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Abstract

Great progress has been made over recent years in the identification of selection signatures in the genomes of livestock species. This

work has primarily been carried out in commercial breeds for which the dominant selection pressures are associated with artificial

selection. As agriculture and food security are likely to be strongly affected by climate change, a better understanding of

environment-imposed selection on agricultural species is warranted. Ethiopia is an ideal setting to investigate environmental adap-

tation in livestock due to its wide variation in geo-climatic characteristics and the extensive genetic and phenotypic variation of its

livestock. Here, we identified over three million single nucleotide variants across 12 Ethiopian sheep populations and applied

landscape genomics approaches to investigate the association between these variants and environmental variables. Our results

suggest that environmental adaptation for precipitation-related variables is stronger than that related to altitude or temperature,

consistent with large-scale meta-analyses of selection pressure across species. The set of genes showing association with environ-

mental variables was enriched for genes highly expressed in human blood and nerve tissues. There was also evidence of enrichment

for genes associated with high-altitude adaptation although no strong association was identified with hypoxia-inducible-factor (HIF)

genes. One of the strongest altitude-related signals was for a collagen gene, consistent with previous studies of high-altitude

adaptation. Several altitude-associated genes also showed evidence of adaptation with temperature, suggesting a relationship

between responses to these environmental factors. These results provide a foundation to investigate further the effects of climatic

variables on small ruminant populations.
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Introduction

Over the last 20 years, livestock geneticists have exploited the

development of genomic tools and resources to identify

regions of the genome showing evidence of selection. The

design of these experiments and the choice of breeds has

resulted in a focus on identification of signatures primarily

related to artificial selection in commercial breeds (Gutierrez-

Gil et al. 2015; Randhawa et al. 2016). However, over the

same period, concern has been rising regarding the effects of

climate change on agriculture, indicating that a better un-

derstanding of natural selection on livestock genomes is nec-

essary. As genomic signatures of human-imposed selection

tend to dominate over those from environmental selection in

high-production breeds, focusing on native breeds may be

more informative in this regard (Biscarini et al. 2015).

Characterizing environmental adaptation in plants and

animals has traditionally been an expensive and time-

consuming endeavor, requiring large-scale experiments car-

ried out over a range of environmental conditions. Such

experiments are generally prohibitively expensive and chal-

lenging to carry out for non-model organisms with long gen-

eration times. However, the development of global climate

data sets (Fick and Hijmans 2017) now provide detailed cli-

matic information from across the world, allowing an indirect

approach for studying genetic adaptation to environmental

factors. Thus, locations where organisms are found can be

used as proxies for environmental adaptation phenotypes.

This “landscape genomics” approach (Manel et al. 2003)

was initially mainly applied to wild species but can also be

applied to livestock (Bertolini et al. 2018; Flori et al. 2019;

Joost et al. 2008), with the additional complication that the

location of particular livestock genotypes is influenced by

both natural and human-directed forces.

To apply such an approach to the study of environmental

adaptation in livestock, the ideal experimental design would in-

volve sampling of animals adapted to a range of climatic con-

ditions. Ethiopia is characterized by a range of related

environmental conditions, varying widely in rainfall (long-term

average annual levels: <500–2000mm; Gebrechorkos et al.

2019) and altitude (�125 to 4550m; Central Intelligence

Agency 2021) and also varying in daily and seasonal tempera-

ture (Gebrechorkos et al. 2019). Seasonal rainfall in Ethiopia is

influenced by large-scale climatic variability, including the El Ni~no

Southern Oscillation (ENS), Indian Ocean Dipole (IOD), and mi-

gration of the Inter-Tropical Convergence Zone (ITCZ), leading to

changes in the timing and length of the rainy season(s) between

years and resulting in frequent droughts and flooding

(Gebrechorkos et al. 2019; McSweeney et al. 2010a, 2010b).

Ethiopia makes up the greater part of the “Horn of Africa,”

which is thought to have been a gateway of introduction of

both cattle and sheep from the Middle East into Africa, resulting

in extensive genetic diversity of native livestock (Edea et al. 2017;

Muigai and Hanotte 2013). Sheep are distributed across most

eco-environments in the country and there is marked genetic

and phenotypic differentiation between populations (Ahbara

et al. 2019; Edea et al. 2019; Gizaw et al. 2007). Currently,

the Ethiopian livestock sector constitutes a substantial compo-

nent of the economy and sustains most family farms (FAO 2014,

2018). While cattle make up the largest part of the sector, sheep

production is also an important component of livestock farming;

approximately a third of smallholder farmers own sheep

(Negassa and Jabbar 2008) and they provide a range of products

(meat, milk, skin, manure). Sheep have been the target of recent

community-based breeding strategies (Haile et al. 2013; Recha

et al. 2019) due to their affordability to subsistence farmers, their

tendency to be cared for by women and children and their

greater adaptation to marginal environments.

This study exploits the existing distribution of Ethiopian indig-

enous sheep across a range of agro-ecological and climatic con-

ditions to examine the genetic basis of environmental adaption.

By performing whole-genome sequencing (WGS), we gener-

ated dense genotypic data for 12 populations across the coun-

try. We then used landscape genomic approaches to examine

associations between genetic markers and environmental meas-

ures. This allowed us to determine which measures potentially

show the strongest evidence of environmental selective pressure

on the sheep genome and associated candidate genes.

Results

To investigate environmental adaptation between sheep pop-

ulations, we analyzed WGS data, at a mean coverage of 54X,

for 94 animals across 12 Ethiopian locations and environmen-

tal conditions (table 1, fig. 1).

Significance

A better understanding of environmental adaptation in native livestock breeds will inform breeding and management

strategies and may aid in facilitating greater production efficiency without excessive reliance on external inputs. This

study exploited the genetic and phenotypic diversity of livestock from a single country (Ethiopia), with extensive

variation in agro-ecological characteristics, to investigate environmental adaptation. This experimental approach is

likely to reduce the detection of false positive results that can arise in selection scans due to the role of nonselective

demographic factors. Based on the analysis of �100 local sheep genomes collected across different agro-ecological

zones in Ethiopia, this study found stronger evidence of adaptation driven by precipitation levels compared to that

associated with temperature or altitude, suggesting that rainfall is an important selective pressure on Ethiopian sheep.
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Relationships Between Sheep Populations

A previous study characterized the genetic relationships be-

tween the Ethiopian sheep populations (with the exception of

one population, Segentu) and two Sudanese breeds (not in-

cluded in the current study), based on data from the Ovine

50 K SNP BeadChip (Ahbara et al. 2019). Analysis of genetic

structure by Admixture and PCA revealed genetic differentia-

tion between populations; the Admixture results supported

four genetic clusters (one of which was strongly associated

with the Sudanese breeds). The structure was related to geo-

graphical region and, to some extent, tail phenotypes (i.e.,

long or short fat tail and fat rump) of the populations. To

further investigate the genetic relationships between the

Ethiopian populations, we performed PCA based on the

WGS data, both with and without a Libyan population

(LBR), treated as an outgroup (fig. 2a and b). The pattern

was very similar to that derived from the Ahbara et al.

