

Characterization of grass pea (*Lathyrus sativus* L.) germplasm collections for beneficial agronomic traits

Karthika Rajendran, Ashutosh Sarker^{1,*}, Murari Singh, Ali M. Abd El-Moneim and Hani Nakkoul

Biodiversity and Integrated Gene Management Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria; ¹ICARDA, 2nd Floor, Office Block-C, NASC Complex, DPS Marg, New Delhi 110 012

(Received: April 2018; Revised: Ausust 2018; Accepted: August 2018)

Abstract

At ICARDA, germplasm collections obtained from five countries namely, Bangladesh, Ethiopia, Syria, Nepal and Pakistan were grouped in to seven sets of trials (BANG1, BANG2, ICARDA, ETH1, ETH2, NEP, PAK) and evaluated in two experimental locations, Tel Hadya and Breda over eight years. Characterization was done for the most desirable agronomic traits such as days to first flowering, days to 95% maturity, biological yield, seed yield, hundred seed weight and harvest index. Significant genotypic and interaction effect were found for the expression of the traits. Substantial amount of variability was revealed in the germplasm collections for most of the traits. High broad sense heritability was observed for days to first flowering and hundred seed weight indicating early phenotypic selection of these two traits. The stability over years for the seed yield (in terms of the CV), identified promising accessions such as ILG2178 in BANG1 and ILG1721, ILG1632, ILG1624, ILG1540 and ILG1501 for future breeding.

Key words: Breeding, characterization, germplasm, Lathyrus sativus, Legume, Variation, BLUP

Introduction

Grass pea (*Lathyrus sativus* L.), commonly known as chickling vetch is a cool season legume crop (2n=14) (Talukdar 2009; McCutchan 2003). It is traditionally valued as a food and fodder legume. It offers rich source of seed protein (18-34%) for the human diet; and thus, it plays an important role in food protein supply of the poor people living in many developing nations (Nazrul and Shaheb 2015; ICARDA 2015; Dixit et al. 2016). Also, it has a great scope for cultivation in the drought prone areas; there has been an increasing interest in recent times for grass pea cultivation to counter the effect of global climate change. Eventually, the area of grass pea cultivation is expected to increase in the near future (Dejene and Lijalem, 2012; Almeida et al. 2015).

However, presence of neurotoxin, β -N-oxalyl-L-, α -diaminopropionic acid (ODAP) in grass pea seeds causes paralysis of leg muscles in human beings (Neurolathyrism), when it is consumed continuously as a major portion for a prolonged period of time (McCutchan 2003; Kumar et al. 2011; Kumar et al. 2013). Besides, there are some undesirable agronomic crop characteristics which limits the widespread cultivation of grass pea in various environmental conditions (Rybiñski 2003). Numerous studies had been done to address the problem of seed ODAP content in the past three decades and it was extensively reviewed by Kumar et al. (2011), Kumar et al. (2013) and Dixit et al. (2016). But, very few breeding efforts were done for the improvement of agronomic traits (Ahmadi et al. 2015; Rizvi et al. 2016; Abate et al. 2018). In order to develop varieties with desirable agronomic traits determination of genetic variation in the existing germplasm is necessary.

The International Center for Agricultural Research in the Dry Areas (ICARDA) holds large germplasm collection of *Lathyrus* spp. Using this precious resource, ICARDA collaborated with national breeding programmes and developed grass pea varieties with low ODAP content. But, it has not been completely characterized for agronomic traits. Availability of such information would be useful to identify new sources for grass pea improvement. With this background, the present work was carried out to (1) evaluate grass

*Corresponding author's e-mail: a.sarker@cgiar.org

Published by the Indian Society of Genetics & Plant Breeding, A-Block, F2, First Floor, NASC Complex, IARI P.O., Pusa Campus, New Delhi 110 012; Online management by indianjournals.com; www.isgpb.org

pea germplasm collections of ICARDA at two different locations over multiple years (2) assess the genetic variability and heritability of the agronomic traits (3) identify the most promising sources with desirable agronomic traits for future breeding.

