactions among household 

agents involve the fact that land-use conversions caused by households can lead to changes 

in the decision space of other agents in the next time step. Household agents interact 

directly when neighbor households also look for their best land-use alternative in the same 

location. In this case, in a random manner one of them will have to leave that location and 

search for another place. 

 

Stochasticity 

GLDC-LUDAS uses stochasticity to in the following processes: 

(i) Initializing household population,  

(ii) searching the locations of the landholding of households generated in the system 

initialization (framed by land-use polygons) or newly “born” during the simulation 

period,  

(iii) generating the preference coefficients of land-use choice functions that are 

around empirically estimated values  and bounded by confidence intervals, and 

(iv) generating some status variables not affected by agent-based process (all defined 

by even distribution and predefined bounds). 

Observations includes annually successive maps of land use/cover, agricultural yield and 

land holdings; and graphs that describe temporal patterns of land-use/cover coverage 

(calculated based on the whole or partial landscape), average farm size and income (mean, 

composition and equality). 

 

 

 

2.5. Initialization 

The initial landscape of the model is deterministically given by importing GIS raster files of 

landscape variables that are either secondary data or produced by separate spatial analyses. 

The model has a deterministic function to create protection zone in according to the zoning 

parameter defined by users.  

The initialization of the household population includes the following sequential steps.  
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(1) Data of a household sample (Ns households) are imported and users set the size of the 

total population (Nt households).  

(2) The regeneration of the remaining fraction of the total population is based on this 

true equation: Nt = Ns × int(Nt/Ns) + mod(Nt/Ns), where int(Nt/Ns) is the integer part 

of the ratio Nt/Ns and mod(Nt/Ns) is the remainder after Nt is divided by Ns. Assuming 

that the sample (Ns) and the total population (Nt) have the same distributions of the 

status variables, household subset Ns × int(Nt/Ns) (the majority) is exactly generated 

by multiplying the household sample by the integer component of the ratio Nt/Ns. 

Household subset mod(Nt/Ns) is generated by a random selection of households 

from the sample (Ns).  

(3) The last step is the creating of land parcels hold by the newly generated households 

using spatially bounded random rules. According to these rules, given a state 

variable representing the number of land parcels (with explicit land-use types) of 

new generated households, the corresponding locations of such parcels are 

randomly selected among the pixel set bounded by the polygons of the household’s 

village territory and the corresponding land-use  types. 

 

3.6. Inputs 

Inputs for simulations with GLDC-LUDAS include two types: data and parameters.  

 

Calibrated data 

In LUDAS, data for initializing the coupled human-landscape system include GIS data in 

forms of text files, and household data as worksheets. Because of being path-dependent, 

behavior of the complex human-environment systems is sensible to the initial state of the 

system. Therefore, the better the quality of input data is, the higher creditability the 

model’s outcomes have. All data used by the GLDC-LUDAS are calibrated and/or processed 

in separate studies to adequately represent the reality of the coupled human landscape 

system.  

As human-environment interactions are modelled at pixel and household levels, the linkages 

between the spatial and household datasets are crucial in GLDC-LUDAS. Both human 
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(household) and landscape (land parcel) agents have a shared identical variable indicating 

the household-pixel link.  

 

Parameters 

Within the GLGC-LUDAS, two types of parameters are distinguished: calibrated parameters 

and user’s defined parameters. Most calibrated parameters are coefficients representing 

behaviors of household and landscape agents, such as ratios of labor allocation to livelihood 

activities and preference coefficients of land-use choice functions. These parameters are 

estimated from sample data to reflect the real world. User’s input parameters are mainly 

policy parameters, which enable users to set their own policy options for development of 

land-use change scenarios.  

 

2.7. Sub-models 

Main sub-models and calculation routines in GLDC-LUDAS are summarized in Table 1. 

Important sub-models that substantially constitute complex human-environment 

interactions and adaptation are FarmlandChoice, ForestChoice, AgriculturalYieldDynamics, 

AgentCategorizer and NaturalTransition. Sub-models ForestChoice and NaturalTransition 

exist in the model code, but activated only if the study landscape contains considerable areas 

of natural vegetations such as forest/woodland and shrubland. Detail descriptions of these 

sub-models and routines are shown in Le et al. (2008). 