(2019) study. Again, the populations were separated geo-

graphically, with PC1 associated with the west-east gradient,

such that the right-hand-side of the plots are associated with

more easterly locations. The Segentu population (new to this

study) clustered tightly with the geographically nearby Kefis

population, within the group of more eastern Ethiopian pop-

ulations (Adane, Arabo, Menz, Kefis, identified as Cluster C by

Ahbara et al. (2019)), which is composed of both high- and

low-altitude populations. This group of populations (with the

exception of Kefis and Segentu) showed differentiation along

the PC2 axis of the PCA with only the Ethiopian populations

(fig. 2b). In addition, as for Kefis and Segentu, the Gesses and

Kido populations were not separated by either PCA (with and

without LBR). For both analyses, the first two principal

components accounted for 14% and 8% of the variation,

respectively. We also calculated pairwise FST for the 13 pop-

ulations (supplementary table S1, supplementary fig. S1,

Supplementary Material online), which supported the results

of the PCA such that the populations generally showed lower

differentiation from those located nearby than those further

away (e.g. within and between eastern and western loca-

tions). The greatest differentiation was found between the

Libyan population and individual Ethiopian populations. Of

the Ethiopian populations, Bonga was the most differentiated

from the others. A neighbor-joining phylogenetic tree based

on Identity-by-State (IBS) estimates between all individuals

(supplementary fig. S2, Supplementary Material online) fur-

ther supports the relationships between populations.

Environmental Covariates

To clarify the relationships between environmental variables

across the Ethiopian study sites, we performed another PCA

(fig. 3; scree plot shown in supplementary fig. S3,

Supplementary Material online). The first component

explained 47% of the variation, which was associated primar-

ily with temperature and altitude such that lower temperature

and higher altitude were associated with positive PC1 values.

The second principal component accounted for 26% of the

variation and was associated with precipitation and seasonal-

ity such that higher rainfall and lower seasonality were asso-

ciated with negative PC2 values. PC3 accounted for 18% of

the variation and was also associated with precipitation, such

that higher values of rainfall in cold/wet periods were associ-

ated with positive values of PC3. One notable point is that the

Gesses and Kido sampling locations were separated in the

FIG. 1.—Altitude-coded map of Ethiopia with 12 sampling locations indicated.

WGS Data Suggests Adaptation in Sheep GBE
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PCA despite geographic proximity because they differed sub-

stantially in Elevation and Precipitation of Coldest Quarter

measures, due to highly variable local conditions in this region

of Ethiopia.

Signatures of Environmental Adaptation

Our investigation of the genomic basis of environmental ad-

aptation involved two approaches: (1) specifically regarding

high-altitude adaptation, we assessed genetic differentiation

between related populations sampled at high and low altitude

and (2) considering various environmental factors, we

employed an analysis that tests for associations between allele

frequencies and environmental variables, as estimated by cli-

matic information of GPS locations. This procedure allowed us

to specifically test for environmental adaptation, in contrast to

other more general approaches to selection mapping that

detect signatures that could be due to various effects, e.g.

human-imposed selection, as is likely to be important for live-

stock. Regarding approach (1), we performed a population-

branch statistic (PBS) analysis (Yi et al. 2010), which identifies

population-specific allele frequency changes in the high-

altitude group of populations (fig. 4) and has been previously

applied to examine high-altitude adaptation in humans (Yi

et al. 2010) as well as other traits (Fumagalli et al. 2015). As

described by Yi et al. (2010), this test relies on comparison of

closely-related populations, thus we restricted our analysis to

five populations (Adane, Arabo, Menz, Kefis, Segentu), which

form the eastern cluster (with high PC1 and PC2 values in

fig. 2a) and include both high- and low-altitude locations (FST

between pooled low- and high-altitude populations¼ 0.027).

Regarding approach (2) we applied a Bayesian Environmental

Association Analysis (Baypass) (Gautier 2015), to detect

environment-driven allele frequency differences between

populations. Baypass results were run 100 times for each of

the 20 environmental measures and Bayes Factors (BFs) were

averaged across the 100 runs. The strength of associations

between genotype and environmental variables were com-

pared across these variables based on the number of markers

with high Bayes Factors (BF> 10) following stringent LD prun-

ing (fig. 5). The environmental trait with the greatest average

number of high average BF values was BIO16–Precipitation of

Wettest Quarter. Other traits with particularly high values

were also related to precipitation (BIO12–Annual

Precipitation, BIO13–Precipitation of Wettest Month, and

BIO18–Precipitation of Warmest Quarter).

Four environmental variables were selected for further

analysis to represent high and low values of the major com-

ponents of variation between the locations (fig. 3): altitude

(high PC1), BIO2 (Mean Diurnal Range, high PC2), BIO5

(Maximum Temperature of Warmest Month, low PC1),

BIO12 (Annual Precipitation, low PC2). We also examined

results for BIO16 (Precipitation of Wettest Quarter), which

had the greatest average count of high BF values.

To control for random variation at individual sites, means

and medians were also calculated for 9-SNP windows across

the genome. Thus, three sets of statistics were reported for

each of the 6 tests (PBS þ five Baypass tests: altitude, BIO2,

BIO5, BIO12, BIO16). These 18 statistics included raw values

(PBS raw, BF raw for each of the five Baypass tests), 9-SNP

window means (PBS mean, BF mean x 5) and 9-SNP window

medians (PBS median, BF median x 5). Manhattan plots show-

ing the values of these statistics across the genome are shown

in fig. 6 and supplementary figs. S4 (a–c) – S9 (a–c),

Supplementary Material online. The 56 protein-coding genes

directly overlapping the top 0.00001 proportion of SNPs for

PBS and Baypass (BF) statistics (table 2) are considered as

strong candidates subject to environmental adaptation (genes

located within 100 kb of the SNPs are listed in supplementary

table S2, Supplementary Material online). Genes directly

Table 1

Description of Ethiopian Sheep Populations

Population CODE Post-QC

sample size

Tail phenotype Horn phenotype Latitude Longitude Altitude (m) Average SNP

diversity

Adane AKD 8 Fat-rump Polled 11.1416 39.5 2,783 0.32

Arabo AKR 8 Fat-rump Polled 11.0904 39.5425 2,610 0.32

Bonga BO 10 Long fat-tailed Polled 7.16 36.15 1,949 0.28

Doyogena DA 10 Long fat-tailed Short and straight horn 7.211 37.4711 1,348 0.30

Kefis FKD 8 Fat-rump Polled 9.3044 40.16 740 0.32

Segentu FSG 4 Fat-rump Polled 9.1645 40.332 859 0.32

Gesses GGD 6 Long fat-tailed Polled 10.5032 36.1412 1,658 0.30

Kido KO 5 Long fat-tailed Polled 10.714 36.191 1,315 0.30

Loya LA 8 Long fat-tailed Short horned, curved upward 6.2947 38.2451 1,911 0.29

Menza MZ 10 Short fat-tailed Twisted horn 10.718 39.3939 2,668 0.31

Shubi Gemo SHG 8 Long fat-tailed Short and straight horn 8.838 38.5142 2,067 0.31