Materials and methods

An extensive multi-environmental trial was conducted with 702 grass pea germplasm accessions at two research stations namely Breda and Tel Hadya, located in northern Syria for eight years (1999-2006). Based on the origin, the entire germplasm was grouped in to seven different sets of trials namely, BANG1 and BANG2 from Bangladesh, ETH1 and ETH2 from Ethiopia, ICARDA from Syria, NEP from Nepal and PAK from Pakistan. The total number of accessions across the trials varied from 49 to 225. ILG347 was used as a local check in all trials except in ETH2 and ICARDA; ILG587 was used as a local check in ETH2 and ILG431 was used as a local check in ICARDA. All trials were conducted in a simple lattice design. Except for BANG2 and ETH2, all trials were conducted at two locations; and these two were conducted only in Tel Hadya because of low seed availability. During the crop growing period, data collection was done for the agronomic traits including days to first flowering (DF), days to 95 % maturity (DM), biological yield (BY), seed yield (SY) and hundred seed weight (HSW). Harvest index (HI) was estimated as a ratio of SY to the BY (AghaAlikhani et al. 2014).

A combined analysis was carried out for the data collected over different environments. Variance components of genotype (G), genotype x location (G×L) and genotype x year within locations (G×YxL) and pooled error variance were estimated by Residual Maximum Likelihood (REML) approach. It considered location as a "fixed" effect and replications and blocks within replications within location – year combinations as "random" effects. From the analysis, the Best Linear Unbiased Predictors (BLUP) values were attained and utilized to derive the trial means and ranges for all traits. The broad-sense heritability (h²b) of each trait was calculated by using the formula as follows:

$$h_{b}^{2} = \sigma_{g}^{2} / (\sigma_{g}^{2} + \sigma_{gl}^{2} / L + \sigma_{gy(l)}^{2} / (yl) + \sigma_{e}^{2} / (ylr))$$

where, σ_g^2 = genetic variance, σ_{gl}^2 = genotype by location interaction variance component, $\sigma_{gy(l)}^2$ = genotype x year interaction within location variance component, σ_e^2 = pooled error variance, I = number of locations, y = number of years within a given location and r = number of replications. According to Robinson et al. (1949) the heritability estimates were categorized as low (<0.30), moderate (0.31-0.60) and high (>0.60). As a measure of stability over the years for seed yield, coefficient of variation (CV) was obtained in terms of BLUPs of genotype x year interaction within locations for each genotype using the quadratic mean of such CVs over the locations (Imtiaz et al. 2013).

Results and discussion

The combined analysis revealing differences in the significance level (P-values) of genotypic effect (G), interaction effect across locations (G×L) and year within locations (G×YwL) is presented in Table 1. Significant genotypic differences were found for all traits across the trials, except DM in BANG1 and PAK and SY in ETH2. The genetic variability was set at the boundary at zero to avoid an invalid estimate as negative values and the interaction effects contributed as the major source of variation for days to maturity and harvest index in ETH1. The GxL interaction was found significant for DF in ICARDA and PAK; DM in BANG1, ETH1, ICARDA, NEP and PAK; HSW in BANG1, BY in PAK and HI in ETH1. Furthermore, the GxYwL interaction was found significant for all traits across the trials except for DM in ETH1; SY and HI in ICARDA and BY in PAK. A study conducted by Polignano et al. (2009) also demonstrated genotype × environment effects on these traits.

The minimum and maximum values of the traits presented in Table 2, identified BANG2 (79.7 days) for early flowering, ETH2 for early maturity (139.3 days) and large seeds (17.52g 100 seeds⁻¹); BANG2 for high SY (1721 Kg/ha) and high BY (5783 Kg/ha) and ETH1 and NEP for HI (0.42) as beneficial sources (Table 2). The variation found for earliness and BY in BANG2 would facilitate breeders to develop varieties which could benefit short season Mediterranean environments (Hanbury et al. 1995) and improve grass pea for fodder purpose. High broad sense heritability of DF and HSW across all trials, indicate the influence of additive gene action and early phenotypic selection for these two traits (Table 1). However, other traits have obtained similar changes in heritability values as shown by Ahmadi et al. (2015) during the evaluation over different environmental conditions.

