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Fusarium wilt (Fusarium udum Butler) is an important biotic constraint to pigeonpea

(Cajanus cajan L.) production worldwide. Breeding for fusarium wilt resistance continues

to be an integral part of genetic improvement of pigeonpea. Therefore, the study was

aimed at identifying and validating resistant genotypes to fusarium wilt and determining

themagnitude of genotype× environment (G× E) interactions throughmulti-environment

and multi-year screening. A total of 976 genotypes including germplasm and breeding

lines were screened against wilt using wilt sick plot at Patancheru, India. Ninety two

genotypes resistant to wilt were tested for a further two years using wilt sick plot at

Patancheru. A Pigeonpea Wilt Nursery (PWN) comprising of 29 genotypes was then

established. PWN was evaluated at nine locations representing different agro-climatic

zones of India for wilt resistance during two crop seasons 2007/08 and 2008/09.

Genotypes (G), environment (E), and G × E interactions were examined by biplot which

partitioned the main effect into G, E, and G × E interactions with significant levels

(p ≤ 0.001) being obtained for wilt incidence. The genotype contributed 36.51% of

resistance variation followed by the environment (29.32%). A GGE biplot integrated with

a boxplot and multiple comparison tests enabled us to identify seven stable genotypes

(ICPL 20109, ICPL 20096, ICPL 20115, ICPL 20116, ICPL 20102, ICPL 20106, and ICPL

20094) based on their performance across diverse environments. These genotypes have

broad based resistance and can be exploited in pigeonpea breeding programs.

Keywords: fusarium wilt, GGE biplot, genetic diversity, host plant resistance, multi-environment, pigeonpea

INTRODUCTION

Pigeonpea (Cajanus cajan L. Millisp.) commonly known as redgram, is a low input, rain fed crop
with characteristics that provide economic returns from each and every part of the plant (Saxena,
2006). Pigeonpea cultivation has a direct bearing on the overall economic and financial well-being
and the nutritional status of the subsistence farmers in the subcontinent of Eastern and Southern
Africa, Asia, and South America (Hillocks et al., 2000; Souframanien et al., 2003). It also restores
soil fertility by fixing atmospheric nitrogen and has the ability to solubilize fixed phosphorus (Ae
et al., 1990). India is the principal pigeonpea growing country and contributes nearly 90% of world’s
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acreage and production, followed by Myanmar, Kenya, and
Malawi (FAOSTAT, 2013).

Wilt caused by Fusarium udum Butler, is the major constraint
to pigeonpea production worldwide (Kannaiyan et al., 1984).
The incidence of disease has been reported from 30 to 60% at

FIGURE 1 | Symptoms of Fusarium wilt on infected pigeonpea. (A) Loss

of turgidity. (B) Slight inter-veinal chlorosis and drying of leaves. (C) Internal

browning of xylem vessels. (D) Purple band on stem extending upwards from

the base.

TABLE 1 | Pedigrees and agronomic traits of the pigeonpea genotypes used in the Pigeonpea Wilt Nursery during 2007/08 and 2008/09.