Washerab WA 9 Short fat-tailed Polled 11.3133 36.5422 1,177 0.30

aReferred to as Molale-Menz in Ahbara et al. (2019).
bReferred to as Gafera-Washera in Ahbara et al. (2019).
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overlapping the top 0.0001 and top 0.001 proportions of

SNPs for PBS and Baypass statistics were also recorded for

enrichment analyses, described below (supplementary table

S3, Supplementary Material online, gene names including

“ORF” were removed).

The 56 genes overlapping the top 0.00001 SNPs included

eight that were identified for more than one environmental

variable: BCAS3 (BIO12, BIO16), COL6A3 (PBS, altitude),

FHAD1 (altitude, BIO2, BIO5), GNA12 (altitude, BIO5),

KLF12 (altitude, BIO5), SEL1L3 (altitude, BIO5), SUSD4 (alti-

tude, BIO5) and ZNF407 (altitude, BIO5). Five of these genes

were identified by Baypass for both altitude and BIO5 (Max

Temperature of Warmest Month).

We used the Variant Effect Predictor Tool (VEPTools) to

predict the effect of the top 0.00001 SNPs across the 18 tests

(supplementary table S4, Supplementary Material online).

Only two SNPs were predicted to have “low,” “moderate,”

or “high” consequences on protein function. One SNP iden-

tified for PBS mean and PBS median values was predicted to

have a “high” consequence on protein function; this was a

splice acceptor variant in the SOX13 gene. In addition, a SNP

identified for the BF raw values for Baypass/BIO5 was pre-

dicted to have a moderate consequence on protein function;

this was a missense variant (SIFT score ¼ 0.61) in DOHH.

Forty-one SNPs were identified within noncoding lincRNAs,

associated with nine protein-coding genes (table 3, supple-

mentary table S4, Supplementary Material online). The num-

ber of these SNPs per environmental variable ranged from one

(for altitude and Baypass/BIO12) to 25 (for Baypass/BIO16).

Relationship to High-Altitude and Hypoxia-Response
Candidate Genes

In order to provide physiological interpretation for the above

results, we analysed the relationship between the genes iden-

tified by the PBS and Baypass/altitude analyses (both designed

to detect associations with high-altitude environments) and

genes previously associated with high-altitude adaptation or

response to hypoxia. Enrichment of 722 high-altitude candi-

date genes (compiled from published literature) was tested in

the genes overlapping the top 0.0001 and top 0.001 SNPs for

the PBS and Baypass/altitude analyses (supplementary table

S3, Supplementary Material online) (numbers of genes were

too small to assess enrichment for the top 0.00001 SNPs).

Genes were pooled for raw value, mean window value and

median window value for the respective analyses (table 4). All

four sets of results (top 0.001 and top 0.0001 for each PBS

and Baypass/altitude) showed enrichment for high-altitude

candidate genes, with the top 0.001 sets both significant

(p< 0.05) (while tests of the top 0.0001 SNPs were not sig-

nificant). The top 0.001 of Baypass/altitude results showed

the most significant enrichment (p¼ 2.031e-06, enrichment

2.02-fold). Regarding the overlapping genes, only one high-

altitude candidate gene, ARMC3, overlapped with top

0.00001 SNPs for either PBS or Baypass/altitude tests (top

0.00001 SNPs for PBS and also top 0.001 SNPs for Baypass/

altitude). Another candidate gene, PRDM16, overlapped with

top 0.0001 SNPS detected by both PBS and Baypass/altitude

tests. None of the 163 hypoxia-response candidate genes

overlapped with top 0.0001 (or thus top 0.00001) SNPs iden-

tified by PBS or Baypass/altitude. There were five hypoxia

FIG. 2.—PC1 versus PC2 for PCA of genomic data: (a) Ethiopian (ringed) and Libyan (LBR) sheep populations. (b) Only Ethiopian populations (most

eastern populations, used for PBS analysis, are ringed).

WGS Data Suggests Adaptation in Sheep GBE
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response candidate genes that overlapped with top 0.001

SNPs identified by PBS (3 genes) or Baypass/altitude (3), in-

cluding one (ITPR2) that was identified by both tests. In addi-

tion to ITPR2, these genes include FAM162A, GATA6,

GNGT1, and HIF3A.

Enrichment of Gene Ontology Terms and Differential

Expression across Tissues

In addition to assessing enrichment of high-altitude- and

hypoxia-related genes for the PBS and Baypass results, we

performed further enrichment investigations. Gene ontology

(GO) enrichment was tested in the complete (pooled) set of

genes overlapping the top 0.00001 SNPs for the PBS and

Baypass (all measures) results (i.e. those listed in table 2; sup-

plementary table S3, Supplementary Material online). These

were also evaluated in the genes overlapping the top 0.0001

and top 0.001 (supplementary table S3, Supplementary

Material online) SNPs for the individual PBS and Baypass

results (numbers of genes were too small to assess enrichment
FIG. 4.—Schematic showing rationale for Population Branch Statistic

(PBS) analysis (based on Yi et al. 2010).

FIG. 3.—PC1 versus PC2 for PCA of 20 environmental measures of 12 Ethiopian sampling locations.

Wiener et al. GBE
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for the top 0.00001 SNPs for individual tests). Differential

gene expression across 54 and 30 tissues was assessed for

the identified gene sets, based on GTEx RNA-seq data from

studies of humans.

For the pooled set of genes overlapping the top 0.00001

SNPs for any of the PBS or Baypass tests, eight biological

processes terms and three cellular component terms showed

significant enrichment (supplementary table S5,

Supplementary Material online). The biological processes

terms include “cell morphogenesis involved in neuron

differentiation,” “neuron development,” “netrin-activated

signaling pathway,” and “biological adhesion.” No molecular

function terms showed enrichment. Significant enrichment of

differential expression across tissues was also observed. In the

comparison of 54 tissues, three artery tissues and five nervous

system/brain tissues showed enrichment for up-regulated

DEGs and esophagus mucosa showed enrichment for

down-regulated DEGs. In the comparison of 30 tissues, nerve,

blood vessel and brain showed significant enrichment for up-

regulated differentially-expressed genes (DEGs).

