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Abstract 

Soil salinization affects crop production and food security. Mapping spatial distribution and severity of 

salinity is essential for agricultural management and development. This study was aimed to test the 

effectiveness of machine learning algorithms for soil salinity mapping taking the Mussaib area in 

Central Mesopotamia as an example. A combined dataset consisting of Landsat 5 TM and ALOS L-

band radar data acquired at the same time was used for fulfilling the task. Relevant biophysical 

indicators were derived from the TM images, and the soil component was retrieved by removing the 

vegetation contribution from the L-band radar backscattering coefficients. Field measured salinity at 

the three corner plots of triangles were respectively averaged to represent the salinity of these triangular 

areas. These averaged plots were converted into raster by either direct rasterization or buffering-based 

rasterization into different cell size to create the training set (TS). One of the three triangle corners was 

randomly selected to constitute a validation set (VS). Using this TS, the Support Vector Regression 

(SVR) and Random Forest Regression (RFR) algorithms were then applied to the combined dataset for 

salinity prediction. Results revealed that RFR performed better than SVR with higher accuracy (93.4-

94.2% vs 85.2-89.4%) and less Normalized Root Mean Square Error (NRMSE) (6.10-7.69% vs 10.29-

10.52%) when calibrated with both TS and VS. In comparison, prediction by Multivariate Linear 

Regression (MLR) achieved in our previous study using the same datasets also showed less NRMSE 

than SVR. Hence, both RFR and MLR are recommended for soil salinity mapping. 
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1. INTRODUCTION 

Soil salinization is one of the most active land degradations and environmental hazards in irrigated lands 

worldwide, especially, in dry areas (Metternicht & Zinck, 2003; Farifteh, Farshad, & George, 2006), 

such as Central and Western Asia (Qadir, Qureshi, & Cheraghi, 2008; Qadir et al., 2009; Wu et al., 

2014a and 2014b; Ivushkin et al., 2017). On average, 20% of the world’s irrigated lands are affected by 

salinization, and this number increases to more than 30% in Iran and Egypt (Metternicht & Zinck, 2003), 

50-51% in Uzbekistan (Qadir et al., 2009; Ivushkin et al., 2017). Salinity has greatly influenced crop 

production, which has declined, for example, by 30-60% in comparison with that in the non-affected 

croplands in Mesopotamia, Iraq (Wu et al., 2014a). Therefore, it is of prime importance to investigate 

the severity and distribution of soil salinity in space and time to support decision-makers in planning 

agriculture development to mitigate food security issues in the salt-affected countries.  

In the past decades, a great number of remote sensing (RS)-based soil salinity mapping studies have 

been conducted (Dwivedi & Rao, 1992; Mougenot, Pouget, & Epema, 1993; Fernández-Buces et al., 

2006; Farifteh, Farshad, & George, 2006; Allbed & Kumar, 2013; Wu et al., 2014a and 2014b; Gorji, 

Tanik, & Sertel, 2015; Ivushkin et al., 2017; Bannari et al., 2018). These studies have not only identified 

the relevant salinity indicators, e.g., different vegetation indices (VIs), combined spectral response 

index (COSRI), Principal Components (PCs), land surface temperature (LST), but also proposed 

operational approaches such as best band combination, multiyear maxima-based multivariate regression 

modeling, etc.  

Several authors have explored the possibility to detect soil salinity by microwave radar data as they are 

independent of weather condition (Sreenivas, Venkataratnam, & Rao, 1995; Gong et al., 2013). The 

laboratory-based simulations conducted by these authors suggested that it is possible to use the 

microwave P-, C-, and especially L-bands for detecting salinity in different settings since the signal can 

penetrate through the surface and reach the subsoil to a depth of up to 150 cm or more, depending on 

the wavelength/frequency of the emitted waves and soil moisture. However, satisfactory radar-based 

salinity mapping has been rarely reported probably due to the difficulty to separate the soil salinity from 

the moisture within the radar backscattering coefficients. Wu et al. (in press) employed the Leaf Area 

Index (LAI) and vegetation water content (VWC) derived from the optical data to remove the effects 

of vegetation cover on the backscattering coefficients of soil and found that these corrected 

backscattering coefficients were highly correlated with the measured soil salinity (R2 = 0.565-0.677).  

Recently, a strong momentum has been gained in RS-based land cover mapping including extraction of 

saline land by machine learning classifiers such as Artificial Neural Network (ANN), Support Vector 

Machines (SVM), and Random Forests (RF) (Ritter & Hepner, 1990; Huang et al., 2002; Foody & 

Mathur, 2004; Kavzoglu & Colkesen, 2009; Rodriguez-Galianon et al., 2012; Belgiu & Dragut, 2016; 

Wu et al., 2016). The advantage of these algorithms over the traditional parametric classifiers lies in 

their capacity to separate non-parametric signatures by determining the hyperplane in a high-dimension 

space or by growing ensembles of decision-trees and letting them vote for the most popular class 

(Breiman, 2001) making the non-separable clusters in the parametric space separable (Wu et al., 2016). 

