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Sustainable rangeland management in arid areas can 
contribute to the mitigation of climate change and rising 
atmospheric carbon dioxide concentrations, because 
they store considerable amounts of carbon both in the 
aboveground vegetation and in the soils (Derner and 
Schuman 2007; Yang et al. 2017). In general, plant 
biomass of rangelands is relatively low at approximately 
2–6 kg m−2, compared with other terrestrial ecosystems 
reaching 10–18 kg m−2 (Ruijun et al. 2010), but their large 
area offers significant potential for carbon sequestration 
(Chen et al. 2009).

Dryland ecosystems have a sequestration potential 
of approximately 1 billion tons of carbon per year, 
accounting for more than 12% of global anthropogenic 
greenhouse gases emissions (Lal 2004). Some studies 
indicate that 59% of total carbon storage in Africa is in 
arid areas (Campbell et al. 2008; UNEP 2008). In these 
regions, where pastoral activities are dominant, most 
of the sequestered carbon is stored underground, and 
is therefore relatively stable (FAO 2002). There is also a 
substantial amount of aboveground carbon stored in trees, 

bushes, shrubs and grasses, which are not grazed or are 
only moderately disturbed by grazing (IPCC 2007; Vashum 
and Jayakumar 2012). However, it has been suggested 
that, under current land use management, overgrazing 
leads to loss of carbon stocks (Tessema et al. 2011). Many 
rangeland management techniques, such as rehabilitation 
and grazing enclosures, aim to increase forage production 
and to consolidate the carbon sequestration potential both 
in soils and in aboveground vegetation (Homann et al. 
2008). National parks and other protected areas have been 
established to protect biodiversity and maintain ecological 
stability through restriction of livestock grazing and other 
human interventions. According to Campbell et al. (2008), 
15.2% of global carbon stock is stored within protected 
areas, which cover 12.2% of total land area, highlighting the 
importance of protected areas in climate change mitigation.

Long-term protection of such dryland areas increases 
spatial heterogeneity and vegetation cover and leads 
to the development of new vegetation units (Tarhouni 
et al. 2014). This management technique significantly 
improves aboveground productivity of shrubby plants in 
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change conditions.
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arid rangelands and increases their potential to sequester 
atmospheric carbon (Wu et al. 2009).

Accurate quantification and study of the biomass of 
ligneous plants is essential in assessing the structure 
and vegetation production of terrestrial ecosystems 
and in estimating their potential contribution to carbon 
sequestration (Yang et al. 2017). Measurement or estimation 
of woody plant biomass can be done using direct or indirect 
methods. These methods have evolved over time. Initially, 
visual estimation was developed for use in grasslands 
and forblands (Pechanec and Pickford 1937). Later on, 
Woodroffe (1941) described an adaptation of the technique 
for shrubs. The most accurate method for estimating plant 
biomass is the direct method, which involves harvesting all 
aboveground biomass (Vashum and Jayakumar 2012). This 
traditional technique is time consuming and requires intense 
fieldwork. It also destroys vegetation resources and may 
accentuate the risk of desertification in arid lands (Ketterings 
et al. 2001; Djomo et al. 2010).

Because of the need for inexpensive and accurate 
measurements of plant biomass has led to the gradual 
development of various non-destructive techniques that 
allow for larger sample sizes at the expense perhaps of 
less precision at the plot level. For instance, the reference 
unit method is a semi-destructive technique based on the 
use of representative samples to reduce harvest of the 
entire shrub and increase the samples number (Boyda et 
al. 2015). Moreover, biomass equations were developed to 
estimate shrub biomass as a function of variables that are 
correlated with it, such as rainfall. However, this correlation 
works well with the herbaceous strata and not with other life 
forms, such as shrubs (Louhaichi et al. 2018a). Similarly, 
shrub biomass equations were developed as functions of 
plant dimensions (diameter and height, vegetation cover). 
The equations are usually species specific because of the 
variation in shape, size, and vegetative behaviour between 
species (Louhaichi et al. 2018a). They can be estimated 
using linear (Flombaum and Sala 2007; Tarhouni et al. 
2007; Idi et al. 2009), quadratic (Hughes et al. 1987), and 
logarithmic regression models with various independent 
variables, such as stem diameter, height, and crown 
dimensions (Baskerville 1972; Ohmann et al. 1981). 
Recently, another non-destructive method, plant canopy 
cover measurement, has been used as a surrogate for 
estimating the biomass of woody plants, because these 
two parameters are believed to be positively correlated 
(Tarhouni et al. 2016). This technique uses a digital 
camera and follows a standardized procedure to classify 
and measure vegetation on the ground. Finally, with the 
advances in geo-spatial technologies, new biophysical 
predictors have been identified, which open new venue for 
developing accurate allometric equations and/or geo-spatial 
approaches (Louhaichi et al. 2018b; Issa et al. 2020).

