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Abstract

While the Convention on Biological Diversity employs a habitat-oriented defini-

tion of soil biodiversity including all kinds of species living in soil, the Food and

Agriculture Organization, since 2002 assigned to safeguard soil biodiversity,

excludes them by focusing on species directly providing four ecosystem services

contributing to soil quality and functions: nutrient cycling, regulation of water

flow and storage, soil structuremaintenance and erosion control, and carbon stor-

age and regulation of atmospheric composition. Many solitary wasps and 70% of

wild bees nest below ground and require protection during this long and crucial

period of their lifecycle. Recent research has demonstrated the extent of threats to

which ground-nesting pollinators are exposed, for example, chemicals and deep

tillage. Ground-nesting pollinators change soil texture directly by digging cavities,

but more importantly by their indirect contribution to soil quality and functions:

87% of all flowering plants require pollinators. Without pollinators, soil would

lose all ecosystem services provided by these flowering plants, for example, litter,

shade, roots for habitats, and erosion control. Above- and belowground biota are

in constant interaction. Therefore, and in line with the Convention’s definition,
the key stakeholder, the Food and Agriculture Organization should protect

ground-nesting pollinators explicitly within soil biodiversity conservation.
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INTRODUCTION

Eighty-seven percent of flowering plants (Ollerton et al.,
2011) and 75% of the most important food crops (Klein
et al., 2007) depend on pollinators. Wild bees are the most
important group of pollinators, but globally they are in
decline (Zattara & Aizen, 2021). About 70% of recognized
wild bees nest in the ground, also many solitary wasps and
some syrphids (Antoine & Forrest, 2021; Cope et al., 2019;

Hopwood et al., 2021). The value of pollinators for soil biodi-
versity and soil functions has never been assessed.

MAIN STAKEHOLDERS DO NOT
BUILD ON THE CBD DEFINITION
OF SOIL BIODIVERSITY

The Convention on Biological Diversity (CBD) defines
soil biodiversity as “the variety of life below ground, from
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genes and species to the communities they form, as well
as the ecological complexes to which they contribute and
to which they belong, from soil microhabitats to land-
scapes” (CBD, 2020). The habitat-oriented definition
allows protection of ground-nesting pollinators as part of
soil biodiversity.

CBD charged The Food and Agriculture Organization
(FAO) with global conservation of soil biodiversity and
with the International Pollinator Initiative (CBD, 2002,
COP 6, decision V/5, section II, https://www.cbd.int/
decision/cop/?id=7179). However, the FAO Voluntary
Guidelines for Sustainable Soil Management (FAO, 2017)
and the full report State of Knowledge on Soil Biodiversity
(FAO, 2020) do not include ground-nesting pollinators as
part of soil biodiversity. Though the 616-page report
(FAO, 2020) directly refers to the CBD definition in the
beginning, the following sub-chapter on soil communities
excludes pollinators and lists only species directly con-
tributing to soil quality and functions. Pollinator decline
is mentioned superficially four times in reports on certain
countries without any reference to specific threats to
ground-nesting pollinators (FAO, 2020). The Global Soil
Partnership (GSP), founded by FAO in 2012, narrows the
focus: “Soil depends on the presence of a vast community
of living organisms to remain healthy and fertile: these
organisms make up soil biodiversity” or “Soil biodiversity
plays a vital role in the soil ecosystem as soil organisms
are responsible for nutrient cycling, regulating the
dynamics of soil organic matter, soil carbon sequestration
and greenhouse gas emissions, allowing soils to function
properly” (http://www.fao.org/global-soil-partnership/
areas-of-work/soil-biodiversity/en/). Soil research focuses
on organisms (moles, beetles, ants, termites, earth-
worms, millipedes, woodlice, tardigrades, mites, nema-
todes, fungi, bacteria, protozoans, etc.) directly
providing four ecosystem services contributing to soil
quality and functions: nutrient cycling, regulation of
water flow and storage, soil structure maintenance
(including detoxification of xenobiotics and pollutants)
and erosion control, carbon storage and regulation of
atmospheric composition (FAO, 2015, 2020). The
650-page FAO report on the world’s soil resources men-
tions that biodiversity above-ground, particularly polli-
nators and natural enemies provide important
ecosystem services and are threatened by pesticides but
without any reference to specific threats to ground-
nesting pollinators (FAO, 2015).