Comparing the most frequently applied and promising machine learning algorithms, Wilkinson (2005), 
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Mas & Flores (2008), and Wu et al. (2016) found that ANN was often outperformed by other classifiers 

such as SVM and RF, and even by Maximum Likelihood (ML). Pal (2005) and Wu et al. (2016) noted 

that SVM and RF could achieve equally well land cover mapping with a very high accuracy of 95.7-

96.8% for local sites though they took much longer processing times than ML.  

Recently, Abdel-Rahman, Ahmed, & Ismail (2013) and Wang et al. (2016), etc., applied the Random 

Forest Regression (RFR) to biophysical prediction such as leaf nitrogen concentration and biomass 

estimation. Farifteh et al. (2007) used PLSR (Partial Least-Square Regression) and ANN, and 

Taghizadeh-Mehrjardi et al. (2014) employed Regression Tree to predict pixel-based soil salinity. This 

aroused our strong interest to explore the possibility to use the hotspotted machine learning regression 

algorithms, RFR and Support Vector Regression (SVR) for predicting and mapping soil salinity.  

Actually, application of SVR and RFR for RS-based soil salinity prediction and mapping has been 

rarely reported. For this reason, the main objective of our study was to ascertain the applicability of 

these machine learning regression algorithms for such purpose. One specific objective was to compare 

their performance (mapping accuracy and reliability) with that of Multivariate Linear Regression (MLR) 

using the same dataset (a single-date of optical and radar dataset) used by Wu et al. (in press). The 

research was implemented in the Mussaib site in Central Mesopotamia.  

 

2. METHODS AND MATERIAL 

2.1 Study area 

The study area is located in-between the Tigris and the Euphrates Rivers in Central Mesopotamia, Iraq 

(Figure 1), where the main land use is croplands. This area has been a national agriculture development 

project site since 1950s for grain production including irrigated wheat and barley in spring, and corn, 

vegetables and fruits in summer. Perennial alfalfa and permanent tree crop such as date palm are also 

locally cultivated. Long-term fallows or abandoned croplands (uncultivated in the past 15-20 years) and 

unmanaged bare lands exist, and built-up areas are very local. The total area of the project site is around 

250,000 ha. The dominant soil types are Aridisols and Entisols with texture class ranging from silt clay 

loam to silty loam with more than 20 % of lime. The soils are mostly saline with electrical conductivity 

(ECe) ranging from 4 (low) to 30 (strong) dS m-1 (Wu et al., 2014a; Wu et al., in press).  

 

Climatically, the Mussaib site is characterized by short cool winter and long hot summer. Rainfall is 

concentrated in winter and early spring from December to March with an annual average of about 82.5 

mm during the past 60 years (recorded in the adjacent station Hillah). The mean minimum temperature 

is about 6.25°C in December-February while the mean maximum temperature is around 43.2°C in July-

August.  

As a part of the Mesopotamian Plain, the landform of the study area is mostly flat with elevation 

varying from 25 m to 31 m above sea level (a.s.l.).  

 

2.2 Data 

2.2.1 Field data  

Field surveys were conducted from Jul 2011 to Jul 2012 including soil sampling (Jul-Nov 2011), 

apparent electrical conductivity (ECa in millisiemens per meter or mS m-1) measurements by EM38-

MK2 (Geonics Ltd; EM38 hereafter) in Mar-Jul 2012, and Jun 2013.   

Soil samples were taken from 13 pedons (0-30 cm horizon of the profiles up to 150 cm in depth) and 

17 auger holes of 0-30 cm in depth in the study area in Jul-Nov 2011, when EM38 instruments were 
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not available. The soil samples were analyzed in laboratory to measure soil electrical conductivity (ECe, 

1:1 dilution method). Samples were taken mainly in croplands or under halophytes, which are normally 

problematic for soil salinity mapping by remote sensing (Metternicht & Zinck, 2003). 

After the arrival of the instruments, EM38 readings were conducted in three campaigns, respectively in 

spring (Mar-Apr) 2012, with 45 (3×15) pairs of vertical (V) and horizontal (H) readings, and early 

summer (Jun-Jul 2012, when dry season started after harvesting wheat and barley), with 21 (3×7) pairs 

of V and H readings as supplementary sampling. V and H EM38 readings (EMV and EMH) were taken 

in small plots (1 m×1 m in size) distributed at the three corners of triangles. The designed distance of 

any two corners of a triangle was about 15-20 m to ensure that the triangle could approximately 

represent one TM pixel. However, due to accessibility problem in field, EM38 readings could not be 

measured at the same points as soil samples, and it was also difficult to control the sampling triangles 

as equilateral, and their actual side lengths ranged between 25 and 52 m, so that the triangles covered 

an area of about 470-920 m2. The averaged EMH and EMV of the three pairs of readings were considered 

as the representative values of the observed triangular areas, or rather, of the corresponding TM pixels. 