The five most promising accessions for each individual trait were selected based on BLUP (Best Linear Unbiased Predictor) values and presented in Table 3. Particularly, accessions such as 2537, 2504, 2517, 2541 and 2577 in BANG2 had early flowering

August, 2018]

Trials	Traits	aits σ_{g}^{2}		σ^2_{gl}		σ ² gy(I)		σ_e^2		h ² _b	
		Estimate	S.E.	Estimate	S.E.	Estimate	S.E.	Estimate	S.E.	Estimate	S.E.
BANG 1	DF	1.205***	0.237	0.044	0.115	1.492***	0.174	3.152	0.154	0.7857	0.05037
	DM	0.29	0.258	0.909***	0.296	1.151***	0.306	7.902	0.364	0.2399	0.1836
	HSW	0.0678***	0.0177	0.0259*	0.0136	0.0349**	0.0154	0.369	0.0184	0.6605	0.08679
	SY	8450***	1879	0	Bound ^a	15945***	2659	59849	2820	0.6696	0.05149
	BY	99167***	17565	0	Bound ^a	83936***	12978	284922	13439	0.8281	0.02652
	HI	0.000079***	0.000024	0	Bound ^a	0.000153**	0.000052	0.00139	0.000065	0.5055	0.07759
BANG 2	DF	2.621***	0.294	NA ^b		NA ^b		3.314	0.135	0.8558	0.01518
	DM	4.179***	0.469	NA ^b		NA ^b		6.646	0.251	0.8558	0.01498
	HSW	0.6892***	0.0742	NA ^b		NA ^b		0.566	0.0281	0.8906	0.01218
	SY	15210***	1967	NA ^b		NA ^b		51391	1949	0.751	0.02608
	BY	185828***	20679	NA ^b		NA ^b		260971	9921	0.8638	0.01419
	HI	0.000102***	0.000026	NA ^b		NA ^b		0.00162	0.000061	0.4011	0.06363
ETH 1	DF	3.595***	0.574	0	Bound ^a	3.072***	0.235	4.178	0.177	0.9006	0.01491
	DM	0	Bound ^a	3.72***	0.447	1.799	2.42	6.328	0.251	9.29E-08	1.01E-08
	HSW	0.168***	0.0273	0.0058	0.0065	0.0368**	0.0138	0.424	0.0171	0.8905	0.02267
	SY	2005**	832	1015	878	8171***	1832	53343	2122	0.4146	0.1236
	BY	26508***	6275	0	Bound ^a	24677**	10515	264355	12923	0.6283	0.05804
	HI	0	Bound ^a	0.000551***	0.000151	0	Bound ^a	0.00516	0.000188	0.00000196	62.913E-07
ETH 2	DF	4.165***	0.93	NA		NA		6.89	0.534	0.8145	0.03699
	DM	12.329***	2.373	NA		NA		6.481	0.447	0.9423	0.01122
	HSW	2.407***	0.4468	NA		NA		0.584	0.04	0.9755	0.0048
	SY	1895	1195	NA		NA		46644	3255	0.3108	0.14
	BY	79846***	18725	NA		NA		213226	14930	0.7846	0.04248
	HI	0.00038***	0.000091	NA ^D		NA ^D		0.00146	0.000102	0.7767	0.0444
ICARDA	DF	2.768***	0.485	0.269*	0.161	2.296***	0.275	6.608	0.269	0.8381	0.03343
	DM	1.303***	0.312	0.943***	0.212	0.579**	0.207	6.846	0.261	0.6437	0.07342
	HSW	0.8457***	0.1264	0	Bounda	0.099***	0.0215	0.643	0.0256	0.9679	0.004822
	SY	1786**	746	0	Bound	3534	2673	92280	3544	0.3652	0.09886
	BY	8008*	4580	0	Bounda	28478*	14364	362582	17865	0.2763	0.1173
	HI	0.000082*	0.000047	0	Bound ^a	0.000026	0.000154	0.00443	0.000211	0.2673	0.115
NEP	DF	3.795***	0.893	0.054	0.199	2.997***	0.383	5.032	0.321	0.8938	0.03193
	DM	3.09***	0.9	1.359***	0.452	2.384***	0.394	7.124	0.409	0.7418	0.07667
	HSW	1.1117***	0.2429	0	Bound ^a	0.3241***	0.0488	0.781	0.047	0.9561	0.009551
	SY	9056***	2619	1451	1315	16815***	2274	34166	2019	0.7521	0.07511
	BY	222590***	50995	0	Bounda	118949***	17720	228654	15864	0.913	0.01914
	HI	0.000194*	0.000089	0.000108	0.000094	0.00068***	0.000121	0.0016	0.00011	0.5069	0.149
PAK	DF	2.167***	0.532	0.657**	0.249	2.759***	0.265	3.511	0.191	0.7623	0.06163
	DM	0.007	0.376	2.042***	0.528	2.658***	0.373	7.261	0.372	0.004638	0.2592
	HSW	0.1133***	0.0273	0.0169	0.0123	0.0414*	0.0233	0.568	0.0294	0.7814	0.05803
	SY	5738***	1417	0	Bounda	13160***	1736	32746	1694	0.7445	0.04862
	BY	65188*	29130	79687**	29485	46659	28906	622453	36342	0.4739	0.1415
	HI	0.000217***	0.000064	0.000007	0.000054	0.00061***	0.000087	0.00127	0.000076	0.6509	0.09286

