Technology transfer for water resources management

Nicola Lamaddalena - Deputy Director CIHEAM Bari

SKIM Project Bari, 21 September 2021

THE MEDITERRANEAN BASIN

Population of the Mediterranean (North, South and East)

Source: data extracted from the United Nations, 2017

Demographic trends alone suggest that water recycling could become a critical components of water supply globally in the 21st century

YEARLY AVERAGE RAINFALL

DISTRIBUTION OF WATER RESOURCES IN THE

MEDITERRANEAN REGION

Nicola Lamaddalena, Deputy Director – CIHEAM Bari

Variation of annual average precipitation in the next sixty years (A2 scenario)

THE CHALLENGE

Freshwater resources: current (2015) and predicted (2050) water withdrawal (km3)

Water Withdrawals by sector

Source: data extracted from Aquastat database. FAO, 2016

In the past years the policy choices privileged the big hydraulic infrastructures in irrigation giving priorities to the quantitative aspect rather than the qualitative (Supply Management).

GAP PROGRAM

Kabur river - 1975

Kebrit Spring - 2005

Kebrit spring - 2006

Pressure (Bars)	Discharge (L/s)
0.15	0.75
0.2	0.8
0.4	0.84
0.5	0.89

HIGHER DISTRIBUTION UNIFORMITY WITH LESS WATER VOLUME

MOROCCO

Centre International de Hautes Etudes Agronomiques Mèditerranéennes Istituto Agronomico Mediterraneo di Bari

Configuration Analysis

Centre International de Hautes Etudes Agronomiques Mèditerranéennes Istituto Agronomico Mediterraneo di Bari

The current policy choices highlighted the importance of Operation, Maintenance and Management activities (DEMAND MANAGEMENT)

- TECHNICAL APPROACHES (improving WUE at the whole chain of the system, use of unconventional waters, use of new technologies,)
- INSTITUTIONAL APPROACHES (PIM, Capacity Development,...)

TECHNICAL APPROACHES

WATER LOSSES IN IRRIGATION IN THE MEDITERRANEAN BASIN (%)

TO PREFER THE ON DEMAND DELIVERY SCHEDULE RATHER THAN THE ROTATION

SOIL-WATER BALANCE

Simulated soil-water balance for TABLE GRAPES according to the rotational delivery schedule conducted by the Water Users Association

Simulated soil-water balance for Table grapes according to the on-demand delivery schedule

IRRIGATION EFFICIENCY TECHNIQUES

EU funded Project

an talage

ACOLIA SALATA

与利己拉正?

SCALA

DISTRIBUTION NETWORK EFFICIENCY

Time (hours)

Pressure Deficit: Q = 1200 l/s

Q = 700 l/s

$E_{G,1} = 0.95 \times 0.60 = 0.57$

CAS 1:

CAS 2:

$E_{G,2} = 0.95 \times 0.80 = 0.76$

$\Delta E = (0.76 - 0.57)/0.57 = 0.33 = 33\%$

ISTITUZIONAL APPROACH

PARTICIPATORY IRRIGATION MANAGEMENT (PIM)

- Involvement of irrigation users in all aspects and at all levels of irrigation management.
- Transfer of irrigation systems from public organizations (Gov'ts) to WUAs.

CONSORZIO DI BONIFICA OF CAPITANATA (Italy)

and maintenance)

- 1 Excavator

IMPORTANCE OF THE TRAINING: FROM THE CLASSROOM TO THE FIELD

EXTENSION SERVICE

WASTE OF FOOD = WASTE OF WATER.....

Drivers of Water Demand

1. Population Growth

Basic Water Needs

 $(<u>Liters d^{1} p^{-1})$ </u>
Drinking 2-4
Domestic 40-400
Food 1000-5000

On average, 1 Kcal per liter

4. Diet

Product	(liters per Kg)
Beef meet	15000
Sheep meet	10000
Pork meet	6000
Chicken me	et 2800
Eggs	4700
Cheese	5300
Milk	900
Cereals	1500
Fruit	1000
Legumes	1000

THE EXAMPLE OF THE APULIA REGION

- Population : 4.000.000 ab
- Surface : 20.000 Km2
- Calories requirement: 2000 kcal/ab/d
- Media: 1 kcal = 1 litro acqua (stima FAO, 2010)
- In the world an average of 30% of food is wasted. Therefore, in
- terms of (virtual) water, in Puglia the waste is (on average):
- 2000 l/ab/d x 0.30 = 600 l/ab/d
- 600 x 4.000.000 : 1000 = 2.400.000 m3/d
- 2.400.000 x 365 = 876.000.000 m3/anno

EQUAL TO THE ENTIRE IRRIGATION REQUIREMENT OF CROPS IN APULIA !!

THANK YOU

