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Abstract
The productivity of durum wheat [Triticum turgidum subsp. durum (Desf.) van
Slageren] is affected by drought and/or high temperatures, challenges to be
amplified by climate change. Pre-breeding using wild relatives can supply use-
ful traits for durum wheat improvement to adapt to major abiotic and biotic
stresses. Sixty-seven lines issued frombackcrosses of Cham5 andHaurani durum
wheat varieties with accessions of Triticum aegilopoides (Link) Bal. ex Koern.,
T. dicoccoides Koern. ex Schweinf., T. urartu Thumanian ex Gandilyan, and
Aegilops speltoides Tausch were evaluated for drought and heat tolerance. The
trials were conducted during two seasons (2016−2017 and 2017–2018) at Tes-
saout,Morocco, under full irrigation (optimal conditions) and rainfed conditions
(drought stressed) and at Wed Medani, Sudan, under full irrigation combined
with heat stress. The recurrent parents, along with eight best cultivars and elite
breeding lines, were used as checks. Drought reduced the grain yield by 62%.
Grain yield and drought tolerance index were used to identify lines to be used by
breeding programs to enhance drought and heat tolerance. The derivatives lines
142014 (Cham5*3/T. aegilopoides), 142074 (Cham5*3/T. dicoccoides), and 142015
along with the checks Icarachaz and Gidara 2 ranked among the best under heat
stress. Under drought stress, the lines 141972 (Haurani*2/T. urartu) and 141973
(Cham5*2/T. dicoccoides) yielded 196 and 142% of their recurrent parents’ yield,
respectively. High variation was found for agronomic and phenology traits, with
heading time explaining 16% of grain yield under drought, while thousand kernel
weight accounted for 18% of the yield under heat. We conclude that gene intro-
gression from wild relatives pays off and can increase wheat resilience to cope
with climate change effects.

Abbreviations: BLUE, best linear unbiased estimation; BLUP, best linear unbiased prediction; BY, total biomass; DHE, days to heading; DMA, days
to maturity; DTI, drought tolerance index; GFP, grain-filling period; GY, grain yield; HI, harvest index; PHT, plant height; SDSPK, number of seeds per
spike; SPKM2, number of spikes per square meter; TKW, thousand-kernel weight; TSIR, Tessaout under full irrigation; TSRF, Tessaout under rainfed
conditions; WMD, Wed Medani.
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1 INTRODUCTION

Durum wheat [Triticum turgidum subsp. durum (Desf.)
van Slageren, 2n = 4x = 28, AABB] is an economically
important cereal crop cultivated in >21 countries over 13
million ha, with a global annual production of 36 Tg (Haile
et al., 2019; Kadkol & Sissons, 2016; Tidiane Sall et al.,
2019). Durum wheat is mainly used for pasta production
in Europe and north America, whereas it is used for
couscous, bourghul, and various types of bread in North
African and West Asian countries (Troccoli, Borrelli, De
Vita, Fares, & Di Fonzo, 2000). Around 75% of durum is
cultivated around the Mediterranean basin, contributing
50% to the global production. However, climate change
is expected to increase the temperature by 3–5 ◦C and
to reduce precipitations by 4–27% during the cropping
season (Flato et al., 2013; Li, Wu, Hernandez-Espinosa,
& Peña, 2013), which will have drastic effects on crop
production (Lobell et al., 2008). The global wheat area
exposed to drought has doubled between 1979 and 2006
(Li, Ye, Wang, & Yan, 2009); in Australia, for example, the
yield reduction associated with drought reached 47% in
the year 2006 (Rauf, Al-Khayri, Zaharieva, Monneveux,
& Khalil, 2016). Wheat yields worldwide are expected
to decrease by 6% for each 1 ◦C increase in temperature
(Asseng et al., 2015). Moreover, future yield losses asso-
ciated with the predicted increase in heat and drought
are expected to reach 10–30% by 2050 (Kumar et al., 2013;
Lobell, Schlenker, & Costa-Roberts, 2011).
The development of productive and stress-resilient vari-

eties will require the mobilization of novel diversity from
landraces, primitive wheats, and wheat wild relatives to
overcome the challenges associated to climate change, and
to feed the growing human population (Nachit & Elouafi,
2004; Rajaram & Hettel, 1995). These genetic resources,
having evolved under various natural biotic and abiotic
challenges over long periods, should have accumulated
genes for adaptation to drought- andheat-prone conditions
(Zhang, Mittal, Leamy, Barazani, & Song, 2017).
A large number of Triticum and Aegilops species are

included in the primary and secondary gene pools of
durum wheat, including its direct progenitors [Aegilops
speltoides Tausch, T. urartu Thumanian ex Gandilyan,
T. dicoccoides Koern. ex Schweinf., and T. dicoccum
(Schrank) Schübl.] (Faris, 2014). These species along
with all other Aegilops species with S genomes and all
primitive wheats with A, B, and G genomes constitute
an important but still untapped reservoir of useful genes
for genetic improvement of durum wheat (Ceoloni et al.,
2017; Valkoun, 2001). They are regarded as last resort by
most breeders because of reduced performance associated
with undesirable genetic drags in the lines derived from
interspecific crosses (Dempewolf et al., 2017; Mondal et al.,

Core Ideas

∙ Drought and heat stresses are the major abiotic
stresses affecting wheat productivity.

∙ Wheat wild relatives are a reservoir of valuable
traits for wheat breeding.

∙ Pre-breeding should be supported to link con-
servation to use of crop wild relatives.