FIG. 6.—Average (100 Baypass runs) of sliding window mean Bayes Factor values across the genome for Annual Precipitation (BIO12) measure.

Altitude
Annual Mean Temp

Mean Diurnal Range
Isothermality

Temp Seasonality
Max Temp Warmest Month

Min Temp Coldest Month
Temp Ann Range

Mean Temp Wettest Quarter
Mean Temp Driest Quarter

Mean Temp Warmest Quarter
Mean Temp Coldest Quarter

Annual Precip
Precip Wettest Month

Precip Driest Month
Precip Seasonality

Precip Wettest Quarter
Precip Driest Quarter

Precip Warmest Quarter
Precip Coldest Quarter

0 500 1000 1500 2000 2500
#(Bayes Factors > 10)

FIG. 5.—Histogram showing numbers of markers with Bayes factors> 10 (averaged over 100 runs) for Baypass analyses of 20 environmental measures.
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FIG. 7.—Pattern of enrichment of the top 0.001 gene sets identified by PBS and Baypass among genes up or down regulated in (human-based) GTEx

tissues. Gene sets can be enriched specifically among genes up or down regulated in a certain tissue or simply showing differential expression in the tissue

relative to others, irrespective of direction. Results are colored according to among which of these categories of differentially expressed genes for each

tissue the PBS and Baypass gene sets were enriched. Gene sets enriched among genes downregulated (possibly also showing enrichment among the set

of undirected differential expression) in a particular tissue are colored red, those enriched among genes upregulated (again, possibly also showing

enrichment among the set of undirected differential expression) in the tissue are colored green and those enriched among genes differentially expressed

in the tissue only when ignoring direction are colored blue. Blank (white) cells indicate no enrichment. Tissues that did not show any enrichment are not

included in the figure. Hierarchical clustering of gene sets and tissues was based on the extent of sharing of significant hits. (a) Comparison of 30 tissues.

(b) Comparison of 54 tissues.
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Regarding the genes overlapping the top 0.0001 SNPs for

the 18 individual PBS and Baypass tests, there were no terms

showing significant enrichment of biological processes or mo-

lecular functions for any of the gene sets; there was significant

enrichment of the cellular component “collagen trimer,”

which was enriched in the genes overlapping SNPs associated

with BIO2 (Mean Diurnal Range) (BF mean). Regarding the

genes overlapping the top 0.001 SNPs for the 18 individual

PBS and Baypass tests, there were a number of terms showing

significant enrichment for biological processes across the

genes associated with different environmental measures (sup-

plementary table S6, Supplementary Material online). The

greatest numbers were for BIO5 (Maximum Temperature of

Warmest Month) (including terms related to GTPase activity,

cell morphogenesis, plasma membrane adhesion, adherens

junction organization and neuron projection) and BIO12

(Annual Precipitation) (including terms related to regulation

of body fluid levels, coagulation, platelet activation, dendrite

development, locomotion, cell adhesion, neuron differentia-

tion, glutamate receptor signalling). Terms related to gluta-

mate receptor signalling also featured in genes associated

with BIO2 (Annual Mean Temperature) and BIO16

(Precipitation of Wettest Quarter).

Enrichment of differential expression across tissues was

seen for several sets of genes overlapping the top 0.0001

SNPs for the 18 individual PBS and Baypass tests. In the com-

parison of 54 tissues (supplementary table S7a,

Supplementary Material online), artery tissues showed signif-

icant enrichment for differentially expressed genes (DEGs) for

several tests. There was also evidence of enrichment for DEGs

in pituitary, brain cortex, lung and adipose visceral omentum.

In the comparison of 30 tissues (supplementary table S7b,

Supplementary Material online), there was again evidence

for multiple measures of enrichment of DEGs for blood vessel;

in addition, there was evidence of enrichment for brain, lung

and nerve tissues.

For most sets of genes overlapping the top 0.001 SNPs, for

the 18 individual PBS and Baypass tests, enrichment of differ-

ential expression across tissues was also observed. In the com-

parison of 54 tissues, the tissues that featured in the most

tests were related to artery, brain and esophagus (fig. 7a,

supplementary table S8a, Supplementary Material online). In

the comparison of 30 tissues, the tissues that featured in the

most tests were brain (11/18 tests) and blood vessel (10/18)

(fig. 7b, supplementary table S8b, Supplementary Material

online). For both sets of tissues (54 and 30), the environmental

measure BIO2 (Annual Mean Temperature) included the

greatest number of tissues showing differential expression

(27/54 and 14/30, respectively).

Discussion

Sources of Environmental Selection

Our analysis of genomic variation in Ethiopian sheep showed

a stronger association with precipitation-related traits than for

temperature- or altitude-related traits in the geographic dis-

tribution of genotypes, suggesting a possible role for

precipitation-driven selection. This finding is consistent with

a large-scale meta-analysis of many species that concluded

that precipitation explained a greater proportion of variance

in selection than did other climatic factors (Siepielski et al.

Table 3

Noncoding Transcript Exon Variants Found in lincRNA Molecules Overlapping the Genes Encompassing SNPs Identified in the Top 0.00001 Proportion of PBS
and Baypass Results (table 2) (Ensembl & VEPtools v98)

lincRNA gene name Transcript ID Nearest gene Test(s)

URS0000A86C59 (RNAcentral) ENSOART00000028204 ARMC3 PBS

U6 spliceosomal RNA [RF00026-

AAFC03038941.1/7174-7070]

ENSOART00000026496 BCAS3 BIO12, BIO16

URS0000AA49A4 (RNAcentral) ENSOART00000028035 CACNA1C BIO16

URS0000A900E9 (RNAcentral) ENSOART00000027871 GNA12 BIO5

URS0000A900E9 (RNAcentral) ENSOART00000028771 PLCE1 BIO2

URS0000A88C91 (RNAcentral) ENSOART00000028203 PLXDC2 BIO16

U6 spliceosomal RNA [RF00026-

AAFC03112458.1/18651-18546]

ENSOART00000025778 RBMS3 BIO16

URS0000A97583 (RNAcentral) ENSOART00000028897 RUNX2 Altitude

URS0000AA3734 (RNAcentral) ENSOART00000027236 TMEM161B BIO2

Definition of noncoding transcript exon variants: http://www.sequenceontology.org/miso/current_svn/term/SO:0001792.

