#### IPM of Date Palm Insect Pests and Diseases Training Course

Statistical Designs and Analysis of IPM data of Date Palm Pests (Basics, RCBD and Incomplete Block Designs)

Name: Khaled Al-Shamaa

Date: 28 February 2017

Venue: Muscat, Oman

*Citation*: Khaled Al-Shamaa (2017). Statistical Designs and Analysis of IPM data of Date Palm Pests (Basics, RCBD and Incomplete Block Designs). IPM of Date Palm Insect Pests and Diseases Training Course, 28 Feb 2017, Muscat, Oman. BSS/DDG-R, ICARDA, Amman. 24 slides.



#### **Fisher's Principles of Experimentation**



#### Sir Ronald Fisher



## Randomized Complete Block Design (RCBD)

#### Randomization

Representative unbiased responses.

Replication

No replication, no estimation of experimental error.

$$SE(mean) = \frac{\sigma}{\sqrt{r}}$$

Local Control

Homogeneity at design stage.





#### *List numbers from 1 to 12 in random order!*





#### Sample vs. Replication

• Experimental Unit Definition

Smallest division of experimental area such that any two units may receive different treatments.

For example, plots but not samples in a plot (e.g. dates sampled to get average weight).

Replications Samples



#### CRD, RCBD, and Alpha Designs





ξ) experimental error



#### • *Replication:*

"Experimental units represents all treatment levels"

• Block:

"Homogeneous group of experimental units"

# In <u>RCB</u> Design, Replication = Block

### In <u>Alpha</u> Design, Replication > Block



Do **NOT** ask biometrician that question! It is constrained by the physical arrangement of plots in the field, for example:

- Total number of treatments
- Field homogeneity
- Plot size
- Field layout (i.e. rows & columns)







## **Alpha Design Implementation (1)**

| Rep | Block | Plot | Rep 1         Rep 2           1         1 |
|-----|-------|------|-------------------------------------------|
| 1   | 1     | 1    | 2                                         |
| 1   | 1     | •    | 3 Rep 1 Rep 2<br>4 1 Rep 2                |
| 1   | 1     | 6    | 5<br>6 3 3                                |
| 1   | 2     | 7    |                                           |
| 1   | 2     | :    | 6                                         |
| 1   | 2     | 12   | 7 8                                       |
| 1   | 3     | 13   | 9 Rep 1 Re 10                             |
| 1   | 3     | •    | 1                                         |
| 1   | 3     | 18   |                                           |
| 1   | 4     | 19   | 5                                         |
| 1   | 4     | :    | 6<br>7                                    |
| 1   | 4     | 24   | 8     2     3     4     5     6           |



#### Alpha Design Implementation (2)







#### Layout Information (1)





# Layout Information (2)



| Rep | Block | Col | Row | Plot |
|-----|-------|-----|-----|------|
| 1   | 1     | 1   | 1   | 1    |
| 1   | 1     | 1   | :   | :    |
| 1   | 1     | 1   | 6   | 6    |
| 1   | 2     | 1   | 7   | 7    |
| 1   | 2     | 1   | •   | :    |
| 1   | 2     | 1   | 12  | 12   |
| 1   | 3     | 2   | 12  | 13   |
| 1   | 3     | 2   | :   | :    |
| 1   | 3     | 2   | 7   | 18   |
| 1   | 4     | 2   | 6   | 19   |
| 1   | 4     | 2   | •   | :    |
| 1   | 4     | 2   | 1   | 24   |



#### Meta Data

- Experiment name
- Description
- Coordinator name
- Coordinator institute
- Coordinator contact information
- Location
- Province (state)
- Country
- Latitude
- Longitude





- List of treatments
- Season and cycle
- Experiment design
- Total number of entries
- Total number of plots
- Number of replications
- Block size (plots per block)
- Number of rows
- Number of columns