Table 1. Estimates of components of variance, their standard errors and broad sense heritabilities of the traits evaluated across the trials

*, ** and **** significant at 5%, 1% and 0.1% respectively; a-Variance components estimates kept at the boundary when restricted to positive range. b-Data not available

Trial code	Traits	Mean	SD	CV (%)	Minimum	Maximum
BANG1	DF	88.60	1.10	1.24	86.30	91.20
	DM	141.80	0.70	0.49	140.00	143.30
	HSW(g)	7.77	0.25	3.22	7.21	8.528
	SY (Kg/ha)	1496.00	83.10	5.55	1294.00	1655.00
	BY (Kg/ha)	3866.00	300.10	7.76	3157.00	4570.00
	HI	0.38	0.007	1.84	0.36	0.41
BANG2	DF	83.60	1.60	1.91	79.70	92.30
	DM	144.20	2.00	1.39	140.30	154.40
	HSW(g)	7.76	0.79	10.18	6.50	13.78
	SY (Kg/ha)	1099.00	115.80	10.54	880.00	1721.00
	BY (Kg/ha)	3176.00	422.30	13.30	2413.00	5783.00
	HI	0.35	0.01	2.86	0.32	0.37
ETH1	DF	102.40	1.90	1.86	95.00	106.60
	DM	154.10	1.20	0.78	149.80	156.20
	HSW(g)	8.95	0.40	4.47	7.99	10.40
	SY (Kg/ha)	1184.00	42.80	3.61	1075.00	1294.00
ETH2	BY (Kg/ha)	3587.00	134.60	3.75	3312.00	4087.00
	HI	0.32	0.01	3.13	0.31	0.42
ETH2	DF	93.10	2.00	2.15	86.70	97.10
	DM	151.10	3.50	2.32	139.30	159.20
	HSW(g)	9.32	1.54	16.52	7.28	17.52
	SY (Kg/ha)	1256.00	39.90	3.18	1182.00	1367.00
	BY (Kg/ha)	3852.00	275.00	7.14	3418.00	4814.00
	HI	0.32	0.02	6.25	0.26	0.36
ICARDA	DF	99.80	1.70	1.70	95.35	103.08
	DM	151.60	1.30	0.86	147.70	153.90
	HSW(g)	11.28	0.91	8.07	9.43	15.34
	SY (Kg/ha)	1224.00	28.1.00	2.30	1162.00	1410.00
	BY (Kg/ha)	4831.00	55.8.00	1.16	4687.00	4964.00
	HI	0.25	0.005	2.00	0.24	0.29
NEP	DF	97.60	1.90	1.95	95.10	104.40
	DM	148.80	1.90	1.28	146.10	156.80
	HSW(g)	7.70	1.05	13.64	6.86	12.49
	SY (Kg/ha)	982.00	98.30	10.01	851.00	1358.00
	BY (Kg/ha)	2834.00	465.00	16.41	2380.00	4857.00
	HI	0.38	0.015	3.95	0.33	0.42
PAK	DF	96.80	1.60	1.65	93.50	103.70
	DM	149.60	1.00	0.67	147.80	153.50
	HSW(a)	7.97	0.33	4.14	7.36	8.87
	SY (Ko/ha)	1025.00	74.20	7.24	863.00	1174.00
	BY (Kg/ha)	3528.00	285.00	8.08	2875.00	4313
	HI	0.32	0 014	4.38	0.27	0.34