Serial No. Genotype Type Pedigree Days to 50% flowering Days to 50% maturity

1 ICP 9174 Gene bank accession ICRISAT-COOP-N/A 161 252

2 ICP 12749 Gene bank accession ICP 7065× 7035-F4B-S218X 138 218

3 ICP 14819 Gene bank accession ICRISAT-COOP-0624 158 210

4 ICPL 20093 Breeding line ICPX 900148-7* 127 183

5 ICPL 20094 Breeding line ICPX 900152-* 129 185

6 ICPL 20096 Breeding line ICPX 900146-* 127 185

7 ICPL 20097 Breeding line ICPX 900146-* 131 187

8 ICPL 20098 Breeding line ICPX 900146-* 128 184

9 ICPL 20099 Breeding line ICPX 900155-* 127 184

10 ICPL 20100 Breeding line ICPX 900148-* 127 183

11 ICPL 20101 Breeding line ICPX 900147-* 128 185

12 ICPL 20102 Breeding line ICPX 900148-9* 126 181

13 ICPL 20103 Breeding line ICPX 900150-* 131 186

14 ICPL 20106 Breeding line IPH487 Inbred-12* 127 182

15 ICPL 20107 Breeding line IPH487 Inbred-2* 130 185

16 ICPL 20109 Breeding line IPH487 Inbred-9* 131 187

17 ICPL 20110 Breeding line IPH487 Inbred-7* 130 186

18 ICPL 20113 Breeding line IPH487 Inbred-1* 129 185

19 ICPL 20114 Breeding line IPH487 Inbred-11* 129 184

20 ICPL 20115 Breeding line IPH487 Inbred-14* 125 181

21 ICPL 20116 Breeding line IPH487 Inbred-4* 125 181

22 ICPL 20120 Breeding line IPH487 Inbred-17* 131 186

23 ICPL 20126 Breeding line GUPH 1126 Inbred-3* 128 183

24 ICPL 20128 Breeding line GUPH 1126 Inbred-11* 126 182

25 ICPL 20129 Breeding line GUPH 1126 Inbred-10* 131 185

26 ICPL 20132 Breeding line GUPH 1126 Inbred-1* 129 184

27 ICPL 20134 Breeding line GUPH 1126 Inbred-7* 129 183

28 KPBR 80-2-4 Accession Gene bank accession 165 215

29 ICP 2376** Accession ICRISAT-COOP-0436 110 150

30 Local wilt sus. check – – – –

*Selfed population, **Susceptible check.

flowering and crop maturity stages (Kannaiyan and Nene, 1981),
however it can also cause yield losses up to 100% in susceptible
cultivars (Kannaiyan et al., 1984; Reddy et al., 1990; Okiror, 1999;
Dhar et al., 2005). Wilt can be diagnosed by symptoms like loss of
turgidity, slight inter-veinal chlorosis, internal browning of xylem
vessels, and a purple band on stem extending upwards from the
base (Figure 1). An updated review of biology, pathogenicity,
epidemiology, and management of pigeonpea wilt has been
recently published by Pande et al. (2013a).

Management of wilt is essential to ensure stable pigeonpea
production. Fungicide is not economical and doesn’t give
complete protection. Hence it is imperative to identify stable
sources of resistance and exploit them to develop resistant
varieties of pigeonpea through breeding approaches. A number
of strategies to deal with wilt were identified over the past
two decades by screening pigeonpea genotypes under national
and international programs. Some of these sources have been
effectively used in breeding programs and released as resistant
varieties for disease prone areas (Nene and Kannaiyan, 1982;
Okiror, 1999; Sharma and Pande, 2011; Sharma et al., 2012a).
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TABLE 2 | Details of test environments used for evaluation of pigeonpea genotypes against wilt disease.

Location State Environments* Latitude (N) Longitude (E) Altitude (m) Agro-climatic zone** Soil type Annual rainfall (mm)