## **Excel - Generate RCB Design**

|   | А            |      | В            |         |        |              |               |       |                                                                       |
|---|--------------|------|--------------|---------|--------|--------------|---------------|-------|-----------------------------------------------------------------------|
| 1 | Treatment    | Orde | er           |         |        |              |               |       |                                                                       |
| 2 | Pesticides A | =RAI | ND()         |         |        |              |               |       |                                                                       |
| 3 | Pesticides B | B2   | - : >        | fx      | =RAN   | ID()         |               |       |                                                                       |
| 4 | Pesticides C |      | ^            | 0       |        | <u> </u>     |               |       |                                                                       |
| 5 | Pesticides D | -    | A            | B       | (      | С            |               |       |                                                                       |
| 6 | Pesticides E |      | Treatment    | Order   | FIL    | E HOME INSE  | RT PAGE LAY   |       | FORMULAS DATA                                                         |
| 7 | Pesticides F |      | Pesticides A | 0.88311 |        |              |               |       |                                                                       |
| 8 | Pesticides G |      | Pesticides B | 0.89088 | Get Ex |              | Z             |       | To Reapply                                                            |
| 9 | Pesticides H |      | Pesticides C | 0.58081 | Dat    |              | t Links       | Sort  | Filter V Advanced                                                     |
|   |              | _    | Pesticides D | 0.23668 |        | Connect      |               |       | Sort & Filter                                                         |
|   |              | 6    | Pesticides E | 0.10171 | B1     |              | $\sim \sim 1$ |       | nallest to Largest<br>to highest.                                     |
|   |              | 7    | Pesticides F | 0.79184 |        | А            | D             |       | me more                                                               |
|   |              | 8    | Pesticides G | 0.41665 | 1      | Treatment    | Order         | g rei | me more                                                               |
|   |              | 9    | Pesticides H | 0.79723 | 2      | Pesticides A | 0.8831        | .1 (  | Sort Warning                                                          |
|   |              | 10   |              |         | 3      | Pesticides B | 0.8908        | 8     | Microsoft Excel found data next to your selection. Since you have not |
|   |              |      |              |         | 4      | Pesticides C | 0.5808        | 1     | selected this data, it will not be sorted.<br>What do you want to do? |
|   |              |      |              |         | 5      | Pesticides D | 0.2366        | 8     | © Expand the selection                                                |
|   |              |      |              |         | 6      | Pesticides E | 0.1017        | '1    | © <u>C</u> ontinue with the current selection                         |
|   |              |      |              |         | 7      | Pesticides F | 0.7918        |       | <u>S</u> ort Cancel                                                   |
|   |              |      |              |         | 8      | Pesticides G | 0.4166        |       |                                                                       |
|   |              |      |              |         | 9      | Pesticides H | 0.7972        | 3     |                                                                       |
|   |              |      |              |         |        |              |               |       |                                                                       |



|   | А            | В       | С    |
|---|--------------|---------|------|
| 1 | Treatment    | Order   | Plot |
| 2 | Pesticides E | 0.07183 | 1    |
| 3 | Pesticides A | 0.27052 | 2    |
| 4 | Pesticides F | 0.35682 | 3    |
| 5 | Pesticides H | 0.61784 | 4    |
| 6 | Pesticides B | 0.63138 | 5    |
| 7 | Pesticides G | 0.87106 | 6    |
| 8 | Pesticides C | 0.87696 | 7    |
| 9 | Pesticides D | 0.89878 | 8    |

|   | А            | В   | С    |
|---|--------------|-----|------|
| 1 | Treatment    | Rep | Plot |
| 2 | Pesticides E | 1   | 1    |
| 3 | Pesticides A | 1   | 2    |
| 4 | Pesticides F | 1   | 3    |
| 5 | Pesticides H | 1   | 4    |
| 6 | Pesticides B | 1   | 5    |
| 7 | Pesticides G | 1   | 6    |
| 8 | Pesticides C | 1   | 7    |
| 9 | Pesticides D | 1   | 8    |