Table 1. Main sub-models/procedures of GLDC-LUDAS 

Name Brief functionalities/tasks (references 
for more detailed information) 

Involved 
agent (HA: 
human/house
hold agent, 
LA: landscape 
agent) 

Initialization a Import GIS data and sampled 
household data, generate the remain 
population, create household-pixel 
links (see Section 2.5 of this report) 

HA  

LA 

SetLaborBudget Annually set the labor list of the 
household (See Appendix 1) 

HA 
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FarmlandChoice a Perform agricultural land-use choices, 
including bounded-rational choice, 
nested with rule-based decision 
algorithms (see Appendix 2) 

HA and LA 

ForestChoice a Perform forest-use choices, mainly 
rule-based algorithms (activated only 
if there are woody/forest vegetation 
areas in the study landscape) 

HA and LA 

GenerateOtherIncome Generate non-crop and non-timber 
incomes 

HA 

UpdateHouseholdState Annually update changes in household 
profile 

HA 

AgentCategorizer Annually categorize household into 
the most similar group (see the next 
sub-section 

HA 

GenerateHouseholdCoefficients Generate behaviour coefficients of 
household, allow variants within 
groups, but stabilize behaviour 
structure of the group 

HA 

AgriculturalYieldDynamics Empirical production functions that 
calculate the economic yield of 
farmlands in response to human 
investment (e.g. labor, agrochemicals)  
and site conditions (e.g. slope, soil 
conditions) (see Appendix 3). 

HA and LA 

ForestYieldDynamics Calculate forest stand basal area in 
response to human interventions 
(activated only if there are natural 
vegetation areas in the study 
landscape) 

LA 

NaturalTransition Perform natural transition among 
vegetation types based on 
accumulated vegetation growth and 
ecological edge effects (activated only 
if there are natural vegetation areas in 
the study landscape) 

LA 

CreateNewHousehold Create a young new household, 
controlled by an empirical function of 
population growth 

HA 
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DrawGrapths Draw different graphs of system 
performance indicators 

HA and LA 

a Complex procedure: procedure that contains one or more other procedures. 

 

Imitative learning, livelihood typology and AgentCategorizer sub-model 

A fundamental principle of imitation is that the process is facilitated by favors some 

similarity between the imitator and the group to be imitated. In agricultural land use, Schmit 

and Rounsevell (2012) suggested a highest probability of imitation between farmers of a 

similar typology. For instance, a farmer specialized in field cropping is more likely to imitate 

a farmer with the same typology rather than someone specialized in livestock grazing. It is 

possible that a potentially imitating farmer would assess the extent to which a ‘model’ 

farmer’s situation is similar to his own in order to determine how valuable imitation would 

be (Polhill et al., 2001; Gotts and Polhill, 2009; Le et al., 2012).  

We used the Sustainable Livelihood Framework (SLF) concept (Ashley and Carney, 1999) for 

selecting criteria that represent the livelihood typology of households, and incorporating a 

livelihood similarity comparison component in the model. The SLF includes five core asset 

categories: human, social, financial, natural and physical capital (Ashley and Carney, 1999). 

This spectrum of livelihood assets is the basis of people’s capacity to generate new activities 

in response to needs and opportunities. The concept forms a theoretical basis for deriving 

indicators for multi-dimensional assessment of the livelihood performance and similarity, 

helping to avoid bias selection of indicators from one particular discipline (Campbell et al., 

2001). 

As in other models using the generic LUDAS framework, in GLDC-LUDAS there is an 

automatic classification algorithm, called AgentCategorizer, to annually update the 

livelihood typology of household agents by evaluating the temporal cumulative changes in 

variables of five main household capitals, namely natural, physical, social, human, and 

financial capitals (Le et al., 2008, 2010, 2012). These variables – such as land-use structure 

of household land, agricultural income and so on – are the results of cumulative impacts 

caused by land-use actions of the considered households and his/her neighbor. 

AgentCategorizer annually compares and ranks dissimilarities between the considered 

household and all livelihood groups in the population, and then assigns each household into 
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the most similar livelihood group. Thus, an imitative learning behavior is assumed. Details of 

the algorithm are shown in the following. 