2016; Peng, Sun, & Nevo, 2011). However, several studies
have reported on the value of introgression useful traits
from primitive wheats and wild relative species, making
wheat the second crop with the most cited uses of its wild
relatives (Dempewolf et al., 2017; Mickelbart, Hasegawa,
& Bailey-Serres, 2015; Zaïm et al., 2017; Zhang et al., 2017).
The wheat wild relatives were mainly used as sources
of resistance to major diseases in both durum and bread
wheat (Anikster, Manisterski, Long, & Leonard, 2005;
McIntosh, Hart, Devos, Gale, & Rogers, 2003; Monneveux,
Rekika, & Zaharieva, 2000; Valkoun, Hammer, Kucerova,
& Bartos, 1985) and insects (Bassi et al., 2019; Nsarellah,
Amri, Nachit, El Bouhssini, & Lhaloui, 2003). Accessions
of Aegilops sharonensis Eig, A. searsii M. Feldman & M.
Kislev, A. speltoides, Triticum aegilopoides (Link) Bal. ex
Koern., T. dicoccum, and T. dicoccoides showed good levels
of tolerance to drought, cold, and salinity, and higher con-
tents of proteins and micronutrients (Dempewolf et al.,
2017; Monneveux et al., 2000; Nachit et al., 2015; Nevo
& Chen, 2010). Triticum aegilopoides showed high level
of drought tolerance (Mehrabad Pour-Benab, Fabriki-
Ourang, & Mehrabi, 2019). Wild emmer T. dicoccoides
harbors a rich allelic variation that can be used to enhance
performances of durum wheat across diverse environ-
ments and constraints, as well as to improve the end-use
qualities (Merchuk-Ovnat, Fahima, Krugman, & Saranga,
2016; Nachit and Elouafi, 2004). Drought tolerance is also
found within Ae. speltoides, Ae. longissima Schweinf. &
Muschl., andAe. searsii (Waines, 1994), and salt tolerance is
found in T. dicoccum (Hunsal, Balikai, & Viswanath, 1990).
The durum wheat improvement program at ICARDA

(International Center for Agricultural Research in the Dry
Areas) was among the few to extensively use primitive
and wheat wild relative species in its breeding efforts
(Nachit & Elouafi, 2004). A large number of lines issued
from interspecific crosses are advanced every year for
evaluation in the breeding program including for heat and
drought tolerance.
Drought and heat tolerance are complex traits; their

mechanisms are generally environment specific, and
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the strong genotype × environment interaction reduces
the effectiveness of selection (Kaur, Singh, & Behl, 2016;
Mickelbart et al., 2015). Therefore, breeding for heat and
drought requires the integration of multiple disciplines
and methodologies in plant science (Mwadzingeni,
Shimelis, Dube, Laing, & Tsilo, 2016). Wheat wild relatives
are generally assessed using physiological parameters
associated with stress tolerance (Dulai et al., 2006;
Mehrabad Pour-Benab et al., 2019; Pradhan et al., 2019;
Sultan, Hui, Yang, & Xian, 2012; Zaharieva, Gaulin,
Havaux, Acevedo, & Monneveux, 2001). For the derived
lines, segregating populations, and elite lines, the eval-
uation of drought and heat tolerance can be done using
empirical approach by assessing agronomic performance
under typical environmental stresses and using stress
tolerance and susceptibility indices (Mason et al., 2010;
Mohammadi, Armion, Kahrizi, & Amri, 2010; Sio-Se
Mardeh, Ahmadi, Poustini, & Mohammadi, 2006), or
by measuring physiological parameters associated with
tolerance to heat and drought (Araus, Slafer, Royo, &
Serret, 2008; Reynolds & Langridge, 2016).
The objectives of this study were (a) to assess the con-

tribution of wheat wild relatives to drought and heat tol-
erance through evaluation of durum wheat lines derived
from interspecific crosses, and (b) to evaluate the effect of
heat and drought on several morphological and agronomic
traits of durum wheat derivatives.

2 MATERIALS ANDMETHODS

2.1 Plant material

The study was conducted with 77 lines of durum wheat
(Triticum turgidum subsp. durum) including 67 lines
derived from interspecific crosses, the two recurrent
parents, and eight checks (Supplemental Table S1).
The durum derivatives are the result of interspecific
crosses between two durum wheat cultivars (Cham 5
and Haurani) and Triticum turgidum subsp. dicoccoides
(syn. Triticum dicoccoides), Triticum monococcum subsp.
aegilopoides (syn. Triticum aegilopoides), Triticum urartu,
and Aegilops speltoides (Table 1). The scientific names of
the wheat accessions used in the study are given based
on the nomenclature proposed by van Slageren (1994).
Valkoun (2001) described the procedure for the develop-
ment of these lines where several backcrosses followed the
interspecific hybridization to restore fertility and break
the undesirable gene linkages. The list of wild parents
used in the crosses is presented in Supplemental Table
S2. Pedigree selection started at the (BC2, BC3, and BC4)
F2 lines in 2002 and lasted until F5, where the lines were
advanced as bulk until F11.

TABLE 1 Pedigree of the durum wheat derivatives evaluated
for drought and heat tolerance

Pedigree
Wild parent
genome No of lines

Cham5*2/T. aegilopoides AmAm 3
Cham5*2/T. dicoccoides AuAuBB 6
Cham5*2/T. urartu AuAu 3
Cham5*3/T. aegilopoides AmAm 20
Cham5*3/T. dicoccoides AABB 13
Cham5*3/T. urartu AuAu 6
Cham5*4/Ae. speltoides SS (BB) 7
Haurani*2/T. aegilopoides AmAm 2
Haurani*2/T. urartu AuAu 6
Haurani*3/T. dicoccoides AuAuBB 1
Total – 67

In addition to the pedigree and selection history (Sup-
plemental Table S1), the derivatives lines and their recur-
rent parents were sequenced using DArTseqTM technol-
ogy to assess their relatedness and diversity. The genotyp-
ing was done in collaboration with the International Cen-
ter for Maize and Wheat Improvement (CIMMYT) at the
Genetic Analysis Service for Agriculture (SAGA) facility
in Mexico, to generate genomic profile of the germplasm.
The genotypic raw data were filtered according to markers
criterion; minor allele frequency > 5% and missing data
≤ 10%. This resulted in 6,196 DarTseq markers that were
used to perform the principal component analysis (PCA)
using the pcaMethods (Stacklies, Redestig, Scholz,Walther,
& Selbig, 2007) package in R software.

