Czech J. Genet. Plant Breed., 2011, 47(2):45-57 | DOI: 10.17221/127/2010-CJGPB

Tracking of powdery mildew and leaf rust resistance genes in Triticum boeoticum and T. urartu, wild relatives of common wheatOriginal Paper

Nelli A. Hovhannisyan1, Mohammad Ehsan Dulloo2, Aleksandr H. Yesayan1, Helmut Knüpffer3, Ahmed Amri4
1 Department of Ecology and Nature Protection, Faculty of Biology, Yerevan State University, Yerevan, Armenia
2 Bioversity International, Rome, Italy
3 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
4 International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria

Wild Triticum and Aegilops species are increasingly used in wheat breeding programmes around the world as donors of genes conferring resistance to biotic and abiotic stresses, as well as of genes that contribute to the improvement of grain quality. In the present study, thirty-nine accessions of diploid species with the A genome (Triticum boeoticum and T. urartu) were evaluated for the presence of the genes conferring resistance to powdery mildew (Blumeria graminis) and leaf rust (Puccinia recondita) using both inoculation tests and sequence tagged sites (STS) marker analyses in order to find correspondence between STS markers and resistance as a trait. The most resistant entries were T. boeoticum accessions. All the marked Lr and Pm resistance genes (Pm1, Pm2, Pm3, Lr10, Lr47, Lr25 and Lr28) were identified in the check T. aestivum cultivar Bezostaya 1. The resistance to powdery mildew in the material studied was conferred by the combination of the Pm1 gene with either Pm2 or Pm3. The Pm1 and Pm3 markers appeared to be suitable for tracking these powdery mildew resistance genes, while the Pm2 gene marker cannot be considered as usable in various genetically different wheat accessions. The presence of the genes Lr25, Lr28 and Lr47 seems to be particularly useful for obtaining leaf rust resistance in T. boeoticum and T. urartu species.

Keywords: Blumeria graminis; inoculation test; Puccinia recondita; resistance genes; STS marker; Triticum boeo-ticum; Triticum urartu

Published: June 30, 2011  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hovhannisyan NA, Dulloo ME, Yesayan AH, Knüpffer H, Amri A. Tracking of powdery mildew and leaf rust resistance genes in Triticum boeoticum and T. urartu, wild relatives of common wheat. Czech J. Genet. Plant Breed.. 2011;47(2):45-57. doi: 10.17221/127/2010-CJGPB.
Download citation