Akola Maharashtra Ak-07 20◦42′ 76◦59′ 282 PZ Vertisol 915.2

Ak-08 593.4

Badnapur Maharashtra Bd-07 19◦23′ 75◦43′ 582 PZ Vertisol 485.2

Bd-08 113.8

Bangalore Karnataka Bn-07 12◦58′ 77◦35′ 920 SZ Alfisol 804.8

Bn-08 884.6

Gulbarga Karnataka Gu-07 17◦19′ 76◦50′ 454 SZ Vertisol 764.2

Gu-08 744.0

Patancheru Andhra Pradesh Pa-07 17◦31′ 78◦15′ 545 SZ Vertisol 707.0

Pa-08 1105.0

Dholi Bihar Dh-07 25◦59′ 85◦35′ 52.2 NEPZ Alfisol 2624.8

Dh-08 1830.3

Kanpur Uttar Pradesh Ka-07 26◦26′ 80◦19′ 126 NEPZ Alfisol 542.6

Ka-08 687.1

Khargone Madhya Pradesh Kh-07 21◦49′ 75◦36′ 252 CZ Vertisol 995.5

Kh-08 472.9

Sehore Madhya Pradesh Se-07 23◦11′ 77◦04′ 457 CZ Vertisol 893.0

Se-08 679.5

*Environment is denoted as first two letters of each locations followed by year of screening. ** PZ, Plateau zone; SZ, South zone; NEPZ, North eastern plane zone; CZ, Central zone.

The existence of variants/races of F. udum is a major
drawback for breeding programs for wilt resistance (Mishra
and Dhar, 2003; Mishra, 2004; Singh et al., 2011; Tiwari
and Dhar, 2011). F. udum isolates from diverse geographical
origins have been shown to exhibit high variability in their
virulence (Mishra and Dhar, 2003; Mamta Sharma, unpublished
data). This reinforces the need to search for additional stable
sources of resistance to wilt. Multi-location and multi-year
testing of genotypes is essential to check stability of genotype
resistance across pigeonpea growing regions. Genotype and
genotype × environment interaction (GGE) Biplot analysis
results can discriminate between expected and realized responses
of genotypes and has been widely used in recent years to
determine the stability of disease resistance through multi-
location trials. GGE biplot is an effective method based on
principal component analysis (PCA) to fully explore data.
It allows visual examination of the relationships among the
test environments, genotypes, and the GE interactions. It is
an effective tool for: (i) mega-environment analysis, whereby
specific genotypes can be recommended for specific mega-
environments (Yan and Kang, 2003; Yan and Tinker, 2006),
(ii) genotype evaluation (the mean performance and stability),
and (iii) environmental evaluation (the power to discriminate
among genotypes in target environments; Ding et al., 2007).
The interaction was primarily reported to evaluate the yield
and other traits in multi-location trials (Yan et al., 2000; Yan
and Kang, 2003). Recently this methodology has been used to
characterize and identify stability of germplasm, breeding lines
and cultivars resistance to diseases such as Fusarium head blight
and powdery mildew in wheat (Kadariya et al., 2008; Lillemo
et al., 2010), ascochyta blight in faba bean (Rubiales et al.,
2012), Fusarium wilt and ascochyta blight in chickpea (Sharma

et al., 2012b; Pande et al., 2013b), and sterility mosaic disease in
pigeonpea (Sharma et al., 2015). Therefore, the present study was
conducted with an objective to identify and validate pigeonpea
genotypes resistant to F. udum through multi-environment
and multi-year evaluations and identify stability of their
resistance.

MATERIALS AND METHODS

Plant Material
A total of 976 genotypes obtained from the pigeonpea breeding
program (ICRISAT, Patancheru) were evaluated for wilt using
wilt sick plot during 2004/05 crop season. Resistant lines
(≤10 % wilt incidence) selected after preliminary screening
were further evaluated for 2 more years by wilt sick plot at
ICRISAT (Patancheru) during 2005/06 and 2006/07 crop seasons.
Finally a Pigeonpea Wilt Nursery (PWN) of 29 genotypes was
constituted from the above three subsequent evaluations based
on their total wilt reaction (≤10% wilt incidence) for multi-
year and multi-environment screening. The PWN consisted of 4
germplasm accessions, 24 breeding lines, and a highly susceptible
commercial check with days to maturity ranging from 150 to
252 days (Table 1). Additionally one local susceptible check from
the test location was included to ensure disease pressure. The
summary of the pedigrees for the 29 genotypes used in this study
are presented in Table 1.

Test Locations
The PWN was evaluated against wilt at nine locations in
India (Akola, Badnapur, Bangalore Dholi, Gulbarga, Kanpur,
Khargoan, Patancheru, and Sehore). Test locations were selected
based on different agro-climatic zones (Table 2) and availability
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FIGURE 2 | Pigeonpea wilt nursery testing locations in India during 2007/08 and 2008/09.