Assessing ligneous plants biomass using these tools 
serves as an indicator of the productivity of rangelands 
and facilitates the study of carbon sequestration potential 
in these ecosystems. The huge content of organic carbon 
in vegetation, produced by photosynthesis, is usually 
estimated by multiplying the total plant biomass by a 
corresponding biomass carbon conversion factor (Ma et al. 
2018). Although dryland regions occupy 45% of global land 

area, the amount of carbon stored in the arid and desert 
ecosystem has been poorly studied (Fusco et al. 2019) 
and most studies that have estimated carbon stocks have 
focused mainly on tree species. In fact, carbon uptake by 
dwarf shrubs accounts for approximately one-third of the 
total carbon sink, and these life forms represent a large 
biomass and carbon pool that is usually underestimated in 
carbon storage assessments (Li et al. 2018). In Tunisia, the 
estimation of carbon sequestration in vegetation is rarely 
studied and those studies that have been carried out have 
been concentrated on forest areas located in the north of 
the country (Zribi et al. 2016). However, a comprehensive 
understanding of global carbon stocks must include the 
study of the carbon sequestration potential of dryland 
regions through the investigation of the two principal carbon 
wells, the soils and vegetation biomass of these regions.

This study aimed to investigate the effect of long-term 
protection of arid rangelands on biomass production 
and carbon storage for five dominant dwarf shrub 
species, as well as to develop the best-fit correlation 
models for predicting the biomass and carbon content of 
these species. The study took place inside and outside 
the National Park of Sidi Toui, in the El Ouara natural 
rangeland area in southern Tunisia where the efficiency of 
the digital image analysis was compared to the biovolume 
measurement technique, another non-destructive 
measurement method.

Materials and methods

Study site
In Tunisia, rangelands occupy approximately 4.5 million 
ha, of which 45% and 42% are located in arid and desert 
areas of southern Tunisia, respectively (DGF 2010). 
Chamaephytes are the dominant life forms of natural 
vegetation in Tunisian arid rangelands and mostly 
considered as key ecological species within desert 
ecosystems (Yang et al. 2017). Projections of climate 
change in southern Tunisia for 2030–2050 predict a rise in 
annual and seasonal temperature and decrease in rainfall, 
with an increased frequency of extreme events, including 
successive dry years, which can have a significant impact 
on the perspectives and development of production 
systems, particularly in these dwarf shrub ecosystems 
(Ouled Belgacem and Louhaichi 2013; Touhami 2016). 
Such ecosystems play an important role in reducing the 
effects of wind erosion and in conserving soil and water 
(Yang et al. 2017), as well as in generating suitable habitats 
for the understory plants, animals, and microorganisms 
specific to this environment (Li et al. 2003).

The current study was carried out inside (ungrazed area) 
and outside (free grazing) the Sidi Toui National Park in 
southern Tunisia. Created in 1991 on 6 315 ha, this park 
is located in Presaharian Tunisia in the El Ouara natural 
rangelands area (Figure 1). The soil substratum is mainly 
composed of vast encrusted glacis with a sandy and thin 
upper layer. The vegetation cover is mainly dominated by 
shrubby Chamaephytes. Predominant shrubby species 
include Anthyllis henoniana Coss. Ex Batt., Gymnocarpos 
decander Forssk, Rhanterium suaveolens Desf., 
Haloxylon schmittianum Pomel and Haloxylon scoparium 
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Pomel. The main land use in the region is livestock 
grazing and there is a long history of free grazing by small 
ruminants and camels. Inside the park, grazing is strictly 
prohibited. Nevertheless, the park is occupied by very 
small number of wild herbivores, mainly antelopes (Oryx, 
gazelles), ostriches and rabbits.