2.2 Experimental design and field
conditions

The trials were carried out during two consecutive seasons
(2016–2017 and 2017–2018) at two locations: the Tessaout
experimental station (31◦49′ N, 7◦25′ E) in Morocco,
characterized by a dry season with an average annual
precipitation of 266 mm with frequent droughts, and Wed
Medani (WMD) in Sudan (14◦24′ N, 33◦31′ E; 407 m asl),
where heat is the major stress. In Tessaout, two trials
were planted each season, one under full irrigation (TSIR)
representing the non-stressed environment, the second
under rainfed conditions considered as drought stressed
environment (TSRF). The irrigated trials were irrigated six
times every season; the first irrigation was done at sowing,
whereas the others were supplemented at different growth
stages (i.e. postemergence, tillering, jointing, booting, and
grain filling). The rainfed trial received only one irrigation
at sowing to ensure homogeneous and simultaneous
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germination with the TSIR trial. In WedMedani, the trials
were irrigated at an interval of 7–10 d.
Each trial was randomized as an incomplete block

design (α-lattice)with two replications. Each replicate con-
sisted of 11 blocks, with seven genotypes in each. The plots
were laid out in four rows 2m longwith a sowing density of
300 seeds m−2; the distance between rows was 0.30m. The
best agronomic practices (fertilizers, weeding, and fungi-
cides) recommended for each location were applied.

2.3 Data collecting

The phenology traits collected in this study were as fol-
lows. Days to heading (DHE) was recorded as the num-
ber of days from the first irrigation until 50% of the plants
of each plot reached at heading. Days to maturity (DMA)
was observed when 90% of the plants in each plot are dry.
The grain-filling period (GFP) was calculated as the dif-
ference between DHE and DMA. The plant height (PHT)
was recorded at maturity from the ground to the top of the
stem excluding the spike. The number of seeds per spike
(SDSPK) was estimated based on three spikes collected
from the internal rows avoiding the borders. The number
of spikes per square meter (SPKM2) was calculated based
on number of spikes in a homogenous portion of 0.25 m2.
The two internal rows of each plot were harvested to esti-
mate the total biomass (BY), the grain yield (GY), and the
harvest index (HI) expressed as the ratio of grain weight to
BY. The thousand-kernel weight (TKW) was estimated by
counting and weighing 500 seeds.

2.4 Statistical analysis

To assess the genotype × environment interaction and
compute the heritability of traits across years and loca-
tions,Meta-R software (Vargas et al., 2013) was used for the
analysis of variance using linear mixed models. The loca-
tion and year were combined into a single factor (environ-
ment) for this purpose. To compute the best linear unbi-
ased predictions (BLUPs), both genotypes, environments,
and genotype × environment interaction were considered
as randomeffects to estimate the variance components and
hence the heritability. In addition, the best linear unbi-
ased estimations (BLUEs) were computed across years in
each location (TSIR, TSRF, and WMD); for this purpose,
the genotypes and their interaction with the environments
were considered as fixed effects. The heritability across
locations was estimated as follows:

𝐻2 =
σ2g

σ2g +
σ2ge

𝐸
+

σ2
Er

𝑅𝐸

where σ2g is the genotypic variance, σ2ge is the genotype
by environment interaction, σ2

Er
is the error variance, E

is the number of environments, and R is the number of
replicates.
The BLUPs of genotypes in each location across years

were computed using sommer package in R (Covarrubias-
Pazaran, 2019). This time, the location, year, and their
interaction were used as fixed effects, and the random
effect of genotypes in each location was computed using
diagonal variance structure across locations. The diago-
nal structure assumes that the variance is heterogenous
between locations and years to provide an accurate esti-
mate of the randomeffects. The replication andblock effect
were nested in each environment. In addition to replica-
tion and block effects, spatial analysis using row and col-
umn was performed as needed for the variance analysis of
SPKM2.
The heritability in each location was estimated as

follows:

ℎ2 =
σ2g

σ2g +
σ2e

𝑟

where σ2g is the genotypic variance, σ2e is the error vari-
ance, and r is the number of replications.
Pearson correlation coefficients between the traits were

computed using Hmisc Package version 4.3-0 (Harrell &
Dupont, 2019). To estimate the contribution of different
independent traits to GY, stepwise regression was con-
ducted using leaps package (Lumley, 2017). Both corre-
lation and stepwise regression analysis were performed
using theBLUEs across years in each location. The formula
for the stepwise regression is as follows:

𝐺𝑌 ∼ 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝐵𝑌 + 𝐷𝐻𝐸 + 𝐺𝐹𝑃 + 𝑆𝑃𝐾𝑀
2

+ 𝑆𝐷𝑆𝑃𝐾 + 𝑇𝐾𝑊 + 𝑃𝐻𝑇

The GY reduction in TSRF was calculated as a percent-
age in comparisonwith GY in TSIR. The drought tolerance
index (DTI) was computed using the BLUPs of GY in each
location as follows:

DTI =
𝑌s𝑌p

�̄�2
p

whereYs is theGYunder drought stress,Yp is theGYunder
optimal conditions (TSIR) and �̄�2

p is the square of average
GY under optimal conditions.
The plots were constructed using ggplot2 (Wickham,

2016) and corrplot (Wei & Simko, 2017) package in R
software.
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F IGURE 1 Precipitations (mm) and maximum and minimum temperatures (◦C) registered at Tessaout during the cropping seasons of
2016–2017 and 2017–2018

F IGURE 2 Minimumandmaximum temperatures (◦C) registered atWedMedani during the cropping seasons of 2016–2017 and 2017–2018

2.5 Climatic conditions

The total rainfall registered in Tessaout was 207 and
294 mm during the 2016–2017 and 2017–2018 seasons,
respectively. The second season was more favorable, as
the precipitations were evenly spread during the different
growth stages of the crop (Figure 1). The first season at Tes-
saout was characterized by an increase in temperatures at
the end of the cycle, which was associated with an absence
of precipitation during the GFP.
In Wed Medani, no rainfall was registered during the

two seasons. The average maximum and minimum tem-
peratures were 37 and 18 ◦C, respectively. This range was
consistent during the two seasons, and themaximum tem-
peraturewas always higher than 30 ◦C (Figure 2). The aver-
age maximum temperature registered in both seasons was
37 ◦C. The first season (2016–2017) was characterized by
higher temperatures at the end of the cycle.