References

  1. Anker C.C., Niks R.E. (2001): Prehaustorial resistance to the wheat leaf rust fungus, Puccinia triticina, in Triticum monococcum (s.s.). Euphytica, 117: 3-12. Go to original source...
  2. Bahraei S., Jaradat A.A. (1998): Diversity in seed storage proteins of T. boeoticum and T. urartu. In: Jaradat A.A. (ed.): Proc. 3rd Int. Triticeae Symposium Triticeae III. Aleppo, 237-243.
  3. Bennett F.G. (1984): Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathology, 33: 279-300. Go to original source...
  4. B³aszczyk L., Che³kowski J., Korzun V., Kraiè J., Ordon F., Ovesná J., Purnhauser L., Tar M., Vida G. (2004): Verification of STS markers for leaf rust resistance genes of wheat by seven European laboratories. Cellular and Molecular Biology Letters, 9: 805-817.
  5. Browder L.E. (1971): Pathogen specialization in cereal rust fungi, especially Puccinia recondita f.sp. tritici: Concepts, methods of study and application. USDA Agricultural Research Service Technical Bulletin No. 1432.
  6. Browder L.E., Young H.C. (1975): Further development of an infection-type coding system for the cereal rusts. Plant Disease Reporter, 59: 964-965.
  7. Che³kowski J., Golka L., Stepieñ L. (2003): Application of STS markers for leaf rust resistance genes in near-isogenic lines of spring wheat cv. Thatcher. Journal of Applied Genetics, 44: 323-338.
  8. Cherukuri D.P., Gupta S.K., Charpe A., Koul S., Prabhu K.V., Singh R.B., Haq Q.M.R., Chauhan S.V.S., Weber W.E. (2003): Identification of a molecular marker linked to an Agropyron elongatumderived gene Lr19 for leaf rust resistance in wheat. Plant Breeding, 122: 204-208. Go to original source...
  9. Cherukuri D.P., Gupta S.K., Charpe A., Koul S., Prabhu K.V., Singh R.B., Haq Q.M.R. (2005): Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica, 143: 19-26. Go to original source...
  10. Dorofeev V.F., Filatenko A.A., Migushova E.F., Udaczin R.A., Jakubziner M.M. (1979): Wheat. In: Dorofeev V.F., Korovina O.N. (eds): Flora of Cultivated Plants, Vol. 1. Kolos, Leningrad. (in Russian)
  11. Doyle J.J., Doyle J.L. (1990): Isolation of plant DNA from fresh tissue. Focus, 12: 13-15. Go to original source...
  12. Dubcovsky J. (s.a.): Disease resistance. Leaf rust. Lr47. MAS Wheat. Available at http://maswheat.ucdavis.edu/protocols/Lr47/index.htm (accessed March 15, 2011)
  13. Dubcovsky J., Lukaszewski A.J., Echaide M., Antonelli E.F., Porter D.R. (1998): Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Science, 38: 1655-1660. Go to original source...
  14. FAO (2008): Wheat Rust Disease Global Programme. Resource Document. Available at ftp://ftp.fao.org/ docrep/fao/011/i0378e/i0378e.pdf (accessed August 16, 2010)
  15. Gandilyan P.A., Avagyan W.A. (2001): Erebuni Reservation. Tigran Mets, Yerevan.
  16. Gill B.S., Friebe B., Raupp W.J., Wilson D.L., Cox T.S., Sears R.G., Brown-Guedira G.L., Fritz A.K. (2006): Wheat Genetics Resource Center: the first 25 years. Advances in Agronomy, 85: 73-135. Go to original source...
  17. Gupta P.K., Varshney R.K., Sharma P.C., Ramesh B. (1999): Molecular markers and their applications in wheat breeding. Plant Breeding, 118: 369-390. Go to original source...
  18. Haykazyan V., Pretty J. (2006): Sustainability in Armenia: New Challenges for the Agricultural Sector. University of Essex, Colchester.
  19. Hiebert C., Thomas J., McCallum B. (2005): Locating the broad-spectrum wheat leaf rust resistance gene Lr52 (LrW) to chromosome 5B by a new cytogenetic method. Theoretical and Applied Genetics, 110: 1453-1457. Go to original source... Go to PubMed...
  20. Hsam S.L.K., Lapochkina I.F., Zeller F.J. (2003): Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica, 133: 367-370. Go to original source...
  21. Hu X.Y., Ohm H.W., Dweikat I. (1997): Identification of RAPD markers linked to the gene Pm1 for resistance to powdery mildew in wheat. Theoretical and Applied Genetics, 94: 832-840. Go to original source...
  22. Hua W., Liu Z., Zhu J., Xie C., Yang T., Zhou Y., Duan X., Sun Q., Liu Z. (2009): Identification and genetic mapping of Pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theoretical and Applied Genetics, 119: 223-230. Go to original source... Go to PubMed...
  23. Knüpffer H. (2009): Triticeae genetic resources in ex situ genebank collections. In: Feuillet C., Muehlbauer G. (eds.): Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models 7, Springer Science+Business Media, LLC, 31-79. Go to original source...
  24. Knüpffer H., Morrison L.A., Filatenko A.A., Hammer K., Morgounov A., Faberová I. (2002): English translation of the 1979 Russian taxonomic monograph of Triticum L. by Dorofeev et al.: project progress report. In: Hernández P., Moreno M.T., Cubero J.I., Martin A. (eds): Proc. 4th Int. Triticeae Symposium Triticeae IV. September 10-12, 2001, Córdoba, 49-55.
  25. Kolmer J.A. (1996): Genetics of resistance to wheat leaf rust. Annual Review of Phytopathology, 34: 435-55. Go to original source... Go to PubMed...
  26. Liu Z., Sun Q., Ni Z., Nevo E., Yang T.M. (2002): Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica, 123: 21-29. Go to original source...
  27. Ma H., Singh R.P., Mujeeb-Kazi A. (1997): Resistance to stripe rust in durum wheats, A-genome diploids, and their amphiploids. Euphytica, 94: 279-286. Go to original source...