Table 4

Results of Tests of Enrichment for High-Altitude Candidate Genes (722

Total)

Test Overlaps Total Enrichment P value

PBS

Top 0.0001 5 68 1.38 0.299

Top 0.001 41 491 1.56 3.04e–3

Baypass: altitude

Top 0.0001 6 67 1.68 0.147

Top 0.001 49 454 2.02 2.031e–6
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2017). If rainfall has imposed selection on Ethiopian sheep,

this raises the question of how such selection could be oper-

ating. One possible mechanism relates to disease, such as

gastrointestinal nematodes, which are a major cause of dis-

ease in Ethiopian sheep (Thomas et al. 2007) and their fre-

quency is known to vary with precipitation levels/season

(Sissay et al. 2007). Another possible precipitation-related se-

lective force is for drought tolerance, which could cover a

further range of phenotypes, e.g. resilience to weight loss

during dry seasons, ability to digest/thrive on drought tolerant

plants, maintenance of reproductive capacity, disease resil-

ience and behavioural characteristics such as shade usage

(Gaughan et al. 2019; Gizaw et al. 2010; Omondi et al. 2008).

There was less evidence for altitude-driven selection in our

analysis. This is consistent with less evidence of high-altitude

adaptation in human populations from Ethiopia compared to

those from Andean or Tibetan regions (Witt and Huerta-

Sanchez 2019). It has been suggested that the pattern for

humans is due to the less extreme altitudes of the Ethiopian

highlands compared to the Andes and Tibet and also to dif-

ferent demographic histories. As sheep are associated with

human populations, they might be subject to the same selec-

tive pressures related to altitude. Experiments are required to

determine if sheep found at high altitude in Ethiopia are phys-

iologically adapted to these conditions. For example, a study

of Ethiopian cattle (Wuletaw et al. 2011) found that animals

sampled at high altitude had similarly low/moderate pulmo-

nary arterial pressure (PAP) values as those at lower altitude.

High PAP values are strong predictors of high-altitude pulmo-

nary hypertension (HAPH), a life-threatening condition; thus

low values suggest physiological, and possibly evolutionary,

adaptation to high altitude in these animals. The results for

Ethiopian cattle are in contrast to the situation for cattle raised

in the North American Rocky Mountains, which generally

show higher PAP levels at high altitude and are highly prone

to HAPH, although there is also evidence of genetic variation

in these cattle for propensity to HAPH (Newman et al. 2015).

Genes/Functions Underlying Environmental Adaptation

To investigate the genomic signatures of environmental ad-

aptation, we looked for overlaps with candidate genes iden-

tified by general selection scans in ruminants or by studies

focused on specific phenotypes. Two related genes of interest

that overlapped with those identified in previous selection

scans are PLCB1 (primarily expressed in brain, Sheep Gene

Expression Atlas; Clark et al. 2017a, 2017b) and PLCE1 (ubiq-

uitously expressed in sheep, Sheep Gene Expression Atlas;

Clark et al. 2017a, 2017b), both involved in inositol phos-

phate metabolism (associated with drought tolerance in var-

ious plant species; Pan et al. 2017). PLCB1 was associated

with BIO12 (Annual Precipitation) (top 0.0001) and PLCE1

was associated with BIO2 (Mean Diurnal Range) (top

0.00001). PLCE1 was previously identified as a potential

selection target by Lv et al (2014) in a study of sheep from

a range of environments while PLCB1 was identified as a po-

tential selection target in several studies: by Kim et al. (2016)

in a study of goat and sheep from an Egyptian desert envi-

ronment, by Taye et al. (2017) in a study of African cattle, and

by Li et al. (2020) in a study of Chinese indicine cattle (sug-

gested to have been selected for heat tolerance). We identi-

fied four variants with a modifying effect within a lincRNA

overlapping the first two exons of PLCE1, on the antisense

strand. While we can infer little about the functional conse-

quence of these and the other variants identified within

lincRNAs in this study, lincRNAs have previously been shown

to regulate genes associated with fat tail development in

sheep (Bakhtiarizadeh and Salami 2019) and therefore might

warrant further investigation.

We also looked for overlaps between genes identified in

our study and those associated with specific phenotypes.

While fat deposition in the tail is thought to be an adaptation

to drought tolerance (similar to the camel hump), there was

only a single gene shared between the list of genes identified

at highest stringency (top 0.00001) in this study (total¼ 56

genes) and those identified in a previous study of a similar set

of populations, focused on differentiation between popula-

tions with different tail morphologies (e.g. thin-tailed, fat-

tailed, fat-rump) (total¼ 177 genes; Ahbara et al. 2019).

This gene was RXFP2, which is associated with presence

and type of horns. In addition, there was no overlap between

our list of genes identified at highest stringency and genes

linked to signatures of adaptation to extreme environments in

Chinese sheep (total¼ 1180 genes) (Yang et al. 2016), how-

ever, there was significantly greater overlap than expected by

chance between genes overlapping the top 0.0001 SNPs

(total¼ 127) in our study and genes associated specifically

with adaptation to arid environments (total¼ 376) in the

Yang et al (2016) study. The 11 overlapping genes included

the SPTLC3 gene, associated with serum lipid profiles (Zhang

et al. 2017), and the coat/skin colour gene KITLG, which has

also been implicated in temperature adaptation in humans

(Yang et al. 2018). There were no overlaps between the genes

identified in the current study for any of the environmental

measures (at any stringency) and a list of (31) specific candi-

date genes for nematode-resistance (Sayre and Harris 2012).

As mentioned above, adaptation to high or low precipita-

tion potentially covers a wide range of traits, thus it is partic-

ularly challenging to infer how associated genes may be

related to selected phenotypes but we explored this by inves-

tigating functional information for genes overlapping the top

SNPs identified for precipitation-related traits and for enriched

pathways and tissue expression. None of the top genes iden-

tified by Baypass (those overlapping the top 0.00001 of SNPs)

were identified for both of the precipitation-related traits we

examined (BIO12, Annual Precipitation, and BIO16,

Precipitation of Wettest Quarter). One of the strongest signals

we identified was that within the SDK1 (sidekick cell adhesion
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molecule 1) gene on OAR24, which was identified for Annual

Precipitation using all three measures (BF raw, BF mean and BF

median). The protein encoded by SDK1 is a member of the

immunoglobulin superfamily and is highly expressed in artery-

aorta and artery-tibial tissues (GTEx; Lonsdale et al. 2013) (it is

not present in the Sheep Gene Expression Atlas). SNPs near/in

this gene were previously associated with low oxygen satura-

tion in humans from Ethiopian high-altitude regions (Alkorta-

Aranburu et al. 2012) and it was identified as a candidate for

high altitude/low temperature adaptation in chickens sampled

across Ethiopia (Gheyas et al. 2020). It has been associated

with a wide range of phenotypes/conditions in humans, in-

cluding retinal development, brain activity and certain can-

cers, and with several other traits in livestock, including feed

conversion rate in cattle (Barendse et al. 2007), coat color in

goats (Nazari-Ghadikolaei et al. 2018) and meat quality of

pork (juiciness, intramuscular fat) (Ji et al. 2018).