According to the Köppen-Geiger classification, the climate 
of the study area is classified as type BWh. The average 
temperature is 19.6 °C and rainfall is low and sporadic, 
with mean annual precipitation of approximately 175 mm. 
The driest month is July and the highest precipitation is 
recorded in January (https:/fr.climate-data.org, accessed on 
7 April 2020). During the experiment period (2017–2019), 
the mean precipitation recorded in the meteorological station 
of the Sidi Toui National Park was relatively low (121 mm), 
compared with the mean annual of the region (Table 1).

Experimental design
Five dominant native perennial species were selected, 
because they are key species of the five main plant 
communities in the park and its surrounding (Ould Sidi 

Mohamed et al. 2002; Tarhouni et al. 2014): A. henoniana, 
G. decander, R. suaveolens, H. schmittianum and 
H. scoparium. The biomass and canopy cover of these 
species were measured during the spring of 2017, 2018 and 
2019, respectively. One hundred and twenty tufts for each 
species of A. henoniana and R. suaveolens (60 tufts from 
inside and 60 from outside the park) and 60 tufts for each 
species of G. decander, H. schmittianum and H. scoparium 
(30 inside and 30 outside the park) were randomly selected 
for measurement. For each species, two classes of canopy 
size (big and small) were considered and the size distinction 
between classes was made by visual observation.

Canopy cover
The selected individuals of each species were 
photographed with a high-resolution digital camera 
(Nikon Coolpix AW110, 16 megapixels and the images 
resolution was 4 608 × 3 456 pixels) before cutting. A 
consistent camera height above the ground (1.25 m) was 
maintained during the protocol to ensure the photographed 
area was the same each time. The camera was pointed 
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Figure 1: Geographical location of the study area (Sidi Toui National Park)

Variables J F M A M J J A S O N D Annual means
Mean temperature (°C) 13 14 18 20 23 27 30 29 27 23 18 13 21.25
Mean maximum temperature (°C) 18 20 24 26 30 34 37 36 33 28 23 18 27.25
Mean minimum temperature (°C) 8 9 12 15 18 21 24 23 22 18 13 9 16.00
Mean precipitation (mm) 2 1 7 15 1 0 0 0 0 26 56 13 121.00

Table 1: Climate data for the Sidi Toui National Park 2017–2019 (local measurements)



Chibani, Tlili, Salem, Louhaichi, Belgacem and Neffati4

vertically downward (ensured by a bubble level) and the 
direction was determined using a compass. Time of day 
can interfere with the quality of the photographs taken 
and, in general, it is recommended to avoid early and late 
afternoon (Louhaichi et al. 2018b). The obtained images 
were processed using specialized software ‘VegMeasure’ 
(Louhaichi et al. 2010). This software is used to classify 
the collected digital images and measure plant cover of the 
targeted species. The canopy cover (CC) was expressed as 
a percentage of the plant cover in the photographed area.

Biometric measures
For each selected individual plant, the maximum height 
H (defined as the distance between the ground surface 
and the highest crown point) and the crown area in two 
directions (largest diameter of the crown [D1], and its 
perpendicular diameter [D2]) were measured using a 
tape with 1 mm accuracy to describe the architectural 
characteristics. The geometric shapes of the tufts of the 
selected species were considered as hemispherical. 
Therefore, the biovolume (BV) was determined using the 
following formula:

BV (m3) = ((4/3) × π × r 3)/2

where the average radius is expressed as:

r (m) = ((D1 + D2)/2 + H)/2

Aboveground biomass and carbon content 
measurement
The aboveground biomass was obtained by clipping all the 
aerial parts of the photographed plants. The fresh material 
from each measured plant was weighed and dried at 105 °C 
for 24 h to obtain the aerial dry biomass (DM).

The carbon content was measured by the loss on ignition 
method (ash method) (Chavan and Rasal 2011). Samples 
from each clipped plant were weighed (M1) then burned in 
an oven for approximately 4 h at 550 °C. The obtained ash 
was allowed to cool in a desiccator and then weighed (M2).