The algorithm is similar to the K-mean clustering procedure, except that the group centroids 

here were predefined outside the simulation model by descriptive statistics of household 

groups, and thus fixed during the simulation runs. The categorizing process consists of the 

following steps: 

(1) A given household h measures dissimilarities in livelihood typology, based on grouping 

criteria. He compares between himself and all defined household groups in the 

population: 

2C
g,ch,c

hg c

c 1 g,ch,c

(H H )
D w

H H







  

                                                    (1) 

where Dhg is the Squared Chi-squared Distance from household h to the centroids of 

group g (g = 1, 2, … , K). Hh,c is the instant value of criterion c (c = 1, 2, ... ,C) of household 

h. Criteria Hh,c are household livelihood variables, many of which change as the results 

of micro household-land interactions during the simulation. Parameter wc is the 

weight coefficient of the criteria explaining the discrimination of household groups. 

The default value of wc is 1/C.  

(2) Household h assigns itself into the most similar livelihood group (g*):  

g* = arg min (Dh1,Dh2, … , DhK)                                               (2) 

where g* is the most similar group to household h. Dh1, Dh2,  … , DhK are distances from 

household h to groups 1, 2, … , K, respectively.  

(3) If the livelihood group of a household h has changed, it will ask to delete the old land-

use decision model and to adopt the decision model of the new group (imitative 

strategy). Otherwise, the household will repeat its former land-

use/crop/management choices (repeating strategy). When adopting a new land-use 

decision model, there are not only changes in parameter values but possibly also in 

the behavior structure: some decision variables and production components are 

added or deleted.  

Thus, with the AgentCategorizer sub-model/algorithm, a household (encoded as a human 

agent in GLDC-LUDAS) follows its previous behavior as long as it perceives itself as similar 

(enough) to other households of its group compared to other household groups. If the 



21 
 

accumulative changes in household’s livelihood variables are large enough and really make 

the household belonging to another livelihood type, the household will shift to this new type 

and adopts new behavior by imitating the groups behavior model. However, this change of 

the livelihood typology happens only in a long-term perspective. 

 

2.8. Model testing 

Traditional statistical methods are proved to have a limited capacity in testing integrated 

dynamic models (Forrester and Senge, 1980; Nguyen and de Kok, 2007). Measuring 

goodness-of-fit between the simulated and observed data is sometimes considered to be 

the only legitimate test for model validation. However, this test alone is argued to be unable 

to demonstrate the logical validity of the model’s scientific contents (Oreskes et al., 1994; 

Rykiel, 1996), to have a poor diagnostic power (Kirchner et al., 1996) and even to be 

inappropriate for the validation of deterministic system dynamics models (Forrester and 

Senge, 1980). In fact that integrated systems models do not strive for prediction of future 

values (Nguyen and de Kok, 2007).  

Because GLDC-LUDAS belongs to the class of complex human-environmental systems 

models, we argue that its validity cannot be achieved by only a single test such as point-to-

point history matching, but rather a series of tests that could increase the user’s confidence 

in the usefulness of the model. Similar to the extents of validation methodology for 

integrated systems model proposed by the authors cited above, we follow the multi-criteria 

validation approach that includes: 

(1) Evaluate the fitting of the model to the questions it is meant to answer,  

(2) Evaluate the plausibility of the assumptions and theories forming the model (construct 

validity),  

(3) Validate elementary causal relations used for constructing the model (e.g. behavioral 

rules and sub-models) (internal validity),  

(4) Evaluate input data, and 

(5) Evaluate of model outputs: it includes (i) the testing of model outputs’ behavior/pattern 

against independent reference data or knowledge, and (ii) sensitivity/uncertainty 

analyses 
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3. Scenarios of driving conditions (including management/policy 

interventions) for ex-ante assessment using GLDC-LUDAS (under developing) 

Scenarios for analyzing the smallholder farming systems will be designed for each study area 

through discussions and interviews with local, national, and regional key informants. Like 

Gaube et al. (2009) and Le et al. (2010), scenario will represent external framing conditions, 

local and regional policy and market conditions, and farm household preferences and will 

draw from well-known global and regional scenarios (Annan, 2000; International 

Assessment of Agricultural Knowledge, 2008; IFPRI, 2010; World Bank, 2010). Table 2 shows 

a preliminary formulation of scenarios for Satiri district in Burkina Faso. The elaboration and 

finalization of input scenarios to be assessed by GLDC-LUDAS will be done in 2020 through 

participatory processes. 