Two additional triangles (3×2 pairs) of measurements surveyed near the site in Jun 2013 were also 

integrated in this study. Hence, totally 24 averaged pairs of EM38 readings including EMV and EMH 

were used as ground-truth training set (TS) for this study.   

For validation purpose, any one pair of the three triangle corners was selected to compose a ground-

truth validation set (VS), which was slightly different in both EMV and EMH readings and spatial 

locations from their averaged TS. The VS also contains 24 pairs of samples as above. As for land 

use/cover-related distribution, 5 of these samples were located in the long-term fallows or abandoned 

croplands, 3 in bare lands, and the remained ones in mixed croplands including alfalfa. 

The lab-analyzed soil samples were used neither for calibrating the above EM38 readings nor for model 

training because of different locations from the EM38 sampling points (Figure 1) and could not 

represent the salinity of the TM pixels due to high spatial variability of salinity. Thus, these soil samples 

were only used for verification of the classified grades of salinity (ECe) converted from the predicted 

ECa (see subsection 2.3.7 for detail).  

2.2.1 Satellite data 

Level 1.5 product of PALSAR data of the Japanese ALOS satellite with a spatial resolution of 12.5 m 

were obtained from the European Space Agency (ESA: https://alos-palsar-ds.eo.esa.int). The L-band 

images were produced by a microwave radar sensor with a wavelength of 23 cm and frequency of 1.27 

GHz in Fine Beam Double (FBD) Polarization Mode (HH/HV). The images were acquired with an off-

nadir angle of 34.3° and an incidence angle of 7.5-60° on Nov 26, 2010, when summer crops, mainly 

maize, became mature and winter wheat and barley were to be sown. Rainy season had not yet started 

in the study area.  

Landsat 5 TM images dated Nov 23, 2010, acquired almost on the same date as ALOS images, were 

also obtained from ESA (https://landsat-ds.eo.esa.int).    

It is noted that in the surrounding weather stations of the study area, namely Baghdad, Karbala, 

Diwaniyah, and Hillah, no rainfall was recorded in the period from May to Nov 2010 

(https://fr.tutiempo.net/climat/iraq.html). Thus, rainfall induced-moisture problem (Wu et al. 2014a and 

2014b) could be avoided in our analysis. 

 

https://alos-palsar-ds.eo.esa.int/
https://landsat-ds.eo.esa.int/
https://fr.tutiempo.net/climat/iraq.html
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2.3 Approaches and Processing Procedures 

2.3.1 TM image processing 

The Landsat 5 TM images were radiometrically calibrated and a FLAASH (Fast Line-of-sight 

Atmospheric Analysis of Spectral Hypercubes) model (Perkins et al., 2012) was applied to remove the 

additive atmospheric effects. The produced reflectance was rescaled to 0-1 for each band. 

Biophysical indicators recognized in our previous studies as most relevant for salinity mapping (Wu et 

al., 2014a and 2014b) were produced. They were respectively the Normalized Difference Vegetation 

Index (NDVI), the Normalized Difference Infrared Index (NDII, Hardisky et al., 1983) from TM bands 

4 and 5, the Generalized Difference Vegetation Index (GDVI, Wu 2014) with power number of 2 and 

3 (denoted respectively GDVI2 and GDVI3), the LST from the thermal band and the Tasseled Cap 

Brightness (TCB, Crist & Cicone, 1984).  

2.3.2 L-band radar processing 

The Level 1.5 radar product has been geometrically corrected and pixels resampled to 12.5 m in size to 

rectify deformation by the provider. The digital number (DN) of the two HH and HV bands were 

respectively calibrated and converted into backscattering coefficients (𝜎𝐻𝐻
0  and 𝜎𝐻𝑉

0 ), expressed in 

decibel (dB) following Shimada et al. (2009): 

 

𝜎0[dB] = 10𝑙𝑜𝑔10(DN)2 - 83.0      (1) 

An Enhanced Lee filter (3×3 in size, Lee 1980) was then applied to remove speckles or noises. 

𝜎𝐻𝐻
0  and 𝜎𝐻𝑉

0  were hence derived and resampled to 30 m pixels to match the TM data.  

 

2.3.3 Removal of the influence of vegetation cover  

As mentioned above, the difficulty to use backscattering coefficients to characterize soil salinity is 

related to the effects of soil moisture, especially, where vegetation cover is present. Attema and Ulaby 

(1978) have proposed the water cloud model for characterizing the effect of vegetation water content 

(VWC) on radar backscattering coefficient, which can be expressed as follows (Moran et al., 1998; 

Kumar, Prasad, & Arora, 2012): 

 

 𝜎0 =  𝜎𝑣𝑒𝑔
0 + 𝐿2𝜎𝑠𝑜𝑖𝑙

0        (2) 

with  

 𝜎𝑣𝑒𝑔
0 =  𝐴𝑉1 cos(𝜃𝑖)(1 − 𝐿2)      (3) 

 𝐿2 = exp(−2𝐵𝑉2 sec(𝜃𝑖))      (4)  