The proportion of organic carbon (OC) content for each 
biomass was calculated by ash weight (M2), primary weight 
(M1), and the proportion of organic material (OM), using the 
following formulae (Allen et al. 1986):

OM (%) = (M1 − M2)/M1 × 100

OC (%) = OM (%) × 0.58

The results expression of both measured parameters was 
carried out according to the size classes (big canopy and 
small canopy).

Statistical analysis
After a Shapiro–Wilk test for normality, logarithmic 
transformations were made for DM and OC content before 
statistical analysis to ensure homogeneity of variance. 
One-way analysis of variance (ANOVA) was performed 
using SPSS software 20.0. Linear regression analyses 
were used to explore relationships between DM, OC, CC 
(calculated by VegMeasure), and BV for the selected 

species. The determination coefficient (R2) was computed 
for dependent and independent variables. Univariate 
regression is described as follows:

y = αx + β

where y is the dependent variable; x is the independent 
variable; α is the slope and β is a intercept of this function. 
Linear regressions and calculated models were obtained 
using Excel software and the intercept was set to 0.

Results

Biomass production and organic carbon content
The mean aboveground biomass (DM) and organic carbon 
content (OC) for all individual plants, inside and outside 
the Sidi Toui protected area, of both canopy size classes 
are shown in Table 2. Inside the protected area, mean DM 
and OC content were highest in H. scoparium (big canopy) 
weighing 992.45 g ± 507.55 g and 505.72 g ± 273.64 g, 
respectively. Mean DM and OC content were lowest in 
G. decander (small canopy) weighing 44.25 ± 31.99 g and 
22.26 ± 16.18 g, respectively. Outside the protected area 
(that is, in the grazed area), mean DM and OC content were 
also highest in H. scoparium (big canopy) weighing 599.91 
g ± 244.16 g and 306.43 g ± 126.26 g, respectively, and 
lowest in G. decander (small canopy) weighing 39.12 g ± 
26.25 g and 18.83 g ± 11.72 g, respectively. The results 
of ANOVA showed that a long period of protection had 
no significant effect on biomass production and carbon 
content for the small canopies of all the studied species 
and for the big canopies of A. henoniana, G. decander, and 
R. suaveolens (p > 0.05). However, for the big canopies 
of the chenopods, a highly significant effect was found for 
H. schmittianum (p < 0.001) and a significant effect for 
H. scoparium (p < 0.05) for both parameters.

Canopy cover and biovolume
After software processing of the photographs of all the 
individual species inside and outside the protected area, 
the highest estimated CC values were attributed to 
H. scoparium, ranging from 0.8 to 41.9% with an average 
of 12.29%. CC values varied from 0.2 to 38.1% (9.34% on 
average) for R. suaveolens and from 0.5 to 26.3% (7.6% 
on average) for A. henoniana. The lowest CC values were 
found for G. decander, ranging from 0.3 to 20% (6.49% on 
average), and H. schmittianum, ranging from 0.4 to 15.9% 
(5.47% on average).

Using biometric measurements (second non-destructive 
method), the results showed that BV varied between 
0.001 and 0.63 m3 for all the studied shrub species. The 
highest mean canopy BVs were 0.11 ± 0.11 m3 (range 
0.004–0.43 m3) for H. scoparium; 0.11 ± 0.10 m3 (range 
0.008–0.63 m3) for R. suaveolens; and 0.9 ± 0.8 m3 (range 
0.008–0.35 m3) for A. henoniana. The lowest BV values were 
0.5 ± 0.4 m3 (range 0.001–0.23 m3) for H. schmittianum and 
0.5 ± 0.5 m3 (range 0.003–0.29 m3) for G. decander.

Regression analysis
The analysis of photographs by the VegMeasure 
software (Figure 2) and biometric measurements served 
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for estimating the CC and BV and determining their 
relationships with the measured DM.

The main results of regression analysis showed 
comparable highly significant (p < 0.001) relationship 
between CC and DM and between BV and DM, with 
R² ranging from 0.72 to 0.82 and from 0.71 to 0.84, 
respectively, for all studied species inside and outside the 
Sidi Toui National Park (Table 3, Figure 3). Similarly, OC 
content was positively and highly significantly (p < 0.001) 
correlated with CC and BV, with R² ranging from 0.74 to 0.8 
and from 0.72 to 0.82, respectively (Table 3, Figure 4).