Genes overlapping the top 0.0001 markers associated with

BIO16 (Precipitation of Wettest Quarter) were enriched for

differential expression in blood vessel and nerve tissues.

Genes overlapping the top 0.001 SNP markers associated

with BIO16 and BIO12 (Annual Precipitation) were enriched

for differential expression in a number of tissues, again includ-

ing blood vessel and also brain tissues. Of the five environ-

mental measures we examined, genes overlapping the top

0.001 markers associated with BIO12 were enriched for the

greatest number of biological processes and cellular compo-

nents, which reflected the differential gene expression results

in that many were related to cardiovascular or neurological

functions. Taken together, these results suggest that adapta-

tion to precipitation is in part related to these functional

classes.

Although we saw greater evidence for adaptation to pre-

cipitation than temperature, there were some interesting find-

ings regarding the latter. The gene FHAD1, associated at

highest stringency with both BIO2 (Mean Diurnal Range)

and BIO5 (Maximum Temperature of Warmest Month), also

showed evidence of temperature adaptation in a study of a

wild North American rodent (Garcia-Elfring et al. 2019).

Furthermore, two genes (GLDC and LAMC1) overlapping

the top 0.0001 SNPs for both BIO5 and Baypass/altitude

were also identified by Flori et al. (2019) as being associated

with temperature-related traits in a study of environmental

adaptation in Mediterranean cattle. It is not yet clear how the

function of these genes relates to thermal adaptation but their

detection in multiple studies suggests them as candidates for

further study.

Although there was weaker evidence for signatures of ad-

aptation to high-altitude compared to other environmental

measures, the genes associated with altitude (detected by

PBS or Baypass/altitude) were enriched for the presence of

high-altitude candidate genes based on a list of genes identi-

fied in previous studies, supporting a role for convergent evo-

lution across distantly-related taxa (Meadows and Lindblad-

Toh 2017). The only high-altitude candidate gene overlapping

the top 0.00001 PBS or Baypass/altitude SNPs was ARMC3,

which is involved in regulation of ciliogenesis and thus is po-

tentially related to a range of cilia-related phenotypes across

tissues. Three noncoding variants with modifying effects were

identified in a lincRNA overlapping ARMC3 on the antisense

strand. This lincRNA is likely to have some regulatory potential

due to its proximity to the 5’ proximal region of ARMC3 (Giral

et al. 2018), but this would require further validation. Another

high-altitude candidate gene, PRDM16, overlapped the top

0.0001 SNPs detected by both PBS and Baypass/altitude. This

gene is a regulator of brown and beige fat and thus plays an

important role in adipose biology, with implications for energy

metabolism (Chi and Cohen 2016). However, none of the

genes overlapping the top SNPs identified in this study (top

0.00001 or top 0.0001 for either PBS or Baypass/altitude) are

included in the “response to hypoxia” GO annotation list

(GO:0001666). This list includes constituents of the hypoxia-

inducible factor (HIF) pathway, which has previously been as-

sociated with high-altitude adaptation in humans, cattle, yak

and other species from Tibet and the Andes (Friedrich and

Wiener 2020). Several genes identified at the highest strin-

gency (top 0.00001) were associated with both Baypass/alti-

tude and BIO5 (Max Temperature of Warmest Month),

suggesting that some of the adaptation to high altitude

may relate to temperature adaptation.

Regarding the genes associated with altitude-related adap-

tation at the highest stringency (i.e. those overlapping the top

0.00001 of SNPs), COL6A3 was the only one identified by

both PBS and Baypass/altitude. COL6A3 is highly expressed

in many tissues in sheep, with the highest expression in atrio-

ventricular valves (left, right, aortic) and embryonic fibroblasts

(Sheep Gene Expression Atlas; Clark et al. 2017a, 2017b). Its

highest expression in human is in artery tissues (artery-tibial

and artery-aorta, GTEx; Lonsdale et al. 2013). While this gene

has not been previously associated with high-altitude adapta-

tion, a number of collagen genes have been, including

COL6A1, which was identified in at least three separate stud-

ies (Alkorta-Aranburu et al. 2012; Azad et al. 2017; Gnecchi-

Ruscone et al. 2018). Another collagen gene (COL25A1) was

also identified by Baypass/altitude. Collagen genes featured

notably in a comparison of gene expression in tissues from yak

at different altitudes; 5 out of the 14 genes differentially

expressed in multiple (>¼5) tissues were collagen genes (Qi

et al. 2019). Qi et al (2019) argued that this connection could

be driven by collagen’s known influence on the behaviour of

vascular smooth muscle cells, which are sensitive to hypoxia.

None of the genes identified at the highest stringency in the

current study (top 0.00001 or top 0.0001) were shared with

those reported by Edea et al (2019), who also catalogued

signatures of differentiation between Ethiopian sheep from

high- and low-altitude regions (the only population shared

with this study was Menz). Furthermore, there were no sig-

natures of selection associated with EPAS1 or EGLN1,
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hypoxia-related genes that have featured in multiple studies

of high-altitude adaptation in humans and other species, pri-

marily from Tibet. These genes have also not shown previous

evidence of selection in Ethiopian populations of humans or

other species and, as mentioned above, it has been suggested

that the selection pressure may be lower in Ethiopia highlands

compared to Tibet and the Andes due to the slightly lower

altitude (Witt and Huerta-Sanchez 2019).

In summary, we used a landscape genomic approach to

examine associations between markers and environmental

variables for sampling locations of native Ethiopian sheep.

Using this approach, we determined which climatic variables

showed the strongest association with allele frequency varia-

tion in the sheep genome. This allowed us to identify candi-

date loci associated with particular environmental

characteristics. These results suggest that adaptation to pre-

cipitation levels has had a greater impact on the genome than

altitude or temperature. There was however also evidence of

enrichment for genes previously associated with high-altitude

adaptation although no strong association for altitude was

identified with hypoxia inducible factor (HIF) genes (e.g.

EPAS1 and EGLN1). We highlight examples of candidate loci

potentially associated with environmental measures and their

tissue-specific expression patterns in sheep, e.g. PLCB1. These

loci are suitable candidates for experimental functional valida-

tion in further studies. This study provides a foundation to

investigate further the effects of climatic variables on small

ruminant populations.