 𝜎𝑠𝑜𝑖𝑙
0 = (𝜎0 − 𝜎𝑣𝑒𝑔

0 )/𝐿2       (5) 

where 𝜎0
 is the total backscattering coefficient from both vegetation canopy and soil (either 𝜎𝐻𝐻

0  or 𝜎𝐻𝑉
0  

in our case), 𝜎𝑣𝑒𝑔
0  is the backscattering contribution of the vegetation cover, and 𝜎𝑠𝑜𝑖𝑙

0
 is that of soil; L2

 

is the two-way vegetation attenuation; 𝜃𝑖 is the incidence angle of the radar beam; A and B are the 

vegetation parameters; V1 and V2 are the vegetation descriptors. Kumar, Prasad, & Arora (2012) applied 

LAI (m2 m-2) for V1 and VWC (kg m-2) for V2 respectively.  

After numerous fittings, the LAI-GDVI2 model of Wu (2014), was found to perform better than other 

LAI-NDVI models given the same VWC (V2), A and B parameters. This model is shown as follows: 

LAI = 0.091exp(3.7579GDVI2) (R² = 0.932)     (6) 
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Using this LAI model, vegetation-removed backscattering coefficient, 𝜎𝑠𝑜𝑖𝑙
0 , was better correlated to the 

field measured apparent soil salinity. It was hence adopted for this study.  

Similarly, we selected the VWC-NDVI model developed by Jackson et al. (2004) for maize for our 

analysis, i.e.,  

VWC = 192.64NDVI5
 - 417.46NDVI4 + 347.96NDVI3 – 138.93NDVI2 + 30.699NDVI – 2.822 

(kg m-2) (R2 = 0.990)       (7)   

which outperformed other VWC-NDII and VWC-NDVI models given the same LAI, A and B.   

As for A and B, those obtained by Dabrowska-Zielinska et al. (2007) for ALOS L-band radar data were 

tested in this study. We found that the 2nd Case of L-band, i.e., A = 0.0045 and B = 0.4179, could 

maximize the correlation between the vegetation-removed backscattering coefficient (𝜎𝑠𝑜𝑖𝑙
0 ) and the 

field measured salinity given the same LAI and VWC. This pair of A and B was finally selected for our 

study.  

Inputting the selected A, B, LAI and VWC models, and 34.3° as the mean incidence angle, the 

vegetation-removed backscattering coefficients (𝜎𝐻𝐻(𝑠𝑜𝑖𝑙)
0  and 𝜎𝐻𝑉(𝑠𝑜𝑖𝑙)

0 ) were obtained. This removal 

procedure gained an increase of 16.6-25.6% in the correlation coefficient of 𝜎𝐻𝐻(𝑠𝑜𝑖𝑙)
0  with the field 

measured salinity in respect to that of 𝜎𝐻𝐻
0 , and 11.5-21.4% in that of 𝜎𝐻𝑉(𝑠𝑜𝑖𝑙)

0  in comparison with 𝜎𝐻𝑉
0  

(Wu et al., in press). 

2.3.4 Combined dataset  

The produced NDVI, GDVI2, GDVI3, NDII, LST, TCB, 𝜎𝐻𝐻
0 , 𝜎𝐻𝑉

0 , 𝜎𝐻𝐻+𝐻𝑉
0 , 𝜎𝐻𝐻(𝑠𝑜𝑖𝑙)

0 , 𝜎𝐻𝑉(𝑠𝑜𝑖𝑙)
0 , and 

their sum 𝜎𝐻𝐻+𝐻𝑉(𝑠𝑜𝑖𝑙)
0  were stacked together to compose an optical-radar combined 12-band dataset.  

2.3.5 Rasterization of the field measurements       

To model salinity using machine learning regression, it is essential to create a training set based on the 

field measurements, i.e., to rasterize the field plots. Two kinds of rasterization were conducted. One 

was a direct rasterization, i.e., using Point to Raster conversion tool within ArcGIS to convert the 

averaged field measurement plots into raster cells of 30, 60, and 90 m size, then resampled to 30 m 

pixels. The other was to first use a buffering function to convert the averaged field points into circular 

buffers with a radius of 30, 60 and 90 m, and then apply a Feature to Raster function to convert these 

buffers into raster with an initial cell size of 10 m to catch the buffer forms; and at last, these cells were 

resampled to 30 m pixels to match the combined dataset.  

The objective to rasterize sample plots into such different extents (30, 60 and 90 m) was to find the 

optimal spatial presentation of samples for machine learning regression modeling taking both the 

representativeness of samples and spatial variability of salinity into account.    

2.3.6 Application of SVR and RFR for salinity prediction 

Both SVR and RFR modeling were conducted within EnMap-Box (Waske et al., 2012; van der 

Linden et al., 2015), an image processing and analysis package designed by IDL (Interactive Data 

Language).  