  28. MacKenzie D. (2007): Billions at risk form wheat superblight. New Scientist, 194: 6-7. Go to original source...
  29. Mago R., Miah H., Lawrence G.J., Wellings C.R., Spielmeyer W., Bariana H.S., McIntosh R.A., Pryor A.J., Ellis J.G. (2005): High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26, and Yr9 on the short arm of rye chromosome 1. Theoretical and Applied Genetics, 112: 41-50. Go to original source... Go to PubMed...
  30. McIntosh R.A., Hart G.E., Gale M.D. (1995): Catalogue of gene symbols for wheat. In: Li Z.S., Xin Z.Y. (eds): Proc. 8th Int. Wheat Genetics Symposium. Beijing, 1993, 1333-1500.
  31. McIntosh R.A., Hart G.E., Devos K.M., Gale M.D., Rogers W.J. (1998): Catalogue of gene symbols for wheat. In: Proc. 9 th Int. Wheat Genet. Symposium Saskatchewan.
  32. McIntosh R.A., Appels R., Devos K.M., Dubcovsky J., Rogers W.J., Yamazaki Y. (2003): Catalogue of gene symbols for wheat. In: Proc. 10 th Int. Wheat Genet. Symposium Roma, 1-34.
  33. Mohler V., Jahoor A. (1996): Allele-specific amplification of polymorphic sites for the detection of powdery mildew resistance loci in cereals. Theoretical and Applied Genetics, 93: 1078-1082. Go to original source... Go to PubMed...
  34. Moseman J.G., Nevo E., Morshidy M.A., Zohary D. (1984): Resistance of Triticum dicoccoides to infection with Erysiphe graminis tritici. Euphytica, 33: 41-47. Go to original source...
  35. Naik S., Gill K.S., Prakasa Rao V.S., Gupta V.S., Tamhankar S.A., Pujar S., Gill B.S., Ranjekar R.K. (1998): Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. Theoretical and Applied Genetics, 97: 535-540. Go to original source...
  36. Obert D.E., Fritz A.K., Moran J.L., Singh S., Rudd J.C., Menz M.A. (2005): Identification and molecular tagging of a gene from PI 289824 conferring resistance to leaf rust (Puccinia triticina) in wheat. Theoretical and Applied Genetics, 110: 1439-1444. Go to original source... Go to PubMed...
  37. Ovesná J., Kuèera L., Bocková R., Holubec V. (2002): Characterisation of powdery mildew resistance donors within Triticum boeoticum accessions using RAPDs. Czech Journal of Genetics and Plant Breeding, 38: 117-124. Go to original source...
  38. Pathan A.K., Park R.F. (2006): Evaluation of seedling and adult plant resistance to leaf rust in European wheat cultivars. Euphytica, 149: 327-342. Go to original source...
  39. Prabhu K.V., Gupta S.K., Charpe A., Koul S. (2004): SCAR marker tagged to the alien leaf rust resistance gene Lr19 uniquely marking the Agropyron elongatumderived gene Lr24 in wheat: a revision. Plant Breeding, 123: 417-420. Go to original source...
  40. Priestley R.H., Bayles R.A. (1998): The contribution and value of resistant cultivars to disease control in cereals. In: Clifford B.C., LesteR E. (eds): Control of Plant Disease-costs and Benefits. Blackwell, Oxford, 53-65.
  41. Procunier J.D. (s.a.): Disease resistance. Leaf rust resistance. Lr29 - Lr25. MAS Wheat. Available at http://maswheat.ucdavis.edu/protocols/lr29/index.htm (accessed March15, 2011)
  42. Procunier J.D., Townley-Smith T.F., Fox S., Prashar S., Gray M., Kim W.K., Czarnecki E., Dyck P.L. (1995): PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L.). Journal of Genetics and Breeding, 49: 87-92.
  43. Qi L., Friebe B., Zhang P., Gill B.S. (2007): Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Research, 15: 3-19. Go to original source... Go to PubMed...
  44. Schachermayr G., Feuillet C., Keller B. (1997): Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds. Molecular Breeding, 3: 65-74. Go to original source...
  45. Singh K., Chhuneja P., Ghai M., Kaur S., Goel R.K., Bains N.S., Keller B., Dhaliwal H.S. (2007): Molecular mapping of leaf and stripe rust resistance genes in Triticum monococcum and their transfer to hexaploid wheat. In: Buck H., Nisi J.E., Solomon N. (eds): Wheat Production in Stressed Environments. Developments in Plant Breeding, Springer, Netherlands, 12: 779-786. Go to original source...
  46. Stepieñ L., Chen Yu., Che³kowski J., Kowalczyk K. (2001): Powdery mildew resistance genes in wheat: verification of STS markers. Journal of Applied Genetics, 42: 413-423.
  47. Stepieñ L., Holubec V., Che³kowski J. (2002): Resistance genes in wild accessions of Triticeae - inoculation test and STS marker analyses. Journal of Applied Genetics, 43: 423-435.
  48. Stokstad E. (2007): Plant pathology: Deadly wheat fungus threatens world's breadbaskets. Science, 315: 1786-1787. Go to original source... Go to PubMed...
  49. Todorovska E., Christov N., Slavov S., Christova P., Vassilev D. (2009): Biotic stress resistance in wheat - breeding and genomic selection implications. Biotechnology & Biotechnological Equipment, 23: 1417-1426. Go to original source...
  50. Vurro M., Bonciani B., Vannacci G. (2010): Emerging infectious diseases of crop plants in developing countries: impact on agriculture and socio-economic consequences. Food Security, 2: 113-132. Go to original source...
  51. Zeller F.J., Kong L., Hartl L., Mohler V., Hsam S.L.K. (2002): Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 7. Gene Pm29 in line Pova. Euphytica, 123: 187-194. Go to original source...
  52. Zhukovsky P.M. (1971): Crop Plants and their Wild Relatives. Kolos, Leningrad. (in Russian)

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.