#### **GenStat – Generate RCB Design**

| Genstat                    |                   |                       |       |                                        |
|----------------------------|-------------------|-----------------------|-------|----------------------------------------|
| File Edit View Run Data Sp | oread Graphics St | ats Tools Window Help |       |                                        |
| 🖹 💕 📕 🍮 👗 🛍 🛍              | 🤊 (° 🛛 🗶 🛛        | Summary Statistics    | - F 📮 | 3 🐨   🛄   🛛                            |
| 🐚 🚳 📴 🏋 🖉 🕅                | H 🕼 🎎 🔢           | Statistical Tests     | ►     | 98 tal   🎫 🎟 🖼 🏶   🖬 🖷 📾               |
| Data                       |                   | Distributions         |       |                                        |
| All Data                   |                   | Regression Analysis   |       |                                        |
|                            |                   | Design                |       | Generate a Standard Design             |
| 🗈 🛅 Matrices               |                   | Analysis of Variance  | +     | Generate a Factorial Design in Blocks  |
| Scalars                    |                   | Mixed Models (REML)   | •     | Generate a Fractional Factorial Design |
| Tables<br>Pointers         |                   | Multivariate Analysis | •     | Generate a Covariate Design            |
| • Other Types              |                   | Six Sigma             | •     | Select Design                          |
|                            |                   | Survey Analysis       | •     | Generate Factors in Standard Order     |
|                            |                   | Time Series           | •     | Randomize                              |
|                            |                   | Spatial Analysis      | • • T |                                        |



| C Genera               | te a Standard Design    |                       | - • •             |
|------------------------|-------------------------|-----------------------|-------------------|
| Design:                | One-way Design (in Ran  | domized Blocks) 🛛 🔓   | ▼                 |
| Design Facl<br>Blocks: | ior                     | Name                  | -Number of Levels |
| Units within           | blocks:                 | Plot                  | ]                 |
| Treatment fa           | actor:                  | Treatment             | 8                 |
|                        |                         |                       |                   |
| Options                |                         | Replications required | Check Power       |
| 📝 Randor               | nize design             | Number of Units:      | 24                |
| 📝 Display              | design in a spreadsheet | Randomization Seed:   | 8575              |
| P 🖸                    | X 🛛 Run                 | Cancel Option         | is Defaults       |

| Row | PlotNo | Rep | Plot | Treatment | T+ |
|-----|--------|-----|------|-----------|----|
| 1   | 11     | 1   | 1    | 1         | Ľ. |
| 2   | 12     | 1   | 2    | 5         |    |
| 3   | 13     | 1   | 3    | 3         |    |
| 4   | 14     | 1   | 4    | 8         |    |
| 5   | 15     | 1   | 5    | 4         |    |
| 6   | 16     | 1   | 6    | 6         |    |
| 7   | 17     | 1   | 7    | 7         |    |
| 8   | 18     | 1   | 8    | 2         |    |
| 9   | 21     | 2   | 1    | 6         |    |
| 10  | 22     | 2   | 2    | 5         |    |
| 11  | 23     | 2   | 3    | 3         |    |
| 12  | 24     | 2   | 4    | 8         |    |
| 13  | 25     | 2   | 5    | 4         |    |
| 14  | 26     | 2   | 6    | 2         |    |
| 15  | 27     | 2   | 7    | 1         |    |
| 16  | 28     | 2   | 8    | 7         |    |
| 17  | 31     | 3   | 1    | 3         |    |
| 18  | 32     | 3   | 2    | 5         |    |
| ? 🔽 |        | •   |      |           | •  |



#### **GenStat – Generate Alpha Design**

|                                                                                                     | Data     Spread     Graphics     Stats     Tools     Window     Help       Image: State |                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data<br>All Data<br>All Data<br>Cectors<br>Matrices<br>Scalars<br>Tables<br>Pointers<br>Other Types | Which type of design would you like to generate?<br>Orthogonal designs (randomized blocks, split-plots etc)<br>Complete or fractional factorials (with confounded interactions)<br>Factorial designs from a repertoire (with confounded interactions)<br>fractional factorial designs from a repertoire (with blocking)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>complete and quasi-complete Latin squares</li> <li>alpha designs</li> <li>cyclic designs</li> <li>balanced-incomplete-blocks</li> <li>neighbour designs</li> </ul> |
| How many 1<br>24                                                                                    | reatments are there (20 to 100)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C       central composite designs         Box-Behnken designs       Plackett Burman (main effect) designs         OK       Help       Exit                                  |
|                                                                                                     | OK Help Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                             |