SVR  

SVR (Vapnik, Golowich, & Smola, 1997) is a learning regression algorithm extended from the SVM 

(Vapnik & Lerner 1963). The strength of SVR is to model the complex nonlinear relationships in the 

multi- or hyper-dimensional feature space and estimate the linear dependency of the variables to be 

predicted on the predictive covariates by fitting an optimal approximating hyperplane to the training 



 
This article is protected by copyright. All rights reserved. 

data. For linearly non-approximable problems, the training data are implicitly mapped by a kernel 

function with regularization into a higher dimensional space, wherein the new data distribution enables 

a better fitting of a linear hyperplane that appears non-linear in the original feature space (van der Linden 

et al., 2014).  

While executing SVR modeling, the parameterization is a critical procedure that requires the user to 

select the parameter(s) of the Kernel Function (γ) as well as the Regularization (C) and the Loss 

Function (ε). As many researchers have underlined (Huang, Davis, & Townshend, 2002; Kavzoglu & 

Colkesen, 2009; van der Linden et al., 2014; Wu et al., 2016), radial basis function (RBF) can capture 

best the non-parametric features. Hence, RBF including linear kernel was selected. And the default 

values were chosen for the other parameters such as C (min 0.01 and max 1000) with a Multiplier 10, 

3-folds of Cross-Validation, and automatic search for ε.    

After training, the derived SVR models were applied back to the combined dataset to produce the 

apparent soil salinity (ECa) maps.  

RFR 

RFR is formed by an ensemble of growing decision-trees depending on random vectors and begin with 

many bootstrap samples that are drawn randomly with replacement from the original training dataset 

(Breiman, 2001). A key procedure in RFR is to use Bagging (Bootstrap Aggregating) in tandem with 

random feature selection, as Bagging can dramatically reduce the variance of unstable procedures such 

as tree growing, leading to an improved prediction and enhanced accuracy (Breiman, 2001). More 

concretely, a regression tree is fitted to each of the bootstrap samples from the training set, or rather, 

random vectors, that govern the growth of each tree in the ensemble to grow regression forests. In these 

forests, random feature selection at each node to determine the split criteria is on top of Bagging. 

Therefore, the generalization error can be provided by out-of-bag (OOB) estimation, which can be also 

used to estimate the importance of each variable. RFR has no overfitting problem since it applies the 

strong Law of Large Numbers as RF. The more features used, the less error produced (Breiman, 2001).  

While conducting RFR modeling, we kept all 12 bands as input variables with 24 observations (samples 

for training, TS). Some critical parameters to be set were first the Number of Trees (NT) depending on 

the complexity of the features. The default value was 100 within EnMap-Box, but tests were also 

conducted by setting it to 300, 500 and 1000 in view of the spatial variability of salinity. The second 

one was the Number of randomly selected Features (or Number of Variables) at each node, which can 

be the square root of all features or logarithm (log) of all features or a user-defined value. In this analysis, 

the square root of all features was selected. The third one was the Stop Criteria (for node splitting), 

where the default values of the Minimum number of samples in a node, 1, and the Minimum impurity 

calculated based on Gini Index, 0, were chosen.  

After parametrization using the rasterized EMV or EMH as TS, the produced RFR models were applied 

back to the combined dataset to predict the apparent soil salinity (ECa). 

2.3.7 Conversion from ECa to ECe 

Since what SVR and RFR had predicted was the apparent soil salinity (mS m-1), it had to be converted 

into the lab-measured ECe (dS m-1) which would be more meaningful for land management. We applied 

hence our results obtained from the regional-scale sampling and lab-analysis in the whole Mesopotamia 

for this purpose. Regional sampling includes two transects and four pilot sites, where both soil and 

EM38 readings were sampled at the same plots. The ECe-EM38 readings (ECa) relationships were 

expressed as follows (Wu et al. 2014a and 2014b):   

ECe (dS m-1) = 0.0005EMV
2 − 0.0779EMV + 12.655 (R2 = 0.850)  (8) 

ECe (dS m-1) = 0.0002EMH
2 + 0.0956EMH + 0.0688 (R2 = 0.791) (9) 
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2.3.8 Verification and reliability analysis 

The predicted salinity by both SVR and RFR modeling was calibrated against both the TS and VS to 

evaluate their performance at each test of the given conditions (e.g., rasterization type and Number of 

Tree), either by linear regression analysis using R2 or by the Root Mean Square Error (RMSE) and the 

Normalized RMSE (NRMSE), which can shed light on the goodness of fit between the prediction and 

measurement. Mathematically, the latter can be expressed as:    

 

RMSE = [(Σ𝑖=1
𝑛 (𝑆�̂� − 𝑆𝑖)

2
)/𝑛]1/2     (10) 

NRMSE = RMSE/(𝑆𝑚𝑎𝑥-𝑆𝑚𝑖𝑛)      (11)  

where 𝑆�̂� is the ith predicted soil salinity, 𝑆𝑖 is the ith measured salinity, n is the sample number of the 

observed dataset, 24 in this case; Smax and Smin are respectively the maximum and minimum values of 

the measured salinity. NRMSE is an unitless index; the lower the value, the better the fit.  