The EU Thematic Strategy for Soil Protection
(EU, 2006) mentions all “living organisms” of the “top
layer of the earth’s crust” but does not clarify which
species are included. The EU Global Soil Atlas
(Orgiazzi, Bardgett, et al., 2016) briefly acknowledges the

importance of pollinators, seed eaters and seed dispersers
for plant distribution but confines itself to species provid-
ing the above-mentioned ecosystem services and soil func-
tions directly. If some of these species contribute
additionally to pollination, for instance ants and beetles,
this is highlighted (Orgiazzi, Bardgett, et al., 2016). The
authors mention that around 70% of recognized wild bees
nest in soil and state that mining bees “in reasonable num-
bers […] will not harm your garden” (Orgiazzi, Bardgett,
et al., 2016). Neither the soil-related specific threats for
ground-nesting pollinators nor protection strategies are
described. The European Soil Data Center (ESDAC;
https://esdac.jrc.ec.europa.eu/themes/soil-biodiversity)
also does not include ground-nesting pollinators. As
CBD charged FAO with both global pollinator protec-
tion and global conservation of soil biodiversity explic-
itly to promote synergies (CBD 2002, COP 6, decision
V/5, section II, https://www.cbd.int/decision/cop/?id=
7179), it is striking that FAO did not take the lead to
integrate ground-nesting pollinators in soil protection.

Ground-nesting pollinators should be explicitly
included in concepts of soil biodiversity and respective
protection guidelines and programs, because (1) soil is
an essential habitat for ground-nesting pollinators
where they face specific threats, (2) indirectly, ground-
nesting pollinators contribute to soil biodiversity by
(a) ensuring regeneration of flowering plants and thus
sustain diverse habitats above and below ground,
(b) enabling the adaptation of flowering plants to cli-
mate change through cross-pollination that enhances
genetic diversity (MEA, 2005), and (3) ground-nesting
pollinators directly contribute to soil structure by
aerating the soil through microtillage (Cane, 2003).
Carbon storage, a main soil function (FAO, 2020)
highly depends on pollinator-dependent flowering
plants, the contributions of pollinators to climate-
change mitigation through soil are multifold but nei-
ther precisely assessed nor commonly recognized
(Christmann, 2019).

SOIL AS HABITAT: SPECIFIC
THREATS TO GROUND-NESTING
POLLINATORS

Most wild pollinators work in a 50–2000 m radius around
the nest (Kohler et al., 2008) with much smaller radii
(150–600 m) identified for foraging trips of 16 solitary
bees (Gathmann & Tscharntke, 2002). The lower the for-
aging radius, the higher the eventual exposure to pesti-
cides, making solitary bees more exposed to pesticides
than social bees (Uhl & Brühl, 2019).
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Many solitary wasps nest in soil, wild bees nest either
in soil (Halictus, Lasioglossum, Andrena, Eucera, Ant-
hophora, Amegilla and Melitta) or in hollow stems or old
wood (Xylocopa, Megachile and Osmia). In monocultural
areas with large field sizes, field edges become rare
(Feltham et al., 2015), and dead wood, hollow stems, and
perennial aboveground biomass for nesting are even
more scarce, thus disadvantaging cavity-nesting pollina-
tors (Brown et al., 2020; Everaars, 2012). They live closer
to forest patches (Everaars, 2012). Long distances
between nests and foraging plants reduce pollination ser-
vices (Roulston & Goodell, 2011). As such, agriculture
depends to a high extent on ground-nesting pollinators
that nest in the entire field area (Everaars, 2012; Sgolastra
et al., 2018). Pollinators nesting in the soil of fields face
three additional main threats in comparison to honey-
bees and cavity-nesting pollinators: tillage, soil compac-
tion by heavy machinery, and chemicals accumulating
in soil.