FIGURE 3 | Field screening (wilt sick plot) for Fusarium wilt disease of

pigeonpea.

of wilt sick plot. These sites represented six major pigeonpea
producing states (Andhra Pradesh, Bihar, Karnataka, Madhya
Pradesh, Maharashtra, and Uttar Pradesh) with a wide diversity
in latitude from 12◦58′ at Bangalore to 26◦26′ at Kanpur,
longitude from 75◦43′ at Badnapur to 85◦35′ at Dholi and
altitude ranging 52.2m of Dholi to 920m of Bangalore from
mean sea level. Details of the tested environments (location,
state, latitude, longitude, altitude and their agro-climatic zone)
are given in Table 2 and also indicated in map (Figure 2).

TABLE 3 | Analysis of variance for wilt per cent incidence of 29 pigeonpea

genotypes evaluated at nine locations under artificial epiphytotic

conditions during 2007/08 and 2008/09.

Source of

variation

Degree of

freedom

Sum of

square

Mean sum of

square

P Variation (%)*

Genotype

(G)

28 75749.31 2705.33 <0.001 36.51

Environment

(E)

17 60838.63 3578.74 <0.001 29.32

G × E 476 70178.37 147.43 <0.001 33.82

*Relative percentage contribution of each source of variation to the total variance.

Multi-Environment Evaluation and
Validation
The PWN constituting of 29 genotypes with consistent and
higher levels of resistance were evaluated at multi-environments
in 2007/2008 and 2008/2009. Seed stocks of test genotypes
(genetically pure) were increased and maintained at ICRISAT
(Patancheru) and sub-sampled to supply to collaborators at key
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TABLE 4 | Location wise combined analysis of variance of F statistic value for wilt incidence of 29 genotypes during 2007/08 and 2008/09.

Source of variation Locations

Akola Badnapur Bangalore Dholi Gulbarga Kanpur Khargoan Patancheru Sehore

Degrees of Freedom 58 58 58 58 58 58 58 58 58

Year (Y) 2.48 38.13** 43.84** 129.2** 0.84 4773.26** 14.67** 49.06** 7749.74**

Genotype (G) 436.44** 380.19** 804.61** 211.32** 172.45** 779.18** 611.44** 331.73** 2970.71**

Y × G 38.54** 78.32** 164.94** 38.24** 10.37** 82.28** 339.45** 25.39** 323.88**

**Significant at P = 0.01.

FIGURE 4 | Frequency distribution of 29 pigeonpea genotypes for levels of Fusarium wilt disease at nine locations in India over 2 years (2007/2008 and

2008/2009). Rating of genotype reaction: resistant = 0–10% wilt incidence; moderately resistant = 10.1–20% wilt incidence; susceptible = 20.1–40% and highly

susceptible = 40.1–100%.

locations for wilt screening in the major pigeonpea growing
areas. To ensure the genetic integrity, seeds of tested genotypes
were maintained by selfing. The nursery was laid out in a
randomized complete block design (RCBD) with two replicates.
Each genotype was grown in one row, 4m in length with row-to-
row spacing of 75 cm and plant-to-plant spacing of 10 cm within
the row. A local susceptible check was planted at every 5th row
(Figure 3).

Data Collection and Analysis
Data on wilt incidence (%) was recorded at seedling, flowering
and maturity stage of the crop at each location. Cumulative
incidence of all the three stages was calculated using the following
formula:

% disease incidence =
No. of infected plants

Total no. of plants
× 100

Depending upon the range of wilt incidence, the test entries were
categorized as resistant (<10.0% incidence), moderately resistant
(10.1–20.0% incidence), susceptible (20.1–40.0% incidence), and
highly susceptible (>40% incidence). Prior to analysis, the
percentage data was arcsine transformed tomake residual normal
(Gomez and Gomez, 1984).