In addition, the converted salinity of the typical land use types in the study area such as alfalfa, mixed 

croplands, long-term fallows and bare saline soil, and built-up area, were also sampled through 

definition of their corresponding polygons to check the reliability of prediction.  

 

3. RESULTS AND DISCUSSION 

3.1 Effects of Rasterization Procedure 

3.1.1 Effects of buffering field samples  

As revealed in Tables 1 and 2, the buffering-based rasterization produced better modeling results (i.e., 

higher R2) for both RFR and SVR algorithms (Table 2) than the direct rasterization (Table 1) when 

calibrated against the ground-truth TS and VS. This is because the direct rasterization (Figures 2a, 2c) 

resulted in irrational presentation of the training sample plots in space (small pink plots were not 

enclosed in the centers after rasterization), and the buffering-based rasterized pixels were able to 

envelop better the sampling plots, and hence more spatially representative (Figures 2b, 2d). 

  

3.1.2 Effect of rasterization cell size 

Different rasterization of cell sizes led to a different performance of salinity prediction (Tables 1 and 

2). As shown in Figures 2a and 2c, the original sample plots were distributed on the borders or close to 

the borders of the rasterized cells of 30, 60 and 90 m, indicating a poor representation of the samples 

after direct rasterization. For the buffering-based rasterization, sample plots (Figures 3b, 3d) were fully 

encompassed inside the resampled pixels, which could represent well the sample plots leading to a 

relevant salinity prediction, i.e., generally high R2 in Table 2. As for RFR, both circular buffers with 

radius of 30 and 60 m produced equally good prediction, better than that of 90 m (Tables 2 and 3). 

Probably in the latter case, the buffer size was too large (about 2.5 ha in area) and hence shaded the 

spatial variability of salinity. In case of SVR, the buffer cell with a radius of 60 m outperformed the 

other two cases. Overall, a 60-m of initial buffer size will be recommended for both RFR and SVR 

modeling.  
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 3.1.3 Number of Trees with RFR  

The Number of Trees (NT) affected the prediction results when applying RFR algorithm (Table 3). 

Despite its capacity to capture most of the features when NT was set to 100, the prediction results (R2) 

were better when it was set to 300 and 500 for buffers with a radius of both 30 and 60 m, and R2 slightly 

decreased when it was 1000. Hence, 300 or 500 are recommended for NT when dealing with salinity 

mapping in general case.   

3.1.4 Prediction from EMV  

As seen in Table 4, the predictivity of soil salinity by RFR and SVR with EMV seems slightly lower 

than that with EMH (Tables 2 and 3) given the same buffering-based rasterization procedure. Table 4 

also indicated that rasterization with 60-m buffering procedure delivered the best prediction for both 

RFR and SVR algorithms when EMV data set was used as TS.    

 

3.2 Soil Salinity Maps and Their Reliability 

3.2.1 Salinity Maps 

The best predicted apparent soil salinity maps by RFR on EMH (e.g., NT = 500, buffer size = 30 m, 

Table 3) and by SVR on EMV (buffer size = 60 m, Table 4), and that by MLR on EMH were converted 

into ECe (dS m-1). They were presented in Figure 3 either in continuous ramp (Figure 3a, 3b and 3c) or 

classified severity grades (Figure 3a’, 3b’ and 3c’) respectively by MLR, RFR, and SVR. 

Although performing differently in different land use types, RFR estimated salinity was closer to the 

field measured ones than SVR in built-up areas and alfalfa cropland in the defined polygons (Figure 3a, 

3b and 3c, and the mean values in Table 5). Theoretically, the salinity should be zero in the built-up 

areas, and very low in the vigorously performing croplands (e.g., < 4-8 dS m-1), including the salt-

tolerant crops such as alfalfa. SVR seemed to have overestimated salinity in these two types of land use 

(Table 5). In comparison with RFR and SVR, salinity predicted by MLR is also close to the measured 

ones for these two land use categories.  

For mixed croplands, all three algorithms predicted reasonably well salinity when compared with 

measured ECe (Table 5).   

Regarding the long-term fallows including the abandoned croplands, uncultivated during the past 15-

20 years, the three algorithms performed equally well, 31.9-37.9 dS m-1, approximate to the field 

measured mean, 38.8-39.15 dS m-1. For the saline bare soil, all algorithms predicted a salinity ranging 

from 43.65 to 52.11 dS m-1, lower than the measured mean, 88.93 dS m-1. Probably, our field sampling 

was not enough (only three pairs) to cover the full spectrum of the spatial variability of salinity in this 

land use unit.    

