IPM of Date Palm Insect Pests and Diseases

Training Course

Statistical Designs and Analysis of IPM data of Date Palm Pests
(Basics, RCBD and Incomplete Block Designs)

Name: Khaled AI-Shamaa
 Date: 28 February 2017
 Venue: Muscat, Oman

Citation: Khaled Al-Shamaa (2017). Statistical Designs and Analysis of IPM data of Date Palm Pests (Basics, RCBD and Incomplete Block Designs). IPM of Date Palm Insect Pests and Diseases Training Course, 28 Feb 2017, Muscat, Oman. BSS/DDG-R, ICARDA, Amman. 24 slides.

Fisher's Principles of Experimentation

The 3 " R 's"

- Randomization
- Replication
- Local Control (Reduce noise)

Sir Ronald Fisher

Randomized Complete Block Design (RCBD)

Fertility gradient

- Randomization

Representative unbiased responses.

- Replication

No replication, no estimation of experimental error.

$$
S E(\text { mean })=\frac{\sigma}{\sqrt{r}}
$$

- Local Control

Homogeneity at design stage.

High	Medium	Low
Rep 1	Rep 2	Rep 3
1	6	2
	3	5
	1	6
	4	1
	2	4
6	5	3

Randomization Test

List numbers from 1 to 12 in random order!

Sample vs. Replication

- Experimental Unit Definition

Smallest division of experimental area such that any two units may receive different treatments.

For example, plots but not samples in a plot (e.g. dates sampled to get average weight).

CRD, RCBD, and Alpha Designs

$$
\text { Response }=\mu+\tau+\xi
$$

(CRD)

$$
\text { Response }=\mu+\tau+\pi+\xi
$$

(RCBD)

Response $=\mu+\tau+\pi+\beta+\xi$

μ) grand mean
τ) effect of treatments
π) effect of replicates
(Alpha)

β) effect of blocks
§) experimental error

Replication vs. Block

- Replication:
"Experimental units represents all treatment levels"
- Block:
"Homogeneous group of experimental units"

In $\underline{R C B}$ Design, Replication = Block

In Alpha Design, Replication > Block

What is the Right Block Size?

Do NOT ask biometrician that question! It is constrained by the physical arrangement of plots in the field, for example:

- Total number of treatments
- Field homogeneity
- Plot size

- Field layout (i.e. rows \& columns)

Alpha Design Implementation (1)

Alpha Design Implementation (2)

Layout Information (1)

Layout Information (2)

Rep	Block	Col	Row	Plot
1	1	1	1	1
1	1	1	$:$	$:$
1	1	1	6	6
1	2	1	7	7
1	2	1	$:$	$:$
1	2	1	12	12
1	3	2	12	13
1	3	2	$:$	$:$
1	3	2	7	18
1	4	2	6	19
1	4	2	$:$	$:$
1	4	2	1	24

Meta Data

- Experiment name
- Description
- Coordinator name
- Coordinator institute
- Coordinator contact information
- Location
- Province (state)
- Country
- Latitude
- Longitude

- Crop / genotypes
- List of treatments
- Season and cycle
- Experiment design
- Total number of entries
- Total number of plots
- Number of replications
- Block size (plots per block)
- Number of rows
- Number of columns

Excel - Generate RCB Design

Excel - Generate RCB Design (continue)

	A	B	C
1	Treatment	Order	Plot
2	Pesticides E	0.07183	1
3	Pesticides A	0.27052	2
4	Pesticides F	0.35682	3
5	Pesticides H	0.61784	4
6	Pesticides B	0.63138	5
7	Pesticides G	0.87106	6
8	Pesticides C	0.87696	7
9	Pesticides D	0.89878	8

	A	B	C
1	Treatment	Rep	Plot
2	Pesticides E	1	1
3	Pesticides A	1	2
4	Pesticides F	1	3
5	Pesticides H	1	4
6	Pesticides B	1	5
7	Pesticides G	1	6
8	Pesticides C	1	7
9	Pesticides D	1	8

GenStat - Generate RCB Design

GenStat - Generate RCB Design (continue)

曲 Spreadsheet [Book;1]				\square 回	X
Row	PlotNo	Rep	Plot	1 Treatment	†
1	11	1	1	1	1 -
2	12	1	2	5	5
3	13	1	3	3	3
4	14	1	4	8	8
5	15	1	5	4	4
6	16	1	6	6	6
7	17	1	7	7	7
8	18	1	8	2	2
9	21	2	1	6	6
10	22	2	2	5	5
11	23	2	3	3	3
12	24	2	4	8	8
13	25	2	5	4	4
14	26	2	6	2	2
15	27	2	7	1	1
16	28	2	8	7	7
17	31	3	1	3	3
18	32	3	2	5	5
? ${ }^{\text {P/V}}$		1		III	

GenStat - Generate Alpha Design

GenStat - Generate Alpha Design (continue)

- How many blocks in each replicate? 6
- How many replicates? 3
- What would you like to call the treatment factor? Treatments
- What would you like to call the replicates factor? Replicates
- What would you like to call the block factor? Blocks
- What would you like to call the unit-within-block factor? Plots
- Seed for randomization (-1 for none)? 25185
- Do you want to print the generator for the design? No
- Do you want to print the design? Yes

GenStat - Generate Alpha Design (continue)

GenStat - Generate Alpha Design (continue)

GenStat - Generate Alpha Design (continue)

Thank You

Questions?

Japanese attitude for work:

If one can do it, I can do it. If no one can do it, I must do it.

Middle Eastern attitude for work:
Wallahi... if one can do it, let him do it.
If no one can do it, ya-habibi how can I do it?

Statistical Details (Skip if you’d like)

$$
\begin{array}{ll}
x_{1}, x_{2}, \ldots, x_{n} & \sim N\left(\mu, \sigma^{2}\right) \\
\bar{x}=\frac{\sum x_{i}}{n} & \\
\operatorname{Var}(x)=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n} & \\
S D(x)=\sigma=\sqrt{\operatorname{Var}(x)} & \\
Z_{i}=\frac{x_{i}-\bar{x}}{S D(x)} & \sim N(0,1) \\
t=\frac{\bar{x}-\mu}{S D(x) / \sqrt{n}} & \sim t(n-1)
\end{array}
$$