- How many blocks in each replicate? 6
- How many replicates? 3
- What would you like to call the treatment factor? Treatments
- What would you like to call the replicates factor? **Replicates**
- What would you like to call the block factor? **Blocks**
- What would you like to call the unit-within-block factor? **Plots**
- Seed for randomization (-1 for none)? **25185**
- Do you want to print the generator for the design? No
- Do you want to print the design? Yes



| Wir      | idow Help         |               | _ |                                                                         |         |         |         |          |         |          |      |  |  |  |
|----------|-------------------|---------------|---|-------------------------------------------------------------------------|---------|---------|---------|----------|---------|----------|------|--|--|--|
|          | Close All         |               | ? | )                                                                       |         |         |         |          |         |          |      |  |  |  |
|          | Cascade           |               | ł | Output                                                                  |         |         |         |          |         |          |      |  |  |  |
|          | Tile Horizontally | Alt+Shift+F4  | ſ |                                                                         |         |         |         |          |         |          |      |  |  |  |
|          | Tile Vertically   | Shift+F4      | H |                                                                         |         |         |         |          |         |          |      |  |  |  |
|          | Attach to Frame   | Ctrl+Shift+J  | I | 80 DELETE [REDEFINE=yes] _statement<br>81 DESIGN [STATEMENT=_statement] |         |         |         |          |         |          |      |  |  |  |
|          | Hide              |               | I | Treat                                                                   | mente   | on eacl |         | uit o    | f th    | e de     | sian |  |  |  |
|          | Next              | Ctrl+F6       | I | Inea                                                                    | ments   | Un eaci | i ui    |          |         | e ue     | sign |  |  |  |
|          | Previous          | Ctrl+Shift+F6 | I |                                                                         |         | Plots   | 1       | 2        | 3       | 4        |      |  |  |  |
|          | Graphics          | Alt+0         | I | Rep                                                                     | licates | Blocks  | -       |          |         |          |      |  |  |  |
| <b>v</b> | 1 Output          |               |   |                                                                         | 1       | 1       | 10<br>1 | 16<br>7  | 12<br>6 | 8<br>19  |      |  |  |  |
|          | 2 Input Log       |               | 1 |                                                                         |         | 3       | 21      | 22       | 4       | 11       |      |  |  |  |
|          | 3 Event Log       |               | I |                                                                         |         | 4<br>5  | 18<br>3 | 24<br>15 | 2<br>23 | 14<br>13 |      |  |  |  |
|          | 4 Start Page      |               | I |                                                                         |         | 6       | 5       | 20       | 17      | 9        |      |  |  |  |
|          | Windows           |               | I |                                                                         | 2       | 1       | 8<br>2  | 7<br>16  | 13<br>1 | 17<br>21 |      |  |  |  |
|          |                   |               |   |                                                                         |         | 3       | 18      | 20       | 3       | 10       |      |  |  |  |
|          |                   |               |   |                                                                         |         | 4<br>5  | 19<br>4 | 12<br>24 | 23<br>5 | 11<br>6  |      |  |  |  |
|          |                   |               |   |                                                                         |         | 6       | 14      | 15       | 9       | 22       |      |  |  |  |
|          |                   |               |   |                                                                         | 3       | 1<br>2  | 7<br>11 | 3<br>8   | 4<br>14 | 16<br>6  |      |  |  |  |
|          |                   |               |   |                                                                         |         | 2       | 24      | 12       | 14      | 17       |      |  |  |  |
|          |                   |               |   |                                                                         |         | 4<br>5  | 5<br>23 | 18<br>1  | 21<br>9 | 13<br>10 |      |  |  |  |
|          |                   |               |   |                                                                         |         | 5       | 23      | 1        | 9       | 10       |      |  |  |  |