 

3.2.2 Prediction reliability  

Calibration by linear regression revealed that the reliability of prediction was high as R2 of the RFR and 

SVR prediction vs TS and VS were respectively 0.9349 and 0.9416 (Table 3), 0.8606 and 0.8888 (Table 

2) based on EMH or 0.8943 and 0.8525 (Table 4) based on EMV. The R2 of the MLR prediction were 

0.8371 and 0.8135 vs TS and VS respectively. Generally, all these regression algorithms could achieve 

reasonable estimation, and RFR performed best.  
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Table 6 presents the verification results by RMSE and NRMSE, another frequently applied indicator to 

evaluate the reliability. The same as revealed by the linear regression analysis, salinity prediction by 

RFR has the least RMSE and NRMSE, followed by MLR having less NRMSE than SVR.  

 

3.3 Approach Assessment  

To use field samples as training set for classification and regression modeling is a common procedure. 

Our study revealed that the buffering-based rasterization of samples, e.g., with a buffer radius of 30-60 

m for RFR and 60 m for SVR, is an efficient procedure to use point data as such rasterization can better 

preserve spatial locations and representativeness of the sample plots.    

Among the tested machine learning algorithms, RFR outperformed SVR, and generated maps with 

higher reliability. Unlike RF and SVM classification, RFR and SVR can run fast, from tens of seconds 

to several minutes on a normal personal computer depending on the Number of Trees for RFR, and on 

the Kernel Function type for SVR. One disadvantage of the machine learning algorithms is that they 

cannot produce intuitive models as MLR does.  

Farifteh et al. (2007) and Taghizadeh-Mehrjardi et al. (2014) have already predicted soil salinity using 

machine learning algorithms. The tests of Farifteh et al. (2007) were carried out in very small areas 

(about 5-6 hectares) in the Netherlands and Hungary. Whether their approaches were applicable to 

larger areas was not clear. We tested PLSR in our research site, and the accuracy of the resulted maps 

was low, only 69.5-72.3% (R2 = 0.69-0.72) corresponding to TS of 30 m and 60 m of buffering size, 

much lower than our machine learning results (R2 = 0.85-0.94). 

The study conducted in a remote site in Iran by Taghizadeh-Mehrjardi et al. (2014) seemed comparable 

with ours. But they used EM38 readings to produce ECa maps by Kriging interpolation, and these maps 

were then input as independent variables with others for salinity prediction. Our concern lies in the 

uncertainty of their interpolated ECa maps because EM38 readings were limited and the ECa in most 

pixels was “predicted”. In our opinion, using such uncertain ECa as inputs to predict salinity seems 

irrelevant. Moreover, the algorithm they used, Regression Tree, is only a part of the RFR and less 

predictively powerful than the latter (Breiman 2001). We believe thence our approaches and results 

would be more robust. 

 

 

4. CONCLUSIONS  

This study applied machine learning regression algorithms to soil salinity prediction and mapping using 

a combined optical-radar dataset and field measurements. The results showed that it was effective and 

practical to employ thematic biophysical indicators from both optical and radar data to achieve the 

objectives. The removal of vegetation impact on the radar backscattering coefficients increased 

substantially the predictivity of the radar data. Rasterization of the field samples with buffering radius 

of 60 m was the most effective procedure for creating the training sets.  

Among the tested regression algorithms, RFR performed best with the highest correlation coefficients 

and least RMSE (5.275 and 6.793 dS m-1) and NRMSE (6.10 and 7.69%) against TS and VS. The main 

RMSE was produced in the strongly salinized areas such as the saline bare soil, where more field 

samples will be needed in future to improve the prediction performance. It was also noted that MLR 

can predict salinity with acceptable NRMSE (<10%), and its advantage lies in the possibility to deliver 

intuitive models. Hence, we concluded that RFR and MLR are two good regression predictors of salinity 

and recommended for application elsewhere.    
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TABLE 1  Agreement (R2) between the predicted soil salinity (EMH) and field measured salinity (EMH) with direct 

rasterization of the field samples for training (RFR was run by setting the Number of Tree (NT) to 100) 

Salinity Prediction RFR Predicted Soil Salinity (EMH) SVR Predicted Soil Salinity (EMH) 

Initial Rasterized Cell (m) 30 60 90 30 60 90 

Resampled Pixel (m) 30 30 30 30 30 30 

R2 Against Training Set 

(TS) (EMH) 
0.4904 0.7238 0.7922 0.6529 0.8007 0.8009 

R2 Against Validation Set 

(VS) (EMH) 
0.4889 0.7147 0.7812 0.6500 0.7905 0.7795 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 2 Agreement (R2) between the predicted soil salinity (EMH) and field measured salinity (EMH) resulted from the 

buffering-based rasterization of the field samples (RFR was run by setting the Number of Trees (NT) to 100) 

Salinity Prediction RFR Predicted Salinity (EMH) SVR Predicted Salinity (EMH) 

Buffer Size (radius in m) 30 60 90 30 60 90 

Initial Rasterized Cell (m) 10 10 10 10 10 10 

Resampled Pixel (m) 30 30 30 30 30 30 

R2 Against TS (EMH) 0.9206 0.9283 0.8727 0.8353 0.8606 0.7903 

R2 Against VS (EMH) 0.9285 0.9075 0.8590 0.8493 0.8888 0.8102 
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TABLE 3  Agreement (R2) between the RFR predicted salinity (EMH) and field measured one (EMH) given the different 