3 RESULTS

3.1 Genotype × environment
interaction

The combined ANVOA showed that the effect of geno-
types was significant for all traits except for SPKM2, which
had the lowest heritability across environments (.40). The
genotypes explained 5% of the variation in GY, 7% in TKW,
and 14% in both HI and SDSPK. The environment effect
was significant for all the traits and explained the high-
est ratio of the variance. The environment variance varied
from 30% for SDSPK, to 75% for GY, to >95% for DHE and
GFP.Ahigh level of significancewas observed for the geno-
type × environment interaction except for BY, which had a
heritability of .54 across environments.
The phenological traits (DHE and GFP) had the same

heritability of .56, which is relatively lower in comparison
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TABLE 2 Combined ANOVA across environments for phenology and agronomic traits of durum wheat derivatives grown at Tessaout
and Wed Madi experiment stations during the 2016–2017 and 2017–2018 seasons

Trait G variance G × ENV variance ENV variance H2 CV
PHT 14.82** 17.41** 284.59** .70 7.3
DHE 3.21** 12.74** 308.95** .56 2.3
GFP 2.03** 3.35** 89.24** .56 6.7
SPKM2 68.02ns† 16,986,175.13* 5.26ns .40 16.4
SDSPK 9.73** 5.24* 20.37ns .69 13.6
TKW 4.988** 2.72** 39.64** .74 11.5
HI 11.81** 13.61** 28.62* .70 19.1
BY 490,327.13** 338,896.9ns 18,985,499.46** .54 18.4
GY 230,539.29** 212,157.61** 3,470,507.06** .71 23.2

Note. G, genotype; Env, environment; PHT, plant height; DHE, days to heading; GFP, grain-filling period; SPKM2, number of seeds per square meter; SDSPK,
number of seeds per spike; TKW, thousand-kernel weight; HI, harvest index; BY, total biomass; GY, grain yield.
*Significant at the .05 probability level.
**Significant at the .01 probability level. †ns, not significant.

TABLE 3 Descriptive statistics and heritability of days to heading (DHE), grain-filling period (GFP), plant height (PHT), and harvest
index (HI) at Tessaout under optimal conditions (TSIR) and drought stress (TSRF)

TSIR TSRF
Trait Min. Max. Mean h2 Min. Max. Mean h2

DHE 105 106 105 .69 96 109 102 .81
GFP 51 56 53 .48 45 54 50 .72
PHT 98 121 110 .75 73 92 83 .72
HI 31 46 39 .71 16 30 24 .81

with heritabilities of the other yield components such as
TKW (.74) and SDSPK (.69) (Table 2).
The effect of the year on GY and other agronomic traits

was important at all locations, with higher impact in the
stressed environments (Figure 3). At TSRF, higher values
were recorded for all traits in the second season except
for DHE and GFP that remained the same. The average
GY in TSRF increased from 2,253 kg ha−1 in 2016–2017
to 4,557 kg ha−1 in 2017–2018. Simultaneously, BY, HI,
SPKM2, and TKW showed higher values in the second sea-
son at TSRF (Figure 3). The same findings were observed
in WMD as the GY increased from 1,380 kg ha−1 the first
season to 2,183 kg ha−1 during the second. All the other
traits increased; TKWwent from 29 to 36 g, whereas the HI
increased to an average of 31% in the second year. Despite
the effect of year on the stressed environments (TSRF and
WMD), the performance in the optimal conditions (TSIR)
was not affected by the year (Figure 3). In the second sea-
son, the average GY at TSIR, for example, was 13% higher
than TSRF, despite that the second season was more favor-
able for the rainfed trial.

3.2 Screening for drought tolerance

3.2.1 Drought effect on agronomic traits

The comparison of performance between TSIR and TSRF
revealed that drought stress reduced different traits mea-
sured. The genotypic expression of the phenological traits
increased under drought stress. The heritability of DHE
varied from .69 in TSIR to .80 in TSRF. Similarly, GFP her-
itability increased from .48 under optimal conditions to .72
under drought. On average, the heading time was reduced
by 4 d (Table 3), whereas PHTwas reduced by 25% at TSRF.
The reduction in PHT has affected the BY.
The yield losses due to drought across the years was 62%;

this was associated with a significant decrease in all yield
components measured (Figure 4). Under optimal condi-
tions, the GY ranged between 4,075 and 7,971 kg ha−1 with
a heritability of .51 and an average of 5,954 kg ha−1. Icarac-
haz was the highest yielding line at TSIR with a GY of
7,971 kg ha−1, followed by the line 142064 (7,491 kg ha−1)
that yielded 33%higher than its recurrent parent (Haurani)
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F IGURE 3 Boxplots of the best linear unbiased predictions (BLUPs) of the phenology and agronomic traits of durum wheat derivatives
at Tessaout under irrigated (TSIR) and rainfed conditions (TSRF) and Wed Medani (WMD) during the 2016–2017 and 2017–2018 seasons

at TSIR. The line 141999 (Haurani*2/T. urartu) yielded
7,174 kg ha−1 in TSIR; this was significantly higher that the
recurrent parent by 27% (Supplemental Table S3).
Under drought stress, all the lines with GY higher than

3,000 kg ha−1 were derived from interspecific crosses. The
highest GY in TSRF was 3,628 kg ha−1 recorded by a line
derived from a cross of Cham 5 to Triticum dicoccoides
(141973), it outyielded significantly its recurrent parent by
42%. It was followed by lines derived from crosses of both
recurrent parents toTriticumaegilopoides,Triticumurartu,
and Aegilops speltoides (Supplemental Table S4).