Little is known about the impacts of tillage on the
regeneration of solitary ground-nesting pollinators
(Kratschmer et al., 2018). They usually stay in the ground
almost a full year, sometimes several years, emerging for
some weeks or months to reproduce, pollinate, and lay
eggs (Michener, 2007; Willis Chan et al., 2019). Some bees
prefer tilled soil to build nests (Skidmore et al., 2019).
However, as many ground-nesting pollinators place their
eggs up to 30 cm below surface (Roulston & Goodell,
2011), deep tillage (around 15–30 cm) can bury nests or
destroy the tunnel (Hopwood et al., 2021; Roulston &
Goodell, 2011). Tillage reduces offspring emergence and
delays emergence of surviving offspring of ground-nesting
squash bees (Ullmann et al., 2016). No-tillage farms hosted
three times higher density of squash bees as farms
employing tillage (Shuler et al., 2005).

Soil compacted by heavy machinery threatens
ground-nesting pollinators (Potts & Willmer, 2003). As
burrowing in compacted soil is hampered even for earth-
worms (Beylich et al., 2010), heavy machinery might
compact soil to an extent that pollinator larvae are
smashed or cannot emerge successfully from their natal
nests. Compacted soil has reduced macropore volume
and thus different O2 and CO2 concentrations affecting
soil organisms (Beylich et al., 2010). Effects of these dif-
ferent concentrations on hatching offspring and pollina-
tor females digging to lay eggs have not yet been studied.
In compacted soil it is possible that fungal diseases may
impact non mobile stages (pupae) of ground-nesting pol-
linators due to reduced soil water drainage. The impacts
of different soil tillage regimes at different times on the
reproduction of ground-nesting pollinators should be
assessed to enhance guidelines for less damaging soil
cultivation.

Chemicals and neonicotinoid insecticides accumulate in
soil, with up to 94% of the chemical load of neonicotinoids
found in soil and water (Goulson, 2014). Female solitary
ground-nesting pollinators dig vertical and horizontal tun-
nels and cells in soil to lay their eggs, some species create
deep and multibranched tunnel systems (Willis Chan
et al., 2019). However, pesticide risk assessments are mostly
conducted on honeybees (Uhl & Brühl, 2019), though hon-
eybees are more mobile than wild pollinators and enjoy sub-
stantial support by beekeepers (hives, transport). To a lesser
extent, pesticide risk assessments include bumblebees
(Hatfield et al., 2021) that occupy existing mouse holes for
their nests and cavity-nesting species like Osmia (Rundlöf
et al., 2015). Pesticide risk assessments rarely include
the most exposed groups, ground-nesting pollinators or
aquatic syrphids (Anderson & Harmon-Threatt, 2019;
Goulson, 2014; Rundlöf et al., 2015; Sgolastra et al., 2018;
Willis Chan et al., 2019; Willis Chan & Raine, 2021). Expo-
sure to imidacloprid reduces the life expectancy of solitary
bees (Anderson & Harmon-Threatt, 2019). Hoary squash
bees in Curcubita fields in Ontario exposed to imidacloprid
build 85% fewer nests and their next generation is reduced
by 89% (Willis Chan & Raine, 2021). The toxicity for larvae
has not yet been tested (Willis Chan et al., 2019). Wild bees’
ability to reproduce may be reduced even in the year follow-
ing exposure to neonicotinoids (Woodcock et al., 2017).
Elado (a combination of clothianidin and the non-systemic
pyrethroid β-cyfluthrin) decreases wild bee density, solitary
bee nesting, growth of bumblebee colonies, and reproduc-
tion (Rundlöf et al., 2015).