For A. henoniana, DM and CC were not as closely 
correlated (R2 = 0.72) as DM and BV (R2 = 0.83). The 
correlations between OC content and CC (R2 = 0.76) 
and OC content and BV (R2 = 0.81) were more similar. 
Therefore, the estimated CC of A. henoniana seemed to be 
more closely correlated with BV than with DM and OC (Table 
3, Figures 3 and 4). Similar correlations were obtained for 
R. suaveolens between DM and CC (R2 = 0.75), between 
DM and BV (R2 = 0.83), between OC content and CC (R2 = 
0.76) and between OC and BV (R2 = 0.82). The results for 
G. decander suggested that, both non-destructive methods 
gave very similar estimations of DM and OC content 
deduced using CC and BV measurements, with R2 values 
of 0.73 (DM and CC), 0.74 (DM and BV), 0.75 (OC and CC) 
and 0.75 (OC and BV). For H. schmittianum, R2 ranged from 
0.71 to 0.80 (Table 3, Figures 3 and 4) with the analysis 
suggesting that DM and OC content were more closely 
correlated with CC (R2 = 0.80 and 0.74, respectively) than 
with BV (R2 = 0.71 and 0.72, respectively). The strongest 
correlations were found for H. scoparium, with R2 ranging 
from 0.80 to 0.83 (Table 3, Figures 3 and 4). These very 
similar values suggest that both methods produced more 
accurate calculations of DM and OC content for this species.

Discussion

The quantification of aboveground plant biomass is 
necessary when estimating net primary productivity and 
carbon sequestration potential (Keller et al. 2001; Sampaio 
and Silva 2005; Daryanto et al. 2013). Generally, protected 
areas play an important role in carbon sequestration in 

arid regions (Del Rosario et al. 2012; Castro et al. 2015). 
In particular, the exclusion of livestock from the Sidi Toui 
National Park has increased biomass production, spatial 
heterogeneity, and total vegetation cover (Ould Sidi 
Mohamed et al. 2002; Tarhouni et al. 2014). Zhang (1998) 
reported that total canopy cover was highest in protected 
areas, compared with the freely grazed areas, but the short 
duration of his study meant he was unable to distinguish 
between the impacts of grazing and/or climate stress as the 
main cause of this variation. Based on the current results, 
aboveground dry biomass and organic carbon content 
increased in the protected area only for the big canopies of 
the chenopods H. schmittianum and H. scoparium. These 
results suggest that, despite the benefits and multiple 
ecosystem services offered by the protected areas, 
long-term protection (for >25 years) can negatively affect 
vegetation dynamics, especially for some perennial species. 
Likewise, Louhaichi et al. (2012) reported that despite 
a notable increase in biomass production during short 
periods of protection, the difference was not significant 
for perennials. A negative effect of long-term protection 
on vegetation dynamics was also reported by Ouled 
Belgacem et al. (2013a) in some degraded rangelands in 
Qatar. Yayneshet et al. (2009) reported that in semi-arid 
rangelands in northern Ethiopia, long-term protection 
reduced the diversity and biomass of herbaceous species 
and they considered that short-term exclusion seemed 
better for plant productivity and diversity. Similarly, Abdallah 
and Chaieb (2014) found that long-term protection reduced 
biomass production, but also that continuously grazed 
areas became dominated by less palatable species.

Grazing behaviour (i.e. grazing intensity, livestock 
species and numbers), climatic conditions, vegetation type, 
and phenological stages of species are among the main 
factors influencing biomass production and carbon content. 
The response of plants to grazing management depends 
on the combined effects of all these factors (Chen et al. 
2012). It should be noted that among the shrubs evaluated 
in the current study, A. henoniana and G. decander are 
reported to be highly palatable species, R. suaveolens 
and H. scoparium are less palatable and H. schmittianum 
is occasionally palatable (Le Houerou and Ionesco 1973). 