The two genotypes, 142013 and 129080 (Cham1), were
more stable as their BLUPs were high under both rain-
fed and irrigated conditions. The GY heritability at TSRF
increased to .61, which implies an increase of the genotypic
effect under stress.
Total biomass was the second trait most affected by

drought; the observed losses were 43%, and the gap
between optimal and stressed conditions was highly sig-
nificant (Figure 3). The relatively low heritability is shown
in the density plot where the range is small at both
TSIR and TSRF. Harvest index showed higher ability to
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F IGURE 4 Density plots for the best linear unbiased predictions (BLUPs) of grain yield, biological yield, harvest index, 1000-kernelweight,
spikes m−2, and seeds spike−1 under optimal conditions (TSIR) and drought stress (TSRF) at the Tessaout experiment station

distinguish genotypes, as the heritabilitieswere highunder
both optimal conditions (h2 = .71) and drought stress
(h2 = .81). The HI reduction due to drought was 37%.
Among yield components, SPKM2 had the lowest her-

itability at both TSIR (.20) and TSRF (.38). The mean
SPKM2 decreased significantly from408 at TSIR to 281 (31%
reduction) at TSRF due to drought (Figure 4). The low her-
itability did not allow us to discriminate the most desir-
able genotypes for SPKM2 at TSIR. The trait least affected
by drought was SDSPK which showed a reduction of 26%,
on average, and higher genotypic expression in the optimal
conditions (h2 = .43).

3.2.2 Selection of drought-tolerant
genotypes

The comparison of GY at TSIR and TSRF revealed a nega-
tive correlation between the two environments;most of the
genotypes with high yield potential showed low drought
tolerance, and vice versa (Figure 5a). However, two inter-
esting groups of genotypes were identified with respect to
drought tolerance (Figure 5b). In the first group combining
drought tolerance and high yield potential, the line 142013
had the secondhighestDTI (0.52) and yielded 6,829 kg ha−1
under optimal conditions. Similar findings are observed

with other lines: 142060 (DTI= 0.44), 142008 (DTI= 0.43),
141997 (DTI = 0.42), and 142046 and 142018 (DTI = 0.40).
The second group represents the low-yield-potential geno-
types with good performance under drought. The most
distinguished line in this group was 141973 (Cham5*2/T.
dicoccoides ICWT 601116) with the highest DTI (0.53).
This group includes the lines with the highest GY at
TSRF (141973, 141996,142020, 142055, 141972, and 141990;
Supplemental Table S5). However, these lines did not
respond positively to the favorable conditions at TSIR.
(Figure 5).

3.3 Screening for heat stress

The screening for heat tolerance was approached by com-
paring the performance of entries under continuous heat
stress prevailing at WMD. Phenological traits, especially
the heading time, showed a good potential to identify desir-
able genotypes for heat stress. The heritabilities of DHE
and GFP were .68 and .50, respectively (Table 4). Earli-
ness was an important trait for the lines with high yield
at WMD. For example, the two checks Marzak and Louiza
reached heading after 60 d only. The lines 142001 and
142015 (both derived from T. urartu) headed after 58 and 67
d, respectively. The line 142007, also derived fromT. urartu,
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F IGURE 5 Biplot of (a) grain yield (GY) at Tessaout under irrigated (TSIR) and rainfed (TSRF) and (b) drought tolerance index (DTI)
plotted against the GY at TSIR of durum wheat lines

TABLE 4 Descriptive statistics for phenology and agronomic traits under heat stress at Wed Medani across the two seasons of 2016–2017
and 2017–2018

Statistic DHE GFP PHT SPKM2 SDSPK TKW BY GY HI
Min. 55 27 63 238 28 26.59 4,271 634 17
Max. 70 31 72 247 44 32.23 7,276 2,082 29
Mean 64 29 68 243 36 29.52 5,922 1,377 24
h2 .68 .50 .48 .10 .67 .36 .47 .60 .37

Note. DHE, days to heading; GFP, grain-filling period; PHT, plant height; SPKM2, number of seeds per square meter; SDSPK, number of seeds per spike; TKW,
thousand-kernel weight; BY, total biomass; GY, grain yield; HI, harvest index.

headed 13 d before its recurrent parent (Haurani) (Supple-
mental Table S5).
In terms of yield components, SPKM2 had the lowest

heritability (.10); the range of the BLUPs was small and
did not allow to distinguish desirable genotypes for this
trait. The heritabilities of TKW and SDSPK were .36 and
.67, respectively. The SDSPK ranged between 28 and 44
seeds per spike; this range allowed us to identify some lines
with high spikelet fertility under heat stress. The check
Louiza and the recurrent parent Haurani had the highest
SDSPK (44), and Haurani derivatives had lower seeds per
spike at WMD compared to their recurrent parent. The BY
averaged 5,922 kg ha−1 at WMD with a heritability of .47
(Table 4). Louiza, Marzak, and the line 142074 were the
most distinguished lines for BY; their BY was >7,000 kg
ha−1 (Supplemental Table 5).
The average GY in WMD was 1,377 kg ha−1 with a heri-

tability of .60 (Table 4). The maximum yield was 2,082 kg
ha−1, which was obtained by the line 142015 (Cham5*2/T.
urartu) (Supplemental Table S5). In addition to the checks
Marzak and Louiza, other lines derived from crosses with