The transformed and replicated data was subjected to an
analysis of variance (ANOVA) to know the level of significance
of the genotypes, environment and their interaction for
individual year as well as for combined years using GenStat
software (17th edition). For the analysis, genotype (G) and
environment (E) were considered as a fixed effect. Since the
local susceptible check line was different for each location it
was eliminated from the analysis. However, the susceptible check
(ICP 2376) common at all locations was kept to compare disease
reaction. Significance of mean differences within genotypes and
environments was tested by the Student’s t-test in combination
with Bonferroni correction at the P = 0.05 level of probability.
Also, a Boxplot (environment × incidence and genotype ×

incidence) was generated to visualize the distribution pattern
of disease incidence among 29 genotypes across environments
(Wiik and Rosenqvist, 2010). To identify the relationship
between environments, Spearman’s correlation was calculated by
comparing the disease incidence of genotypes and hierarchical
cluster of environments, which was generated using Euclidean
similarity coefficient.

To determine resistance stability of genotypes across
environments, GGE biplot analyses was conducted. GGE biplot
is a method of geographical analysis of multi-environment
data (Yan, 2001; Yan and Falk, 2002). Eighteen environments
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FIGURE 5 | Boxplot showing the differences in percent wilt incidence

of each genotype across 18 environments. Box edges represent the

upper and lower quantile with median value shown in the middle of the box.

Whiskers represented by green “×” symbol. Individuals falling outside the

range of whiskers shown as red “×” symbol.

(Table 2) and 29 genotypes (Table 1) were used in this analysis,
including one common susceptible check. It displays the main
genotype effect (G) and the genotype × environment (G × E)
interaction of multi-environment tests. GGE model used to
determine the stability of genotypes across environments is:

Yij− µ − βj =

k∑

i= 1

λlξ ilηlj+ εij

where Yij is the mean genotype incidence i in environment j, µ
is the grand mean, βj is the environment j main effect, n is the
singular value, λ and ξ are the singular vectors for genotype and
environment for n = 1, 2,. . . , respectively, and εij is the residual
effect. This biplot was constructed by plotting the first two
principal components (PC1 and PC2) derived from single value
decomposition of the environment centered data. Genotype and
environments were displayed in the same plot. Each genotype
and environment was defined by their respective scores on the
two PCs. Angles between the environment vectors were used to
judge the correlation among the environments (Yan and Kang,
2003). The length of vector represents the genotypic variability
in the respective environment. In order to assay the stability of
genotypes, the average environment coordinate (AEC) is plotted
by taking the mean of PC1 and PC2 scores for environments. A
performance line passing through the origin of the biplot used
to determine the mean performance of the genotype. The arrow
on the performance line represents an increase in mean disease
incidence i.e., higher susceptibility (Sharma et al., 2012b).

RESULTS

Preliminary Screening for Identification of
Resistant Genotypes
Preliminary screening of the 976 genotypes revealed a broad
range of response to Fusarium wilt in wilt sick plot during
2004/05 at ICRISAT (Patancheru) and allowed the removal of
susceptible materials and the selection of 92 resistant genotypes
for further screening. These 92 genotypes were further screened
for two consecutive years (2005/06 to 2006/07) by wilt sick
plot and finally 28 highly resistant genotypes with consistent
disease incidence ≤10% were chosen for the creation of
the PWN.

Response of Genotypes to Wilt
The pooled ANOVA showed that G, E, and G × E effects
were significant (Table 3). Disease incidence was affected by
the genotype across the environments as genotype accounted
for 36.51% of the variance. G × E and E accounted for
33.82 and 29.32% respectively, indicating the confounding
influence of the environment on evaluation in different
locations. Significant differences were found in the genotype and
year × genotype effect for wilt incidence at all the locations
(Table 4).