Numbers of Trees (NT) when buffering-based rasterization was conducted 

Number of 

Trees 

Rasterization and Calibration Predicted EMH vs Measured EMH 

Buffer Size (radius in m) 30 60 90 

Initial Rasterized Cell (m) 10 10 10 

Resampled Pixel (m) 30 30 30 

100 
R2 Against TS (EMH) 0.9206 0.9283 0.8727 

R2 Against VS (EMH) 0.9285 0.9075 0.8590 

300 
R2 Against TS (EMH) 0.9325 0.9235 0.8700 

R2 Against VS (EMH) 0.9432 0.9019 0.8546 

500 
R2 Against TS (EMH) 0.9349 0.9331 0.8867 

R2 Against VS (EMH) 0.9416 0.9141 0.8697 

1000 
R2 Against TS (EMH) 0.9246 0.9189 0.8802 

R2 Against VS (EMH) 0.9352 0.8978 0.8639 

 
 

 

 

 

 

 

 

 

TABLE 4  Performance of RFR and SVR in salinity prediction with different buffer size rasterization 

 RFR Predicted Salinity (EMV) SVR Predicted Salinity (EMV) 

Buffer Size (radius in m) 30 60 90 30 60 90 

Initial Rasterized Cell (m) 10 10 10 10 10 10 

Resampled Pixel (m) 30 30 30 30 30 30 

R2 Against TS (EMV) 0.8807 0.9360 0.8516 0.7848 0.8943 0.7683 

R2 Against VS (EMV) 0.8860 0.8937 0.8131 0.7280 0.8525 0.7170 

(Note: RFR was run at NT of 100) 
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TABLE 5  Predicted salinity (dS m-1) by different algorithms for different land use types under the sample polygons defined 

in Figures 3a, 3b and 3c 

Land Use 

Types 

RFR SVR MLR Mean Converted 

ECe from EMH 

Readings 

Mean Lab-

Analyzed Soil 

ECe Min Mean Max Min Mean Max Min Mean Max 

Alfalfa (Green 

Cropland) 
1.213 4.045 11.672 0.001 16.394 32.750 0.010 2.010 8.813 

3.880 

(2 triangles) 

3.1 

(1 sample) 

Mixed 

Croplands 

(incl. newly 

Sown) 

0.341 2.946 23.089 0.001 1.142 21.875 0.045 4.958 32.162 
4.216 

(14 triangles) 

4.0 

(25 samples) 

Built-Up 0.703 3.186 16.909 0.000 8.377 32.280 0.002 1.491 33.085 N/A N/A 

Long-term 

Fallows (incl. 

Abandoned 

Croplands) 

2.619 31.996 101.578 3.984 36.405 158.900 10.030 37.967 126.351 
39.515 

(5 triangles) 

38.8 

(4 samples) 

Saline Bare 

Soil 
2.582 43.650 122.270 5.240 52.113 169.890 13.885 47.182 149.120 

88.929 

(3 triangles) 
N/A 

 

 

 

 

 

 

 

 

 

TABLE 6  RMSE and NRMSE of prediction by different regression algorithms 

Field Measured 

Sample Sets 

RFR SVR MLR 

RMSE (dS m-1) NRMSE (%) RMSE (dS m-1) NRMSE (%) 
RMSE (dS 

m-1) 
NRMSE (%) 

TS 5.275 6.10 9.410 10.29 8.208 9.09 

VS 6.793 7.69 9.651 10.52 8.280 9.19 
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FIGURE 1 Location of the study area and distribution of the field sampling points 
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FIGURE 2 Difference between the direct rasterization (a, c) and buffering-based rasterization 

(b, d) of the field averaged sample plots No 2 and No 11 (the smallest pink squares). a and c: 

with initial rasterized cells of 30 (blue), 60 (green) and 90m (brown); and b and d: first into 

circular buffers of a radius of 30, 60 and 90 m to which were assigned the same colors as the 

former, then were finally resampled to 30 m pixels 
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FIGURE 3 Soil salinity maps of the study area predicted by different regression algorithms and 

converted into ECe (dS m-1) Salinity expressed in continuous ramp (a) and severity levels (a’) 

predicted by Multivariate Linear Regression (MLR) modeling using the combined Model 2 of 

Wu et al. (in press), with an accuracy of 83.7% and 81.5% vs the training set (TS) and the 

validation set (VS) respectively; the same meaning for (b) and (b’) predicted by Random 

Forests Regression (RFR), with an accuracy of 93.5% and 94.2% vs TS and VS respectively 

(Table 3); and (c) and (c’) by Support Vector Regression (SVR), with an accuracy of 89.4% 

and 85.2% vs TS and VS respectively (Table 4). Polygons defined in Figure 3a, 3b and 3c were 

the sample areas of the main land use categories used for evaluating the reliability of the 

predicated salinity (Table 5). 