Materials and Methods

Sheep Populations

A set of 13 sheep populations were analysed in this study, 12

from a range of environmental conditions and geographical

regions across Ethiopia and one from Libya (LBR), used as an

outgroup for some analyses (table 1, fig. 1). These include the

same Ethiopian populations as described in Ahbara et al.

(2019) (their table 1), with one additional population,

Segentu.

Library Preparation and Whole-Genome Sequencing

High quality genomic data were extracted from ear notch

biopsies for 130 sheep using a Nucleospin Tissue Kit and qual-

ity checked using an Agilent Tapestation 2200. For library

preparation, 1mg of gDNA was sheared to fragments of

450 bp mean size using a Covaris LE220 focused-

ultrasonicator. DNA fragments were blunt ended, A-tailed,

size selected and adapters ligated onto fragment ends accord-

ing to Illumina TruSeq PCR-free library preparation kit proto-

col. Insert size on the libraries was evaluated using a

PerkinElmer LapChip GX Touch with an HT DNA 1k/12K/HI

SENS LabChip and HT DNA HI SENS Reagent Kit. Final library

concentration was calculated by qPCR using a Roche

LightCycler 480 and a Kapa Illumina Library Quantification

kit and Standards. Then libraries were normalized to a loading

concentration of 150 nM. All the library processing steps were

carried out on Hamilton MicroLab STAR liquid handling robots

coupled to BaseSpace Clarity LIMS X Edition. Libraries for all

samples were loaded into a HiSeq X Flow cell v2.5, and clus-

tered using an Illumina cBot2 Cluster Generation System. All

libraries were sequenced on the HiSeqX to a mean coverage

of 54X with 150 bp paired-end reads.

Demultiplexing and Trimming

Demultiplexing was performed using bcl2fastq (v.2.17.1.14),

allowing 1 mismatch when assigning reads to barcodes.

Adapters

(Read1:AGATCGGAAGAGCACACGTCTGAACTCCAGTCA,

Read2:AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT)

were trimmed during the demultiplexing process. After trim-

ming and demultiplexing, two compressed FASTQ files

(“fastq.gz”) for each sample were obtained.

Sequence Mapping

The Ovis aries (sheep) genome (v3.1) produced by the

International Sheep Genome Consortium (ISGC) was down-

loaded from Ensembl release 88 (ftp://ftp.ensembl.org/pub/

release-88/fasta/ovis_aries/dna/Ovis_aries.Oar_v3.1.dna.tople-

vel.fa.gz). Clean reads for all 130 WGS samples were mapped

to the O. aries genome using the Burrows-Wheeler Alignment

tool (BWA-MEM) version bwa-0.7.12-r1039 (Li 2013; Li and

Durbin 2009). The alignment files generated in SAM format

were converted to BAM format using SAMtools v.1.19 (Li

et al. 2009).

Variant Calling

We then applied the Best Practices preprocessing Genome

Analysis Toolkit (GATK) v3.7 workflow from the Broad

Institute to perform variant discovery (https://software.broad-

institute.org/gatk/best-practices). The alignment files were

sorted by coordinate and indexed using SAMTools. The

Picard suite of tools v.1.139 (http://sourceforge.net/projects/

picard) was used to mark duplicate reads. Base Quality Score

Recalibration (BQSR) was performed using BaseRecalibrator

from the Genome Analysis Toolkit (GATK v.3.7) (McKenna

et al. 2010) with the “knownSites” set to the O. aries

dbSNP from Ensembl release 88 (ftp://ftp.ensembl.org/pub/re-

lease-88/variation/vcf/ovis_aries/Ovis_aries.vcf.gz).

Variants were called using HaplotypeCaller from GATK

(with -ERC GVCF and -stand_call_conf set to 30) followed

by GenotypeGVCFs to perform joint genotyping and generate

the VCF files containing SNPs and Indels for all samples.

Variant quality score recalibration was performed using

VariantRecalibrator with the following parameters: -an QD -

an MQ -an MQRankSum -an ReadPosRankSum -an FS -an
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SOR -an DP -an InbreedingCoeff and the resource parameters

set as: resource: eva, known¼false, training¼true, truth¼-

true, prior¼15.0 evaFile and resource: dbsnp, known¼true,

training¼false, truth¼false, prior¼2.0 dbsnpFile, where

“evaFile” and “dbsnpFile” refer to the set of high quality

variants from the European Variation Archive (ftp://ftp.ebi.

ac.uk/pub/databases/eva/PRJEB14685/eva_normalised_files/

*.filtered_intersect.vcf.gz) and the dbSNP VCF file from

Ensembl release 88 (ftp://ftp.ensembl.org/pub/release-88/var-

iation/vcf/ovis_aries/Ovis_aries.vcf.gz) for O. aries, respectively.

Quality Control Procedures

Markers were filtered using vcftools for the following criteria:

marker quality (–minQ 40), overall missingness (–max-missing

0.8), deviations from HWE (–hwe 0.00000001), allele count (–

min-alleles 2, –max-alleles 2) and minor allele frequency (–maf

0.05). Next we used PLINK (Chang et al. 2015; Purcell and

Chang) to produce a pruned subset of markers in approxi-

mate linkage equilibrium (using –indep-pairwise option, with

window size ¼ 500 kb, step size ¼ 1, r2 threshold ¼ 0.8).

Samples (27) were then removed such that there were no

close relatives (first- or second-degree, using vcftools –relat-

edness2 option) in the data set, leaving 103 individuals across

the 13 populations (94 across the 12 Ethiopian populations),

ranging from 4 to 10 per population. Finally, markers were

removed that had genotypes for fewer than 80% of individ-

uals within a population or were fixed for a single allele across

the 12 Ethiopian populations. The final data set comprised

3,237,954 markers. All subsequent analyses were performed

on autosomes, comprising 3,095,833 markers. Average per-

SNP diversity within each population was calculated using

vcftools.

Predicted Functional Consequences of Variants

We used Ensembl Variant Effect Predictor (VEPtools v98;

McLaren et al. 2016) to predict the effects of the variants,

including the “–sift b” and “–nearest symbol” options. The

noncoding variants most likely to impact phenotype, tran-

script exon variants (e.g. lincRNAs) for SNPs associated with

annotated genes, were extracted from the VEPtools output

for further analysis.

Environmental Variables

Altitude and the standard 19 WorldClim bioclimatic variables

(BIO1–BIO19) (Fick and Hijmans 2017; WorldClim) were

recorded for each of the locations where the 12 Ethiopian

sheep populations were sampled (table 1). A PCA was per-

formed on the 20 variables for the 12 Ethiopian locations

using the prcomp command within R (variables scaled and

centered to zero).