Frequency distribution of combined wilt incidence for both
years is outlined in Figure 4 and the range of incidence
of genotype across environments is represented by box plot
(Figure 5). The variability in wilt incidence with respect to
genotypes was more at the Kanpur location, as shown by a
frequency distribution of disease incidence of different genotypes
(Figure 4 and Table 5). Ka-07 had the highest (36.15%) as well as
widest range of wilt incidence (6.4–73.7) across genotypes while
Se-07 had the lowest (1.56%) wilt incidence across genotypes
(Figure 6). Mean wilt incidence at the nine locations varied
from 3.2 to 27.2% (Table 5). Akola had a low mean wilt
incidence (3.2%) followed by Sehore (3.6%) and Badnapur
(5.5%). Conversely, Kanpur recorded the highest mean wilt
incidence (27.2%) followed by Khargone (11.8%) and Dholi
(10.7%). Mean performance of all the genotypes was less than
10.0%, except for ICP 12749 and ICP 14819 where the mean
disease incidence was 20.5 and 19.6%, respectively (Table 5).
The genotypes ICPL 20109, ICPL 20096, ICPL 20115, and
ICPL 20102 showed a greater degree of resistance with the
wilt incidence 2.6, 2.8, 4.0, and 4.1% respectively across 18
environments. Further, all 28 genotypes were found to have
resistance to wilt at three locations (Akola, Badnapur and
Gulbarga), 27 at Sehore, 24 each at Bangalore and Patancheru,
18 at Dholi, 15 at Khargone, and 6 at Kanpur (Figure 4
and Table 5). Correlation between environments showed that
environments, for instance Bd-08 and Pa-08, had a significant
positive correlation (r = 0.76; Supplementary Table 1) indicating
that the environments were closely related to each other with
respect to disease incidence. Finally, the relationship between
environments is shown by hierarchical clustering (Figure 7). All
the environments were found to be grouped in three major
clusters with 12 environments in cluster I, five in cluster II,
and only one in cluster I. Cluster III placed separately as
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TABLE 5 | Mean wilt incidence (%) of pigeonpea genotypes across nine locations during 2007/08 and 2008/09.

Sr. No. Entry Akola Badnapur Bangalore Dholi Gulbarga Kanpur Khargoan Patancheru Sehore Meana BMC