T. aegilopoides and T. dicoccoides were among the highest
yielding under heat stress (Supplemental Table S5).
A biplot of GY among TSIR, TSRF, and WMD was

performed to identify suitable lines combing high yield
potential with heat and drought tolerance (Figure 6). Sev-
eral lines combining heat tolerance and high yield poten-
tial were identified. Interestingly, the checks Gidara 2 (IG
135226) and Icarachaz combined high yield under heat
(1,930 and 1,831 kg ha−1) with the high GY at TSIR (7,476
and 7,971 kg ha−1) (Figure 6a). The line 142001 (Hau-
rani*2/T. urartu) showed a potential for breeding for tol-
erance to heat stress. Most of the stable genotypes with
respect to heat stress are derived fromcrosses of both recur-
rent parents to Triticum urartu, Triticum dicoccoides, and
Triticum aegilopoides.
In terms of combining heat and drought tolerance, three

interesting lines derived from the same cross of Cham 5 to
Triticum aegilopoides were identified (142009,142066, and
142068). Another two lines derived from Triticum urartu
(142026) andAegilops speltoides (142055) showed suitability
for breeding to both drought and heat (Figure 6b).
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F IGURE 6 Biplot of (a) grain yield (GY) at WedMedani (WMD) plotted against GY at Tessaout under irrigated conditions (TSIR), and (b)
GY at WMD plotted against GY at Tessaout under rainfed conditions (TSRF)
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F IGURE 7 Pearson correlation coefficients between the different traits in the three environments under (a) optimal conditions, (b)
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3.4 Correlation and stepwise regression
analyses results

At TSIR, GY was positively correlated to TKW (r2 = .57),
HI (r2 = 079) BY (r2 = .82), and SDSPK (r2 = .51). The
DHEwas negatively associated with GFP (r2 =−.65), TKW
(r2 = −.38), HI (r2 = −.38), and GY (r2 = −.27). Under
drought stress (TSRF), an important cluster composed of
interrelated traits (HI, GFP, TKW, and SDSPK) showed sig-
nificant correlations with GY (Figure 7). Very high neg-
ative correlation was observed between DHE and GFP
(r2 = −.93). This later showed significant positive correla-
tion with TKW (r2 = .29).
At WMD, GY was negatively correlated with GFP

(r2 = −.24), but positively correlated with HI (r2 = .68),
TKW (.45), SPKM2, and BY. The DHE affected negatively
the SDSPK andHI. The correlation betweenDHE andGFP
was not significant.

The results of the stepwise regression showed that BY
explained the highest portion of GY variation in the three
environments, accounting for 38, 49, and 26% at TSIR,
TSRF, and WMD, respectively. The highest variation of
GY explained by DHE was 16% under drought conditions.
Under heat stress at WMD, the contribution of DHE was
not significant. However, GFP was important under heat,
explaining 3.65% of GY at WMD. In the two other envi-
ronments, GFP contribution was not significant. The yield
componentswere important under optimal conditions and
heat stress, as 18.24% of the GY was explained by SDSPK
and TKW at TSIR, and 17.62 and 4.93% of the GY was
explained by TKW and SDSPK at WMD, respectively. In
addition, 1.61% of the GY under heat was associated with
SPKM2, whereas this trait was not important at TSIR and
TSRF. The SDSPK was more important than TKW under
drought stress at TSRF, since it explained 2.30% of the GY
variation (Figure 8).
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3.5 Comparison of the derivatives to the
recurrent parents

The comparison of the durum wheat derivatives with
their recurrent parents revealed high variability among
the durum wheat derivatives. The highest variation in
GY under drought was observed in lines derived from

interspecific crosses with Triticum dicoccoides. The lines
derived from Aegilops speltoides yielded higher than
Cham 5 under both stresses. Triticum urartu is also a
potential source of combined tolerance to drought and
heat (Figure 9). The most interesting lines in TSRF were
141973 and 141996; they are derived from crosses with
Triticum dicoccoides and Aegilops speltoides, respectively.
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F IGURE 10 Biplot of the first two principal components (PCs)
of the principal component analysis using DarTseq markers colored
by (a) the cultivated parent and (b) the wild parent. Cham 5 L= lines
derived from Cham 5; Haurani L = lines derived from Haurani

The accession 142015 (Cham5*2/T. urartu ICWT 500651)
had a GY of 2,082 kg ha−1, which was 60% higher than
its recurrent parent Cham 5 under heat stress. Many lines
derived from Triticum dicoccoides were ranked among the
best performing under heat stress.
The GY of Haurani derivatives lines from crosses with

Triticum urartu were higher than their recurrent parent
under both heat and drought stresses. In TSRF, the GY of
the line 141972 was almost twice (196%) the GY of Haurani.
At WMD, the genotypes 142001 (Haurani*2/T. urartu) and
142006 (Haurani*2/T. aegilopoides) yielded 50% more than
their recurrent parent. The line derived from Triticum dic-
occoides did not show significant increase in comparison
with Haurani in TSRF.
The principal component analysis based on the DarTseq

markers showed that the first five components explained
61% of the genotypic variance in the population. The biplot
of the two first components (explaining 49%) revealed
that the genotypes are clustered mainly according to the
recurrent parent (Figure 10a), and then following the
wild parents (Figure 10b). Two lines derived from Hau-
rani (142065 and 142001) were included within the clus-

ter of lines derived from Cham 5. The second level clus-
ters followed the genome of the wild parents; the lines
derived from Triticum urartu and Triticum aegilopoides
(AA genome) were clustered together, whereas lines
derived from Triticum dicoccoides (AABB genome) were
different. Four lines derived from the same cross of Cham
5 to T. dicoccoides were distinguished from the other
lines. The genotypes derived from Aegilops speltoides were
grouped together, except for the accession 142055, which
was different. No pattern was observed with respect to the
number of backcrosses.