Species (n) Canopy size 
class

DM (g plant−1) OC (g plant−1)
Inside Outside Inside Outside

Anthyllis henoniana
(n = 30)

B 541.1 ± 372.7 513.6 ± 263.6 285.4 ± 200.9 275.4 ± 142.6
S 90.6 ± 54.1 69.5 ± 32.1 46.9 ± 27.9 37.4 ± 17.4

Gymnocarpos decander
(n = 15)

B 606.2 ± 291.1 572.7 ± 306.5 295.9 ± 144.6 291.2 ± 155.9
S 44.2 ± 31.9 39.1 ± 26.3 22.3 ± 16.2 18.8 ± 11.7

Rhanterium suaveolens
(n = 30)

B 549.1 ± 411.8 424.1 ± 302.8 282.8 ± 218.1 220.4 ± 156.4
S 74.2 ± 61.3 54.7 ± 27.6 38.7 ± 31.6 28.3 ± 15.5

Haloxylon schmittianum
(n = 15)

B 648.2 ± 265.3** 403.2 ± 289.8** 314.8 ± 123.2** 192.5 ± 140.0**
S 177.1 ± 101.0 104.1 ± 93.5 81.2 ± 48.2 46.8 ± 41.3

Haloxylon scoparium
(n = 15)

B 992.4 ± 507.5* 599.9 ± 244.2* 505.7 ± 273.6* 306.4 ±126.2*
S 139.6 ± 73.9 102.9 ± 90.9 67.5 ± 40.8 51.20 ± 46.3

Table 2: Mean ± SD aerial dry biomass (DM) and organic carbon content (OC) of five perennial shrubs inside and outside the Sidi Toui National 
Park collected in spring over three years (2017– 2019). The canopy size classes are B (big) and S (small), where n is the number of 
measured individuals of each species for each size class inside and outside the park. Asterisks indicate a statistically significant difference 
between means inside and outside the park, * p < 0.05; ** p < 0.01
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Figure 2: Original (A, B, C, D and E) and VegMeasure software processed images (a, b, c, d and e) of (A, a) Anthyllis henoniana, (B, b) 
Gymnocarpos decander, (C, c) Rhanterium suaveolens, (D, d) Arthrophytum schmittianum, and (E, e) Arthrophytum scoparium
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It is suggested that this palatability classification, together 
with the lignification that is characteristic in species of the 
Amaranthaceae family, explains the higher performance 
observed in H. scoparium and H. schmittianum. This also 
confirms the finding of Ouled Belgacem and Louhaichi 
(2013) that these species are of low range value and broad 
ecological niches, favoured by the impacts of climate 
change and seemed to be able to survive under future 
environmental conditions of their adaptation range.

Our results showed that canopy cover and aboveground 
biovolume measurements were highest for H. scoparium 
and lowest for G. decander. These findings suggest that 
the two non-destructive methods examined (i.e. estimating 
the canopy cover and the biovolume of the shrub tufts) 
are strongly related to the aboveground biomass and the 
carbon content, and highly significant linear relationships 
were established. The digital imaging method and the size 
measurement method provided a reasonable estimation 
of aboveground biomass for the shrub species, giving 
positive relationships with R2 > 0.7 for all the shrubs 
studied. This outcome correlates with similar findings in 
other recent studies in similar arid sites, which confirmed 
the positive relationship between plant biomass production 
and vegetation cover (Tarhouni et al. 2016; Louhaichi et al. 
2018a), as well as the positive correlation between vegetation 
biomass and dimensions measurements (Tarhouni et al. 
2007; Idi et al. 2009; Yang et al. 2017). The use of vegetation 
cover and plant dimensions as a tool for studying shrub 
biomass has the advantage of being non-destructive, easy 
to use and faster, when compared with the harvest technique 
(Flombaum and Sala 2007; Idi et al. 2009; Tarhouni et al. 
2016; Louhaichi et al. 2018a); and many other researchers 
have studied the estimation of aboveground biomass carbon 
through non-destructive methods (Vashum and Jayakumar 
2012; Mandal and Joshi 2015).