1 ICP 9174 1.5 0.0 0.0 4.5 3.1 35.4 26.2 0.0 1.6 10.1 ghi

2 ICP 12749 4.3 5.1 26.8 9.8 4.4 69.8 33.1 14.4 17.2 23.5 o

3 ICP 14819 3.4 8.6 41.5 25.8 4.8 73.7 3.3 10.3 5.3 22.8 o

4 ICPL 20093 0.0 8.5 24.8 7.8 8.3 25.7 8.6 2.7 2.8 13.7 n

5 ICPL 20094 0.0 3.3 0.0 11.0 3.0 11.0 13.8 3.2 0.7 10.4 ghij

6 ICPL 20096 0.0 0.0 0.0 4.5 3.0 7.1 5.5 3.9 1.3 7.2 bc

7 ICPL 20097 1.3 6.8 0.0 10.6 3.1 16.4 12.6 6.0 0.0 10.7 hijk

8 ICPL 20098 3.0 0.0 0.0 9.5 4.5 48.0 1.7 3.3 3.6 11.6 klm

9 ICPL 20099 0.0 0.0 0.0 10.3 3.6 16.1 10.5 0.0 0.8 8.2 cd

10 ICPL 20100 0.9 5.7 0.0 7.0 4.9 19.4 26.9 4.2 0.0 12.3 m

11 ICPL 20101 5.6 1.9 6.8 15.3 3.5 25.1 20.3 1.2 2.3 14.1 n

12 ICPL 20102 3.5 2.1 0.0 7.0 3.3 8.5 6.9 4.1 1.7 10.1 gh

13 ICPL 20103 2.1 1.6 0.0 16.4 3.1 23.5 5.6 3.7 2.7 11.9 lm

14 ICPL 20106 0.0 2.1 0.0 13.3 4.0 9.3 1.7 3.2 1.3 8.5 de

15 ICPL 20107 0.0 0.0 3.7 10.0 3.5 21.3 23.8 2.3 1.1 11.3 jklm

16 ICPL 20109 1.3 0.0 0.0 4.8 3.0 6.4 0.0 3.9 3.6 6.0 a

17 ICPL 20110 1.2 2.3 34.8 7.3 3.5 6.4 12.1 3.0 0.0 12.4 m

18 ICPL 20113 0.0 7.8 1.0 2.5 4.7 43.1 3.6 6.8 0.0 11.2 ijkl

19 ICPL 20114 0.0 5.6 0.0 4.5 2.9 48.1 10.8 12.4 3.2 14.0 n

20 ICPL 20115 2.4 0.0 0.0 9.8 3.9 8.2 7.1 2.6 1.9 9.4 efg

21 ICPL 20116 0.0 0.0 0.0 7.0 3.5 13.0 13.0 1.6 0.0 8.1 cd

22 ICPL 20120 1.7 1.7 4.2 12.9 3.9 14.0 11.6 2.9 0.0 10.7 hijk

23 ICPL 20126 0.8 0.0 2.1 4.8 5.4 13.0 12.2 4.5 0.0 8.8 def

24 ICPL 20128 0.0 2.9 6.6 10.0 2.7 35.5 7.9 3.0 5.2 13.5 n

25 ICPL 20129 1.6 4.9 0.0 0.0 2.5 18.0 1.2 4.1 0.0 7.0 ab

26 ICPL 20132 0.0 2.6 2.6 10.4 3.0 18.6 5.0 3.1 0.0 9.9 fgh

27 ICPL 20134 0.0 0.0 3.8 7.6 6.4 41.0 2.8 3.3 0.0 10.2 ghi

28 KPBR 80-2-4 0.0 1.3 0.0 2.3 5.4 54.2 8.7 2.4 0.0 10.3 ghij

29 ICP 2376b 58.3 83.8 61.3 64.8 60.8 60.0 44.8 77.5 49.0 53.1 p

30 Local wilt sus. check 62.0 100.0 83.8 80.0 91.1 97.4 51.7 100.0 82.1 83.1

Mean 3.2 5.5 7.6 10.7 5.9 27.2 11.8 6.7 3.6

aMean value calculated by Bonferonni multiple comparison corrected test; BMC – Bonferonni multiple comparison; bSusceptible check.

is evidenced from its highly virulent reaction to pigeonpea
genotypes.

Stability of Genotype across Environments
The GGE biplot analysis explained 80.49% of the variation (PC1
accounted for 63.03% and PC2 accounted 17.46%; Figure 8).
GGE analysis showed that environments Ka-07, Ka-08, Bd-
07, and Bn-08 had longer vectors than other environments
indicating that they were the environments that discriminated
genetic variability of the genotypes. However, Kh-08, Kh-07, Dh-
07, and Gu-07 had smaller vectors indicating they were less
discriminative of genotypes.

Seven out of 29 genotypes located farthest from the origin
formed a seven sided polygon (Figure 8). Genotypes located
at the vertices of the polygon contributed the most to the
interaction, i.e., those with the highest or lowest wilt incidence.
Genotype 29 (ICP 2376) was the most susceptible in all the
environments except in Ka-07, where genotypes 3 (ICP 14819)
and 2 (ICP 12749) were found more susceptible. The genotype
4 (ICPL 20093) was located within the polygon and nearer to
the plot origin and hence was less responsive than the vertex
genotypes.