4 DISCUSSION

The climatic data showed differences between the two
seasons in terms of precipitation distribution at Tessaout;
however, the first season has allowed us to screen the
germplasm for both terminal drought and heat, whereas
the second season has allowed us to screen the germplasm
for mild drought. These stresses are the major factors
affecting cereal production underMediterranean climates,
which explains the year-to-year fluctuations (Zhang et al.,
2018) and the genotype × environment interactions show-
ing the need for selecting genotypes with wide yield stabil-
ity. The yield losses at TSRF due to drought (62%) are sim-
ilar to those reported previously by Sukumaran, Reynolds,
and Sansaloni (2018). This penalty depends on the growth
stage, but mostly on the duration of crop exposure to
stress (Balla et al., 2019; Nezhadahmadi, Prodhan,&Faruq,
2013). It can be concluded that the distribution of rain-
fall in the Mediterranean region is more determinant than
the amount of precipitation during the cropping season.
The evaluation of breeding germplasm under irrigated and
nonirrigated conditions at Tessaout will allow breeders to
select lines combining yield potential with drought toler-
ance, which could be advanced to later stages of yield eval-
uation under multiyear, multilocation trials to assess their
yield stability.
The average maximum temperature registered at WMD

is higher than the optimal temperature for wheat growth
during both vegetative (20–30 ◦C; Balla et al., 2019) and
reproductive stages, where the optimal temperature dur-
ing anthesis is 23 ± 1.15 ◦C while for the optimal tem-
perature for grain filling is 21.3 ± 1.27 ◦C (Farooq, Bram-
ley, Palta, & Siddique, 2011). High temperature has been
associated with reductions or lengthening of the durum
wheat cycle (Bauer et al., 1988; Villegas et al., 2016). This
is also in line with the fact that high temperature shortens
the growth stages and accelerates the plant growth (Par-
ent & Tardieu, 2012; Reynolds et al., 2017). These reported
findings were observed on phenology and cycle duration
at WMD.
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Therefore, the Wed Medani station can serve breeders
to screen for specific adaptation to continuous heat stress.
The selected lines could combine tolerance mechanisms
to heat in both vegetative and reproductive stages; this
presents an important and valuable advantage, as most of
the studies focus on heat effect at the reproductive stage
only (Balla et al., 2011; ElHassouni et al., 2019; Farooq et al.,
2011; Stone & Nicolas, 1995). Due to its latitude and pho-
toperiod, the germplasm to be generated could better fit
sub-Saharan African countries, where wheat cultivation is
expanding (Tidiane Sall et al., 2019). In addition, this site
could serve to study the in situ mechanisms of heat toler-
ance in wheat and other crops.
Although many lines are derived from similar crosses,

high heritability was observed for GY across environ-
ments (h2 = .71), which suggests that some lines could
be adapted to more than one environment simultaneously.
For example, many lines showed their potential to be used
as parental material to breed for both heat stress and
yield potential. Other lines combined tolerance to heat and
drought stresses. These findings demonstrate the potential
of cropwild relatives to enhance durumwheat yield poten-
tial, simultaneously with the improvement of tolerance to
abiotic stresses. Most of the traits introgressed from crop
wild relatives in wheat focused on improvement of resis-
tance to pests and diseases with limited emphasis on yield,
abiotic stresses, and quality attributes (Hajjar & Hodgkin,
2007; Zaïm et al., 2017). The contribution of the wheat pro-
genitors was observed directly in the GY, wheremany lines
were as performant as the best checks, or by improving
the yield components. For example, Triticum aegilopoides-
derived lines showed the potential to improve the grain
number per spike under all the environments. Under heat
stress, the line 142007 (Haurani*2/T. urartu) was early with
high TKW,whichmakes it a potential line for earliness and
high grain-filling rate under continuous heat stress. This
finding highlights the ability to include such lines in the
breeding programs to improve specific adaptive traits to
heat and drought stresses.
Comparing the genotypic performance under both

stresses suggests that the mechanisms of heat and drought
tolerance could be different. This was observed in the cor-
relation and stepwise regression analysis under each envi-
ronment. The BY showed strong correlation to GY under
all environments, as it explained the greatest part of varia-
tion in GY. Furthermore, the second largest decrease asso-
ciated with drought was observed in BY, which is in line
with the results reported by Zhang et al. (2018) in their
meta-analysis. Moreover, yield losses under drought were
associatedwith a lower supply of assimilates to support the
reproductive stages and seed growth (Zhang et al., 2018).
Therefore, the development of germplasm with higher
biomass through early vigor and higher tillering capacity

could lead to higher yields under heat and drought. The
advantage in yield can be explained by greater remobi-
lization of assimilates to the grains during the reproduc-
tive stage. Reynolds et al. (2017) also suggested the above-
ground biomass as a criteria for selecting the parents to
breed for adaptation to heat-prone environments. They
suggested using landraces and wild relatives as a source of
higher biomass.
Phenology was important under both stresses. AtWMD,

five of the highest yielding lines reached heading before
60 d,whichhighlights the importance of earliness in escap-
ing more severe heat stress in later stages. Earliness is also
important in escaping terminal drought combined with
heat stress experienced at TSRF as confirmed by step-
wise regression analysis. These results confirm that ear-
liness is one of the most effective strategies in breeding
for environment characterized by terminal abiotic stresses
(Araus et al., 2008). Mondal, Joshi, Huerta-Espino, and
Singh (2015) also concluded that earliness under Mediter-
ranean conditions allows the plants to escape terminal heat
stress in addition to promoting an efficient use of avail-
able resources under continuous heat stress.However, very
early germplasm might result in show low yield poten-
tial (Blum & Jordan, 1985). Based on the significant neg-
ative correlation between GY and GFP at WMD, achieving
high yield under continuous heat stress will require a com-
bination of earliness with high grain-filling rate. Grain-
filling rate was suggested as a selection criteria for heat
stress tolerance, as it affects the TKW (Baillot, Girousse,
Allard, Piquet-Pissaloux, & Le Gouis, 2018; Wu, Tang, Li,
&Wu, 2018). The two lines 142057 and 142007 derived from
crosses of Triticum urartu to both recurrent parents com-
bined earliness with high TKW under heat stress, which
suggests their value as parental material to improve these
traits towards achieving higher heat tolerance.
Under drought conditions (TSRF), the GFP has signifi-