Accordingly, aboveground biomass can be predicted by 
measuring only dimensional parameters or by estimating 
canopy cover. We suggest that these non-destructive 
methods could be a good alternative to destructive methods 
for assessing vegetation development or estimating the 
availability of grazing resources in arid and semi-arid 
rangelands. They have the added advantage that they can 
be performed quickly at different times to assess vegetation 
dynamics for monitoring purposes. In addition, the obtained 
results are easily archived to ensure maximum data 
availability for future change analyses (Laliberté et al. 2007; 
Tarhouni et al. 2016).

For all the species studied, the aboveground organic 
carbon content for each canopy size class decreased in 
the grazed site, although this decrease was significant 
only for H. schmittianum and H. scoparium. Continuous 
grazing can decrease vegetation cover, resulting in the 
loss of aboveground biomass carbon (Li et al. 2018). 
Therefore, the positive effects of grazing exclusion depend 
on the widespread degradation of grasslands and the 
lower baseline of observed indicators (Xiong et al. 2016). 
Bisigato et al. (2008) reported that several factors, such 
as climate variations, species composition, degradation 
threshold, and physical and biological soil conditions, could 
also lead to the absence of significant changes in carbon 
levels between grazed and protected sites in some studies. 
On the other hand, our results corroborate those of Ouled 
Belgacem et al. (2013b) that palatable species cannot 
tolerate long-term protection and require moderate grazing 
to reactivate their growth.

Although these methods offer numerous advantages, 
they also have some limitations. For example, the digital 
technique works well for globular or compact shrubs 
(Louhaichi et al. 2018a), but because the images are taken 
vertically from above, the aboveground biomass of species 

Species DM*CC DM*BV OC*CC OC*BV
Anthyllis henoniana α 42.25 3 406.8 23.14 187.1

β 30.92 25.38 8.11 1 083
R2 0.72 0.83 0.76 0.81
sig *** *** *** ***

Gymnocarpos decander α 51.29 5 140.9 27.3 2 444.2
β 16.7 60.1 3.61 30.65
R2 0.73 0.74 0.75 0.75
sig *** *** *** ***

Rhanterium suaveolens α 33.52 2 993.2 18.6 1 599.1
β 4.28 −19.5 −5.74 −12.29
R2 0.75 0.83 0.76 0.82
sig *** *** *** ***

Haloxylon schmittianum α 63.77 6 273.4 31.67 3 033.7
β −16.86 10.2 −13.81 13.85
R2 0.8 0.71 0.74 0.72
sig *** *** *** ***

Haloxylon scoparium α 37.85 3 606 19.51 1 867
β −1.38 50.49 −4.56 21.2
R2 0.82 0.83 0.8 0.82
sig *** *** *** ***

Table 3: Regression analysis parameters for the studied plants. DC: aerial dry matter; CC: 
canopy cover; BV: canopy biovolume; OC: organic carbon content. α is the slope, β is the 
intercept of the function and R2 is the coefficient of determination, *** p < 0.001
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with a long upright form may be underestimated (Tarhouni 
et al. 2016). Hence, each species should be separately 
studied, taking into account the particular growth habit and 
plant size of each plant community (Hamada et al. 2011).

Conclusion

Assessing the productivity and sustainability of ecological 
key woody species within arid ecosystems gives an 
indication of the potential amount of carbon that can 
be sequestered. The results of this study showed that 

non-destructive techniques using digital image processing 
and/or biometric measurement provided a good estimation 
of aboveground biomass for the shrub species studied, 
giving positive and significant relationships. Comparison of 
the aerial biomass and carbon content inside and outside 
the Sidi Toui National Park indicated a non-significant 
effect of long-term protection on shrub biomass production 
and carbon content for the studied species, except of 
for the big canopies of the low range value chenopods 
(H. schmittianum and H. scoparium). Therefore, the 
results of this study indicate a light grazing regime 
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Figure 3: Correlation between (A) aerial dry biomass and canopy cover and (B) aerial dry biomass and biovolume of five abundant species 
(Haloxylon schmittianum, Haloxylon scoparium, and Gymnocarpos decander [n = 60] and Anthyllis henoniana and Rhanterium suaveolens 
[n = 120]) inside (■) and outside (▲) the Sidi Toui National Park
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of long-term protected areas under arid conditions to 
reactivate the growth of palatable shrubby vegetation and 
enhance consequently their resilience and their carbon 
sequestration potential.
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