Table 2: Preliminary input scenarios in Satiri district, Burkina Faso 

Drivers Scenario  
BASE 

Scenario 
TREND 

Scenario INT Scenario TECH 

Socio-economic, policy:     
• Input prices 

(fertilizers, other 
agricultural inputs) 

Default Max Min Max 

• Agricultural subsidies Default Default Low/Med High 
• Marketing for crop 

products 
Default Default Strongly 

enhanced 
Default 

Capacity development:     
• Farmer-to-farmer 

extension 
(with/without) 

Default Default High Default 

• Technical 
training/education 

Default  Default High High 

Alternative technologies:     
• Mixed fertilizer 

application  
Default Default NPK mixed 

with liming, 
manure 

NPK mixed with 
liming, manure + 
bio-fertilizer (e.g. 
mycorrhiza) 

• Improved seeds Default Default Optimal crop 
mix (local + 
improved 
seeds) 

Improved seeds for 
GL/DC crops 

• Recycling nutrients 
in farming system 
 

Default 
 
 

Default 
 
 

Traditional 
 
 

Compost + 
Mechanized 
transportation of 
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• Intercropping 

 
 
Default 

 
 
Default 

 
 
Increased 
intercropping 
area, but still 
minority 

manure/fertilizer to 
fields 
Increased 
intercropping area, 
to be majority 

Note:   BASE: Conditions of 2019 remain constant over 30-year simulation period. 
TREND: Follows current conditions and trajectories and continued use of the 
maximum amount of fertilizer per household when available.   
INT: Assumes intervention policies and programs that satisfy farmer requirements 
while being profitable for the market, and support local and regional farmer 
assistance and education programs that promote soil conservation and P residue 
recycling.  Recycling of nutrients in animal and crop residues. 
TECH: Assumes policies and market forces that drive investment in mechanized 
recycling and invention of high technology solutions such as genetically improved crop 
varieties. Local support and empowerment is not a priority. Recycling of nutrients in 
crop and animal residues, for example, occur via a mechanized measures (e.g. 
transportation of materials to fields). 
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Appendix 1. SetLaborBudget routine  

 

Figure S1. Illustration of SetLaborBudget routine in GLDC-LUDAS. Note: LCrp/h, LLiv/h, LVeg/h, LNfm/h and 

LLso/h are household labor allocated respectively to crop production, livestock production, natural 

vegetation product collection, non-farm activities and leisure/social activities of household type h. The 

values of these parameters are empirically estimated for household type h. 

 

  

Non-agricultural activities 
(possibly off-farm)

• Sold labor
• Trading of farm 

products
• Trading of farm inputs
• Technical/mechanic 

services
• Others

Applying the empirical list/vector of 
labor allocation along livelihood activity type

Checking type 
of human agent

Collection of 
products from 

natural vegetation
• Firewood
• Materials for 

housing/fencing
• Wild animals
• Others

Livestock 
Production

• Small ruminant
• Cattle
• Poultry
• Other livestock

Crop 
Production

• Cereals 
• Legumes
• Vegetable
• Cotton
• Trees
• Other crops

Leisure and/or 
social 

activities
• Funeral, 

wedding, 
religious 
events

• Others

LCrp/h LLiv/h LLso/hLNfm/hLVeg/h
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Appendix 2. FarmlandChoice sub-model  

 

Figure S2.1. Pseudo algorithm of FarmlandChoice sub-model in GLDC-LUDAS. Note: LandscapeVision 

are a defined subset of the landscape perceived by the household agent, which are considered in 

searching more land for farming. Source: Le (2005). 

 

Figure 2.2S. Illustration of the ordered choice algorithm used in the FarmlandChoice sub-model of 

GLDC-LUDAS. The choice is bounded rational. With the use of ranking procedure, the household 

prioritizes to select options having the highest utility. However, as Monte Carlo simulation based on 

choice probabilities used, there is some chance that the household does not select the optimal choice. 

Source: Le (2005), Benenson and Torrens (2004). 
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Appendix 3. AgriculturalYieldDynamics sub-model  

 

Figure S3. AgriculturalYieldDynamics uses extended Cobb-Douglas production function to combine 

household decision variables (e.g. amount of labor and agrochemical used) with landscape variables 

(e.g. site conditions affecting crop growth). 
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