 Table 2.
 Summary of trial means, standard deviation (SD), co-efficient of variation (CV) and the range derived from the BLUP values through REML analysis

Trials	DF		DM		HSW (g)		SY (k	g/ha)	CV% (rank) ^{\$}	BY (Kg/ha)		HI	
	ILG no.	Est	ILG no.	Est	ILG no.	Est	ILG no.	Est		ILG no.	Est	ILG no.	Est
BANG1	2263 2206 2122 2196 2088 LC	86.89 86.85 86.72 86.62 86.32 88.33 7 105	1873 1823 2096 1872 1844	140.7 140.5 140.5 140.4 140 142.7 6 331	2178 2092 2123 2175 2265	8.239 8.183 8.181 8.167 8.122 8.528 0.58	2301 2123 2074 2178 2112	1655 1644 1617 1616 1615 1589 182	29.5(21) 30.1(27) 29.1(15) 27.9(2) 30.5(38)	2112 2290 2167 2284 2178	4348 4342 4290 4289 4287 4570	1873 2188 1844 2301 2088	0.4055 0.398 0.3976 0.3967 0.3957 0.361 0.0219
BANG2	2577 2541 2517 2504 2537 LC SE+	80.5 80.44 80.31 79.76 79.73 83.88 9.221	2541 2426 2405 2404 2758	141.1 141.1 140.5 140.4 140.3 143.9 8 135	2816 2404 2405 2426 2431	13.775 13.578 12.271 10.954 9.288 7.556 0.55	2997 3021 2999 3026 3027	1721 1632 1624 1540 1501 1132 189 2	31.1(3) 29.3(2) 29.1(1) 32.1(5) 32.0(4)	2997 2999 3021 3026 3027	5783 5399 5360 4948 4393 3362 552 1	2375 2854 2541 2333 2433	0.3703 0.3696 0.3695 0.3643 0.3643 0.3643 0.3447 0.01804
ETH1	402 385 455 393 400 LC SE+	98.7 98.6 98.4 98.2 97.1 95 4 954	400 483 422 387 468	150.9 150.3 150.1 150 149.8 150.2 3 943	426 483 468 455 387	10.395 10.013 9.825 9.771 9.738 9.333 0.2878	440 486 413 421 410	1294 1289 1282 1273 1266 1207 180 5	52.2(5) 52.6(8) 52.1(3) 51.3(1) 54.5(28)	440 413 486 422 421	4087 3917 3883 3836 3826 3726 725 8	438 385 386 477 414	0.4158 0.3287 0.3285 0.3272 0.3264 0.3219 0.02697
ETH2	ETH-42 ETH-39 PA-K-290 ETH-7 ETH-19 LC	90.42 90.04 89.8 89.73 89.62 86.71	ETH-35 ETH-34 PA-K-100 PA-K-208 PA-K-209	147.8 146.7 140.4 139.9 139.3 146.2	ETH-29 ETH-42 ETH-34 PA-K-100 PA-K-209	17.519 14.222 13.562 12.424 10.847 8.824	PA-K-208 ETH-20 WIR-70 ETH-11 PA-K-33	1367 1329 1327 1322 1310 1266	47.1(2) 51.5(11) 50.5(7) 53.3(31) 53.0(26)	736 WIR-70 WIR -26 WIR-475 PA-K-33	4814 4710 4678 4362 4275 4041	PA-K-209 PA-K-208 ETH-34 ETH-46 ETH-48	0.3574 0.3559 0.3506 0.3471 0.3449 0.3047
ICARDA	690 701 675 311 521 LC	97.03 96.51 95.74 95.35 98.77 4 687	708 675 701 311 521	5.346 149.4 149.1 149.1 149 147.7 150.9 4 029	701 670 691 519 521	15.34 13.25 12.89 12.72 12.66 10.81 0 3007	712 692 728 731 733	1410 1255 1255 1254 1253 1223 132 7	42.0(1) 47.6(3) 47.9(8) 47.9(7) 48.0(10)	676 672 736 711 735	4964 4963 4957 4947 4931 4855 613 4	712 689 663 733 717	0.02447 0.2869 0.2573 0.2572 0.257 0.2563 0.2563 0.2509 0.01865
NEP	1976 1977 1978 1989 273 LC SF+	100.12 97.09 97.91 100.18 104.37 95.9 5.044	1974 1976 1977 1978 1989	149.7 148.7 148.1 149 148.4 151 4 003	170 1894 1896 1897 1899	12.241 7.88 7.589 7.127 7.299 8.414 0.3008	273 170 1964 1894 1948	1357.9 1241.1 1101 1082.2 1081.7 1164.4 130	39.0(1) 43.7(4) 39.2(2) 46.7(6) 50.8(22)	273 170 1894 1937 1959	4857 4426 3194 3088 3067 3885 453 5	1972 1897 1964 1977 1916	0.419 0.409 0.401 0.3989 0.3976 0.361 0.02037
PAK	1781 1775 1798 1761 1785 LC SE±	94.68 94.67 94.14 94.11 93.48 94.87 4.978	1760 1804 1801 1761 1797	148.4 148.3 147.8 147.8 147.8 150.1 3.713	952 1761 1760 1809 1797	8.872 8.684 8.675 8.592 8.513 8.592 0.2932	1777 1784 945 1794 1776	1152 1151 1146 1139 1130 1174 143.6	47.3(1) 48.0(4) 47.4(2) 51.2(20) 50.1(14)	1771 945 936 11 937	4313 3993 3975 3919 3907 4032 605.1	1798 957 1812 1769 1765	0.342 0.3415 0.3401 0.3399 0.3391 0.3111 0.02854