Female solitary ground-nesting pollinators are exposed
to neonicotinoids with their entire bodies while digging. The
time of contact exposure might be long, Dasypoda visnaga
and Dasypoda maura dig up to 80 cm deep (El Abdouni
et al., 2021). The exposure of different ground-nesting polli-
nators can differ according to their body size, the size of
nests, the month of nest-building activities, preferred crops,
farming practice, and precipitation, which may reduce the
concentration of chemicals in soil. Research is needed on the
interaction of different chemicals with each other in soils
and how unintended side effects affect the total toxicity for
ground-nesting pollinators. This is even more urgent with
respect to climate change not only, but notably in dry regions
like North Africa, Near and Middle East, and Asia (pests are
not washed away by rain, they expand regionally, regenerate
faster, and drought-stressed plants attract more pests)
(Deutsch et al., 2018; Skendži�c et al., 2021). Farmers can
increase the diversity of pesticides used, their concentration,
and the frequency of application. Also, the concentration in
soil can increase due to higher evaporation. Research is
needed on the duration of contact exposure of different
female ground-nesting pollinators in soil and how this
impacts their health (Willis Chan&Raine, 2021).
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The urgent need to protect ground-nesting pollinators
below ground using soil-protection strategies is obvious.
As pesticides and particularly neonicotinoids affect other
species of soil biodiversity like earthworms (Pisa
et al., 2014), ants (Schläppi et al., 2020) and even above-
ground species like birds (Goulson, 2014) and bats (Hsiao
et al., 2016), stronger collaboration of scientists and
policymakers can be advantageous.

MULTIFOLD INTERACTIONS
BETWEEN SPATIALLY SEPARATED
BIOTA

Various impacts of aboveground biodiversity on below-
ground biodiversity and soil (Porazinska et al., 2018;
Wardle et al., 2004) and vice versa have been described
(de Deyn et al., 2003), litter above ground impacts decom-
poser biota below ground (Ball et al., 2009), most plants
interact with both mycorrhizal fungi and animal pollina-
tors; changes in above- or belowground richness and
abundance affect species and functions in the other habi-
tat (Brody et al., 2021), absence of mycorrhizae can
reduce diversity of plants and abundance of pollinators,
while herbivores attacking roots and mycorrhizal coloni-
zation support flower visitation by pollinators (A’Bear
et al., 2014). Symbiotic and pathogenic soil microbes
impact the composition of vegetation of grasslands
(Wardle et al., 2004). Climate-change induced events (ear-
lier snowmelt, drought) lead to reduced mutualistic inter-
actions between plants, mycorrhizal fungi, and pollinators
(Keeler et al., 2021). Floods and soil run-off can move
small soil organisms downstream, where they can alter
below- and aboveground biota (Orgiazzi & Panagos, 2018).

The complexity of interactions between spatially sepa-
rated sub-communities and the impacts on food chains in
fauna have been highlighted in principle (Goulson, 2014;
Knight et al., 2005). Knight et al. (2005) analyze them
using the example of fish feeding on dragonfly larvae,
while adult dragonflies live on pollinators and other
insects. Thus, the availability of fish in the pond has posi-
tive impacts on pollinator availability and the diversity of
plants and plant reproductive success in the land sur-
rounding the lake.

IMPACTS OF POLLINATOR LOSS ON
SOIL BIODIVERSITY, SOIL
FERTILITY, AND EROSION
PREVENTION

These examples highlight the need to take processes
within landscapes into consideration. As 87% of all

flowering plants depend on pollinators (Ollerton et al.,
2011), all ecosystem services provided by those plants
also depend on pollinators (Christmann, 2019). Loss of
87% of flowering plants would reduce and change plant
diversity, and in consequence diversity of fauna and
habitats (Christmann, 2019). Pollinator-loss-induced
changes of vegetation and fauna would impact soil bio-
diversity and soil functions, water run-off, recharge of
aquifers, reduce filtering against pollution and increase
exposure to sun (particularly in case of loss of trees),
change ambient humidity and temperature above and
below ground, nutrient cycling, root biomass and root
diversity, carbon storage, etc. (Christmann, 2019), and
the local environment for mycorrhizal fungi, earth-
worms, ants, dung beetles, and other soil biota could
alter rapidly.