| Spread Graphics Stats Tools Window | Help            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New •                              | Create Ctrl+F10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                    |                 | Coad Spreadsheet Vector (Variate, Text or Factor) Variate Tables in column format Data to Load: Blocks Plots Plots Treatments Vector Plots Vector Plots Treatments Vector Plots Vector Plots Vector Plots Treatments Vector Plots Vector |
|                                    |                 | New Book                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



| 🛄 Sp | readsheet [Boo | k;1]   |       |            | ĸ | ľ | Dutput       |                 |          |          |          |          |      | 83 |
|------|----------------|--------|-------|------------|---|---|--------------|-----------------|----------|----------|----------|----------|------|----|
| Row  | Replicates     | Blocks | Plots | Treatments | ± |   | Treatments o | n each          | ามท      | it o     | f th     | e desi   | ian  | ~  |
| 1    | 1              | 1      | 1     | 10         |   |   |              | in each         |          |          |          | 0 400    | ·9·· |    |
| 2    | 1              | 1      | 2     | 16         |   |   |              |                 |          |          |          |          |      |    |
| 3    | 1              | 1      | 3     | 12         |   |   | Replicates   | Plots<br>Blocks | 1        | 2        | 3        | 4        |      |    |
| 4    | 1              | 1      | 4     | 8          |   |   | 1            | 1               | 10       | 16       | 12       | 8        |      |    |
| 5    | 1              | 2      | 1     | 1          |   |   |              | 2               | 1        | 7        | 6        | 19       |      |    |
| 6    | 1              | 2      | 2     | 7          | = |   |              | 3               | 21<br>18 | 22<br>24 | 4        | 11<br>14 |      |    |
| 7    | 1              | 2      | 3     | 6          |   |   |              | 5               | 3        | 15       | 23       | 13       |      | =  |
| 8    | 1              | 2      | 4     | 19         |   |   |              | 6               | 5        | 20       | 17       | 9        |      |    |
| 9    | 1              | 3      | 1     | 21         |   |   | 2            | 1               | 8<br>2   | 7<br>16  | 13<br>1  | 17<br>21 |      |    |
| 10   | 1              | 3      | 2     | 22         | μ |   |              | 3               | 18       | 20       | 3        | 10       |      |    |
| 11   | 1              | 3      | 3     | 4          |   |   |              | 4               | 19       | 12       | 23       | 11       |      |    |
| 12   | 1              | 3      | 4     | 11         |   |   |              | 5               | 4<br>14  | 24<br>15 | 5<br>9   | 6<br>22  |      |    |
| 13   | 1              | 4      | 1     | 18         |   |   | 3            | 1               | 7        | 3        | 4        | 16       |      |    |
| 14   | 1              | 4      | 2     | 24         |   |   |              | 2<br>3          | 11<br>24 | 8<br>12  | 14<br>15 | 6<br>17  |      |    |
| 15   | 1              | 4      | 3     | 2          |   |   |              | 4               | 5        | 18       | 21       | 13       |      |    |
| 16   | 1              | 4      | 4     | 14         |   |   |              | 5               | 23       | 1        | 9        | 10       |      |    |
| 17   | 1              | 5      | 1     | 3          |   |   |              | 6               | 2        | 20       | 22       | 19       |      | Ŧ  |



# **Thank You**

# **Questions?**



#### Japanese attitude for work:

If one can do it, I can do it. If no one can do it, I must do it.

#### Middle Eastern attitude for work:

Wallahi... if one can do it, let him do it. If no one can do it, ya-habibi how can I do it?



#### Statistical Details (Skip if you'd like)

 $\sim N(\mu, \sigma^2)$  $x_1, x_2, \dots, x_n$  $\bar{x} = \frac{\sum x_i}{\sum x_i}$  $Var(x) = \frac{\sum (x_i - \bar{x})^2}{n}$  $SD(x) = \sigma = \sqrt{Var(x)}$  $Z_i = \frac{x_i - x}{SD(x)}$  $\sim N(0,1)$  $t = \frac{x - \mu}{SD(x)/\sqrt{n}}$  $\sim t(n-1)$ 