Table 3. The list of desirable accessions selected based on BLUP values (the lowest five in ascending order for DF and DM and the highest five in ascending order for HSW, SY, BY and HI).

SE= Estimated standard error. CV%= Coefficient of variation of BLUPs across years (or quadratic mean of CVs for two locations)

361

(<80.5 days) than the local check 347 and accessions PAK208 and PAK209 in ETH2 demonstrated early maturity (139 days) than the local check 587. Accessions namely 2816 and 2404 in BANG2, ETH-29, ETH-42, ETH-34 in ETH2 and 701 and 670 in ICARDA had more than 13g of HSW. Accessions including 2997, 3021 and 2999 in BANG2 were identified as high vielding accessions. Accessions namely 2997, 2999 and 3021 in BANG2 recorded high BY and accessions including 1873 in BANG1, 438 in ETH1, 1972, 1897 and 1964 in NEP had demonstrated high HI. Interestingly, the accession 2997 was found to have multiple beneficial traits with high SY (1721Kg/ ha), BY (5783Kg/ha) and HSW (13.78g). It would be pertinent to mention that the focus of the present study was not to study the adaptation of the accessions to the repeatable bio-physical environments such as locations. Furthermore, data from too few locations, two in the present study, restricted the scope of the application of procedures such as AMMI (additive main effects and multiplicative interaction) model and GGE biplot (Gauch, 2006). However, the temporal variation or stability over years were examined for the seed yield in terms of the CV. The top five accessions for seed yield were also stable across years with relatively low CV values using rank values less than five, e.g., ILG2178 had the second lowest CV in BANG1 (Table 3). The five high yielding accessions were also most stable (lowest CV or ranks 1-5) in BANG2. In the remaining trials, one to three accessions had CV ranks within five. The diverse and promising accessions identified in the present study could be used as a donor in future breeding.

Authors' contribution

Conceptualization of research (AS); Designing of the experiments (AS, MS); Contribution of experimental materials (AS, AMA); Execution of field/lab experiments and data collection (AS, HN); Analysis of data and interpretation (AS, MS, KR); Preparation of manuscript (KR, AS, MS).

Declaration

The authors declare no conflict of interest.

Acknowledgements

We express our sincere thanks to reviewer from the journal, Dr. Ahmed Amri and Dr. Fouad Maalouf, ICARDA for their valuable suggestions on the manuscript. We would like to acknowledge gene bank of ICARDA for providing the seed materials and support. The CGIAR Research Program on Grain Legumes is gratefully acknowledged for providing financial and research support.