In particular, organizations working on soil biodiver-
sity need an integrated view of landscapes as the ability
of most soil organisms to move fast is limited while they
are subject to changes in the landscape around. Soil bac-
teria and protists, for example, can move actively around
0.000001 m only, nematodes 0.01 m, and arbuscular
mycorrhizal fungi 0.005 m per day (Orgiazzi, Bardgett,
et al., 2016). Loss of pollinator-dependent plants, litter
and roots can have vast impacts on soil bacteria, mycor-
rhizal fungi, and other soil species, particularly on mutu-
alistic soil organisms. Higher soil erosion directly affects
soil organisms (Orgiazzi & Panagos, 2018). Pollinator loss
in a region can cause interlinked degradation spirals
reducing the options for restoration (Christmann, 2019).
However, publications on threats to soil diversity do not
even mention pollinator loss but declare wind and water
as highest threats (FAO, 2015, 2017; Orgiazzi, Panagos,
et al., 2016), though high plant diversity and in conse-
quence pollinator richness are necessary to reduce the
impacts of wind and water stress.

Local loss of specific pollinators due to climate change
can decrease the area of certain plants (Shi et al., 2021).
Some pollinator-dependent plants are important for erosion
prevention, soil fertility, or soil biodiversity: The common
pollinator-dependent mangrove Avicennia germinans hosts
arbuscular mycorrhizal fungi specialized on different salt
concentrations (Vanegas et al., 2019). Pollinator-loss-
induced depletion and final local extinction ofA. germinans
would affect these fungi and many other soil organisms liv-
ing sheltered by the ramified root systems. Loss of these
mangroves could also endanger more inland soil and its
organisms depending on freshwater environment and not
able to survive saltwater floods, which are currently bal-
anced by pollinator-dependent mangroves. Cornus mas,
Tilia cordata, Tilia platyphyllus, Salix caprea, Prunus
spinosa, and many other trees depend on pollinators to pro-
duce seed. Their root systems create a specific environment
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for arbuscular mycorrhizal fungi, the roots store carbon and
prevent soil erosion. Pollinator-dependent Artemisia
diffusa, the prevailing rangeland shrub in Uzbekistan
(Gintzburger, 2003), has a widely branched deep root sys-
tem that supports water and carbon storage in soil, prevents
erosion, and creates a specific environment for soil organ-
isms. A. diffusa is the main wild forage resource for small
ruminants in Central Asian rangelands (Gintzburger,
2003). Pollinator loss might lead to increase of unpalatable
plants like Peganum harmala, in consequence abundance
of dung beetles and soil fertility might decrease in such
areas.

Many pollinator-dependent plants contribute to soil
fertility. For example, Vicia faba roots host nitrogen-
fixing bacteria, green manures like Phacelia crenulate
and Trifolium enhance organic matter and thus support
earthworms and soil fertility (https://www.rhs.org.uk/
advice/profile?pid=373).

CONCLUSION

Organizations supervising and directing conservation of
soil biodiversity should protect ground-nesting pollina-
tors based on the habitat-oriented CBD definition. Protec-
tion of ground-nesting pollinators within soil biodiversity
requires:

1. Pesticide risk assessments analyzing impacts on a mix
of different solitary ground-nesting pollinator species
including impacts of delayed and combined effects
under field conditions and contact exposure,

2. Knowledge-raising campaigns concerning ground-
nesting pollinators,

3. Promotion of at least one dedicated area without second
tillage, heavy machinery, and pesticides in each square
kilometer of arable land. These are not necessarily fal-
low areas, as many ground-nesting pollinators prefer
arable land or pastures (Cope et al., 2019; Skidmore
et al., 2019). Within the land-sharing approach Farming
with Alternative Pollinators (FAP; Christmann, Aw-
Hassan, et al., 2021; Christmann, Bencharki, et al., 2021;
Christmann et al., 2017) this land can be used for (peren-
nial) marketable habitat enhancement plants (MHEP),
fruit trees, berries, cactus, alfalfa, mint, lavender, etc.,
planted as corridors or hedgerows. The insect diversity
attracted by MHEP enhances the productivity of
pollinator-dependent main crops (Christmann, Aw-
Hassan, et al., 2021; Christmann, Bencharki, et al., 2021;
Christmann et al., 2017).

When charging FAO with soil biodiversity and polli-
nator protection in 2002, CBD explicitly aimed at

synergies, however in reality this has not happened and
is overdue. CBD might wish to insist on correcting the
current mechanistic FAO approach towards integrated
protection of soil biodiversity that includes soil organisms
such as ground-nesting pollinators.
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