PCA of Individuals

PCA was performed on the genomic data for the 12 Ethiopian

sheep populations, both with and without the Libyan popu-

lation (LBR) as an outgroup, using PLINK (Chang et al. 2015;

Purcell and Chang) with its default options.

Phylogenetic Reconstruction

Identity-by-state estimates of genetic distance were calculated

for all pairs of (103) individuals using PLINK (Chang et al.

2015; Purcell and Chang). A neighbor-joining tree (Saitou

and Nei 1987) was reconstructed based on these distances

using Phylip (Felsenstein 2005).

Population Differentiation

The population-branch statistic (PBS) (Yi et al. 2010) is

designed to identify population-specific allele frequency

changes, in this case, to identify alleles associated with adap-

tation to high altitude. A subset of five closely related popu-

lations sampled at high- and low-altitude (high, 2,610–

2,783 m: AKD, AKR, MZ; low, 740–859 m: FKD, FSG) was

selected for analysis in order to limit overall between-

population differences, as suggested by Yi et al. (2010). The

three high- and two low-altitude populations were pooled

into two groups in order to improve the power of the analysis.

PBS, a function of pairwise FST values, was calculated on these

populations and the population from Libya (LBR) as an out-

group. First, pairwise FST (Weir and Cockerham 1984) was

calculated for all markers between the pooled high-altitude,

pooled low-altitude and LBR populations using vcftools (op-

tion: –weir-fst-pop) (https://vcftools.github.io/index.html)

(Danecek et al. 2011). Negative FST values were set to 0.

PBS (PBS raw) was calculated using these FST values, as de-

scribed in Yi et al. (2010). To control for random variation at

individual sites, means and medians of PBS (PBS mean, PBS

median) were also calculated for 9-SNP windows across the

genome. This window definition was found to be most or

equally suitable for estimation of local genomic diversity, by

balancing capture of extreme signals and removal of stochas-

tic effects, of in comparison with 11- and 13-SNP windows or

windows based on physical size (results not shown). The num-

ber of markers for which FST was calculated (3,068,678) was

reduced from the initial data set due to fixation of the same

allele across the five populations (but not across all of the 12

populations, as filtered in QC procedures). The number of

markers was further reduced for the PBS analysis since addi-

tional markers were removed that were missing FST values for

high-altitude versus LBR or low-altitude versus LBR compari-

sons. Final numbers of markers were the following:

3,007,909 (PBS raw) and 2,421,841 (PBS mean and PBS me-

dian). Genes located less than 100 kb of SNPs in the top

0.00001 proportion of PBS statistics were catalogued.

Genome-wide average pairwise FST values (Weir and
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Cockerham 1984) were also calculated for all pairs of popu-

lations using vcftools, as described above. Negative FST values

were again set to 0. An unrooted neighbor-joining tree

(Saitou and Nei 1987) was reconstructed based on these FST

values using Phylip (Felsenstein 2005).

Genotype-Environment Association

Baypass (Gautier 2015) was used to identify genetic loci as-

sociated with population-specific covariates, in this case, the

20 environmental characteristics of the locations where the

sheep populations were sampled. This was implemented un-

der the IS covariate mode (STD covariate model), as described

in the manual (5.1.2), specifying the omega matrix (covari-

ance matrix of population allele frequencies) for the entire

marker set, which was calculated from a separate Baypass

run. To account for the variation between MCMC runs,

Baypass was run 100 times, each with a randomly-chosen

seed. In each run, a Bayes Factor in deciban (dB) units [“BF”

¼ 10�log10(BF)] was calculated for each genotype x environ-

mental variable combination and these were averaged over

the 100 runs to produce average BFs (BF raw) for each com-

bination of marker position and environmental measure. As

for the PBS analyses, means and medians of BF values were

also calculated for 9-SNP windows (BF mean and BF median,

respectively) centered on a total of 3,130,759 markers across

the genome. Genes within 100 kb of SNPs in the top 0.00001

proportion of average BF statistics were catalogued.

In order to compare evidence for selection due to different

environmental factors, we also compared the number of high

BF values across the 20 environmental variables. We first car-

ried out additional pruning to further reduce the linkage dis-

equilibrium (LD) between markers (using PLINK, as described

above but with r2 threshold ¼ 0.5). From this pruned set of

markers (1,434,184), the number of BF values >10 for each

run and each environmental variable was counted and counts

were then averaged across the 100 Baypass runs.

Relationship to High-Altitude and Hypoxia-Related
Candidate Genes

Enrichment of high-altitude candidate genes was tested for

the genes identified by PBS and Baypass (high-altitude) anal-

yses. First, a list of 722 autosomal candidate genes (supple-

mentary table S9, Supplementary Material online) was

compiled by surveying the literature on high-altitude adapta-

tion in humans and other species and including all genes that

were identified in at least two studies. Secondly, a list of 163

genes associated with “response to hypoxia” (GO:0001666)

was compiled. Genes were first extracted from the Mouse

Genome Informatics resource [Mouse Genome Database

(MGD)]. Then gene names were converted to HGNC/Hugo

names using HGNC’s Multi-symbol checker (HGNC

Database). For both lists, genes were filtered for their pres-

ence on autosomes within the sheep genome using Biomart/

Ensembl (Hunt et al. 2018). To enable enrichment testing, the

total number of autosomal protein-coding genes with HGNC

symbols for the O. aries genome assembly version 3.1

(Oar_v3.1) was determined using Biomart/Ensembl as

13,510. Gene names including “ORF” were excluded be-

cause their function was unknown. Next, the genes overlap-

ping between the lists of candidates and those identified by

PBS/Baypass analyses were counted. Enrichment of the can-

didate genes within the PBS/Baypass results was assessed

based on the cumulative distribution function (CDF) of the

hypergeometric distribution.

Testing GO and Tissue Expression Enrichment of Gene Sets

Sets of genes identified by Baypass/PBS were assessed for

enrichment of GO terms (biological processes, cellular com-

ponents, molecular functions) compared to the full list of

O. aries autosomal protein-coding genes described above us-

ing the GENE2FUNC option in FUMA (Watanabe et al. 2017),

using default parameters. Significance was assessed based on

FDR-adjusted p-value. These gene sets were also tested for

overrepresentation in sets of differentially expressed genes

from (human-based) GTEx v8 RNA-seq data of 54 and 30

tissues (Lonsdale et al. 2013). Relationships between the dif-

ferential expression patterns of SNP sets and tissues were de-

termined using hierarchical clustering by extent of sharing of

significant hits and visualized using complex heatmaps (Gu

et al. 2016).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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