References

- Abate A., Mekbib F., Fikre A. and Ahmed S. 2018. Genetic variability and heritability in Ethiopian Grasspea (*Lathyrus sativus* L.) accessions. Ethiop. J. Crop Sci., **6**(2): 79-94.
- Aghaalikhani M., Behnamfar F., Eyshi Rezaei E. and Bannayan Aval M. 2014. Assessment of Sowing Date impacts on productivity of different Grass pea ecotypes. Int. J. Farm Alli. Sci., **3**(7): 798-805.
- Ahmadi J., Vaezi B. and PourAboughadareh A. 2015.
 Assessment of Heritability and Relationships among Agronomic characters in Grasspea (*Lathyrus sativus* L.) under rainfed conditions. Biharean Biol., 9: 29-34.
- Almeida N. F., Krezdorn N., Rotter B., Winter P., Rubiales D. and Vaz Patto M. C. 2015. Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuper SAGE analysis. Front. Plant Sci., 6: 178.
- Dejene G. and Lijalem K. 2012. Genetic improvement of grasspea (*Lathyrus sativus*) in Ethiopia: an unfulfilled promise. Plant Breed., **131**: 231-236.
- Dixit G. P., Parihar A. K., Bohra A. and Singh N. P. 2016. Achievements and prospects of grass pea (*Lathyrus sativus* L.) improvement for sustainable food production. Crop J., 4(5): 407-416.
- Hanbury C. D., Sarker A., Siddique K. H. M. and Perry M.
 W. 1995. Evaluation of Lathyrus germplasm in a Mediterranean type environment in south-western Australia. In CLIMA Occassional Publication, 8: 23.
- Gauch H. G. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Sci., **46**: 1488-1500.
- ICARDA 2015. *In:* Annual report of Enhancing grass pea production in eastern and north-eastern states for animal feed, safe human food and for sustainable rice-based production system in India - An initiative of DAC-ICARDA-ICAR under national food security mission (NFSM-pulses): 6.
- Imtiaz M., Malhotra R. S., Singh M. and Arslan S.2013. Identifying high yielding, stable chickpea genotypes for spring sowing: Specific adaptation to locations and sowing seasons in the mediterranean region. Crop sci., 53: 1472-1480.
- Kumar S., Bejiga G., Ahmed S., Nakkoul H. and Sarker A. 2011. Genetic improvement of grass pea for low neurotoxin (ODAP) content. Food Chem. Toxicol., **49**: 589-600.
- Kumar S., Gupta P., Barpete S., Sarker A., Amri A., Mathur P. N. and Baum M. 2013. Grass Pea. *In*: Genetic and Genomic Resources of Grain Legume Improvement,

- McCuthan J. S. 2003. Review: A brief history of grass pea and its use in crop improvement. *Lathyrus* Lathyrism Newsltr., **3**: 18-23.
- Nazrul M. I. and Shaheb M. R. 2015. Adaptation of grass pea as sole and relay cropping systems with transplanted Aman rice in Sylhet region of Bangladesh. Am. J. Biol. Life Sci., **3**(6): 254-249.
- Polignano G. B., Bisignano V., Tomaselli V., Uggenti P., Alba V. and Della Gatta C. 2009. Genotypex environment interaction in grass pea (*Lathyrus sativus* L.) lines. Int. J. Agron., 1-7.
- Quereshi M. Y., Pilbeam D. J., Evans C. S. and Bell E. A. 1977. The neurolathyrogen, α-amino-βoxalylaminopropionic acid in legume seeds. Phytochemistry, **16**(4): 477-479.
- Robinson H. F. 1949. Estimation of heritability and the degree of dominance in corn. Agron. J., **41**: 353-359.

- Rizvi A. H., Sarker A. and Dogra A. 2016. Enhancing grasspea (*Lathyrus sativus* L.) production in problamatic soils of South Asia for mutritional security. India J. Genet., **76**(4): 583-592. doi: 10.5958/0975-6906.2016.00074.2.
- Rybiñski W. 2003. Mutagenesis as a tool for improvement of trait in grass pea (*Lathyrus sativus* L.). *Lathyrus* Lathyrism Newsltr., **3**: 27-31.
- Siddique K.H.M., Loss S.P., Herwig S.P. and Wilson J.M. 1996. Growth, yield and neurotoxin (ODAP) concentration of three Lathyrus species in Mediterranean type environments of Western Australia. Anim. Prod. Sci., **36**: 209-218.
- Talukdar D. 2009. Reciprocal translocations in grass pea (*Lathyrus sativus* L.): Pattern of transmission, detection of multiple interchanges and their independence. J. Hered., **101**: 169-176.