cant positive correlation with GY. This phase is reported
as the most vulnerable stage of wheat to water deficit,
(Guoth et al., 2009; Jha, Bohra, & Singh, 2014; Sehgal et al.,
2018). Therefore, selecting early genotypes with long GFP
could lead to selecting lines with good levels of drought
tolerance.
In terms of yield components, drought stress affected

the spike fertility, which in turn reduced the grain number
per spike. This trait had higher heritability at WMD (.67),
which highlights the ability of SDSPK to discriminate
heat-susceptible and heat-tolerant lines. This is confirmed
by the stepwise regression analysis, where 5% of GY under
heat was explained by SDSPK, making it the third most
important trait after BY and TKW. These findings confirm
the results of other studies highlighting the contribution
of the number of grains per spike to higher yields under
drought and heat stresses (El Hassouni et al., 2019; Fábián,
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Sáfrán, Szabó-Eitel, Barnabás, & Jäger, 2019; Leilah &
Al-Khateeb, 2005; Villegas, García del Moral, Rharrabti,
Martos, & Royo, 2007; Zhang et al., 2018). Vahamidis,
Karamanos, and Economou (2019) reported high plasticity
of seed number per spike in wheat, which can allow
breeders to achieve genetic gains under drought and heat
stresses using this trait. We found high variability for
SDSPK in Triticum aegilopoides and Triticum dicoccoides
derivatives at all environments. Under drought stress, the
lines 141996, 141999, and 142000 derived from Aegilops
speltoides, Triticum urartu, and Triticum dicoccoides can
be used as sources to improve this trait. Other studies have
shown that Triticum dicoccoides was found to have high
plasticity for phenology, biomass, and spike dry matter
under terminal drought stress, and accessions of Triticum
dicoccoides showed advantage in spike productivity (Peleg
et al., 2005; Suneja, Gupta, & Bains, 2019).
The correlation and stepwise regression results showed

the strong association between TKW and GY at all envi-
ronments. The TKW is among the key traits that con-
tributed to genetic gain in wheat breeding under drought,
as confirmed by several studies (Leilah & Al-Khateeb,
2005; Mohammadi, Farshadfar, & Amri, 2016). However,
this trait was not largely exploited to select for heat toler-
ance (Lopes et al., 2012). Under heat stress in WMD, this
trait explained the highest ratio of GY; therefore, selec-
tion for higher TKW under the continuous heat stress can
result in higher GY. Several lines derived from Triticum
urartu showed the potential for use to improve this trait
under both drought and heat stresses. However, some of
the interspecific-derived lines with winter growth habit
had shown low yields despite the high TKW.
Under TSRF, the highest number of SPKM2 was reached

by lines derived from Triticum dicoccoides, followed by
those derived from crosses with Triticum aegilopoides.
The SPKM2 showed positive correlation with GY under
heat at WMD. Despite the low heritability across environ-
ments, this trait showed some variation under drought
stress. Many lines derived from crosses with Triticum dic-
occoides and Triticum aegilopoides had high SPKM2 at
TSRF. These two species, in addition to Aegilops speltoides,
were reported as potential sources of drought tolerance
(Djanaguiraman et al., 2019; Sultan et al., 2012). The high
tillering capacity of Triticum dicoccoides (Peleg et al., 2005)
can be exploited to increase the effective tillers, and there-
fore SPKM2, under drought. The low heritability of this
trait under heat did not allow us to assess the value of this
trait for breeding for heat tolerance.
The comparison of durum wheat derivatives with their

respective recurrent parentswas used to show the potential
contribution of wheat wild relatives to improve heat and
drought tolerance. All interspecific crosses have resulted
in a wide range of variability under different environments

for all traits measured. This shows the potential of using
crop wild relatives to broaden the genetic base of wheat.
No clustering pattern was observed with respect to the
number of backcrosses when using molecular markers.
The best lines for different traits could be found in differ-
ent backcrossing populations, showing that the selection
could start after BC2 unless the purpose is to develop iso-
genic lines of the recurrent parent. Fewer backcrosses are
needed in the case of interspecific crosses involving prim-
itive wheats and wild relatives that are in Gene pool 1. In
fact, some genotypes showed an advantage for high yield
potential in comparison with the recurrent parent with
only two backcrosses (142064, 141999, and 141970). The pri-
mary gene pool species can present an important advan-
tage when breeding for traits with polygenic inheritance;
such is the case for heat and drought tolerance. The recom-
bination of homologous chromosomes allows simultane-
ous transfer of genes from multiple chromosomes (Valk-
oun, 2001). The use of these species is made easy, as the
rate of success in the crosses is high and does not require
the use of advanced technics. The derived lines can be sup-
plied in a short time period to supply the breeders with
new diverse germplasm. Therefore, direct progenitors of
wheat present an ideal germplasm for wheat improvement
against abiotic stresses.
However, when crosses are done with species in the sec-

ondary and tertiary gene pools, more backcrosses might be
needed to avoid the effect of genetic drag and to reduce
the length of any translocated chromosome segment of
the wild species. Nevo and Chen (2010) reported other
species from the secondary and tertiary gene pools with
potential contribution to drought tolerance.Aegilops genic-
ulata was also identified as a source of heat and drought
tolerance; the population evaluated showed high biomass
production under those stresses (Zaharieva et al., 2001).
The geographic distribution of wild relatives affects their
level of drought tolerance (Peleg et al., 2005; Zaharieva
et al., 2001). Therefore, targeted selection of accessions
in ex situ collections and collection of new accessions
in drought- and heat-stressed environments will allow
broader and novel diversity to improve tolerance to
these stresses.
Pre-breeding efforts are needed to supply sources of

valuable traits needed by the breeders to develop elite
germplasm that will adapt to climate change effects and
respond to requirements of farmers and consumers. The
use of crop wild relatives should not be restricted to pest
and diseases resistance; it should cover their contribution
to improve nutritional value and industrial quality, in addi-
tion to efficient use of inputs. The evaluation and use of
wild relatives and their derived pre-breeding germplasm
should be strengthened to ensure the link between conser-
vation and the use of crop wild relatives.
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