AEC was created to conduct test-environment evaluation
and stability of the genotype. The circles in Figure 8 represent
coordinates equal to the average coordinates of the 18 marker
points for environments. The blue axis passed through the origin
of the biplot and in the direction of the AEC, labeled the AEC
absicca (AECa), and an arrow on the AECa pointed in the
direction of high wilt incidence. Twenty four genotypes at the left
side of the Y-axis had stable resistance across locations. However,
genotypes toward right side of the AEC ordinate had the higher
wilt incidence.

Genotypes ICPL 20109 (16) and ICPL 20096 (6) had the lowest
wilt incidence and placed far from the origin to left side (2.6
and 2.8% respectively) with high stability across the locations.
In addition, 5 genotypes [ICPL 20115 (20), ICPL 20116 (21),
ICPL 20102 (12), ICPL 20106 (14), and ICPL 20094 (5)] had
the lowest level of wilt incidence with high to moderate stability
across the locations. The susceptible check ICP 2376 (29) was
consistently the most susceptible as seen by its placement farthest
to the right of the origin of the biplot. The box plot (Figure 5)
also indicated that genotypes 16 (ICPL 20109), 12 (ICPL 20102),
6 (ICPL 20096), and 20 (ICPL 20115) were most stable for their
resistance against wilt, with an incidence range of 0–13% in all
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FIGURE 6 | Boxplot showing the differences in per cent wilt incidence

for 18 environments across 29 genotypes. Box edges represent the upper

and lower quantile with median value shown in the middle of the box.

Whiskers represented by green “×” symbol. Genotypes falling outside the

range of whiskers shown as red “×” symbol.

FIGURE 7 | Hierarchical cluster analysis showing the relationship

between 18 environments.

the environments in both the years of testing, however genotypes
3 (ICP 14819), 2 (ICP 12749), and 29 (ICP 2376) were found
less stable and exhibited a high range of wilt incidence across
environments.

FIGURE 8 | GGE biplot showing the relationship among 18

environments based on Fusarium wilt incidence of 29 pigeonpea

genotypes evaluated across nine locations in India. First and second

principal components PC1 (wilt incidence) and PC2 (resistance stability)

explained 63.03 and 17.46% of total variation. The environments are denoted

by first two letters of the location followed by year (2007, 07; 2008, 08);

vectors are as solid blue lines. Those genotypes contributing the most to the

interaction delimit the vertices of a polygon comprising the rest of accessions.

A perpendicular line was drawn to each side of the polygon, forming eight

individual sectors.

DISCUSSION

The lowest wilt incidence and high stability of resistance under
diverse climatic conditions are essential for the establishment of a
crop and sustainable production. Our study focuses on the effect
of the genetic background (genotype) and the environments
impact on the F. udum- pigeonpea interaction. In this study, 28
genotypes with resistant reactions to wilt at a site in Patancheru
were evaluated at different locations to mimic their resistance
performance. However, the wilt incidence of the genotypes was
found to be significantly (p < 0.05) influenced by environments,
hence rejecting the null hypothesis.

ANOVA revealed the significant differences among the G,
E, and G × E interactions. The occurrence of a significant
G × E interaction indicated inconsistent wilt incidence of
tested genotypes across locations, which may be due to the
selectionmade in one environment performing poorly in another
environment, and is attributed to distinct agro-ecologies with
different longitude, latitude and elevations. Further it reveals
that the contribution of genotypic variance for disease resistance
was more than the G × E interaction indicating that most of
the variation for reactions to disease was genetic. Similar results
were found by other studies; Beyene et al. (2012) indicated
that in a maize foliar disease resistance study the genotypic
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variance contribute the maximum when compared to the G × E
variance. Sharma et al. (2012b) also reported that the largest
portion of variability for chickpea wilt incidence was accounted
by genotypes (54.4%), followed by G× E (36.7%), and E (8.9%).

The G × E interaction had a significant effect on
the performance of the genotypes in specific environments,
indicating that their disease reaction was impaired by interaction
with the environments. For example, ICP 12749 (2) and
ICP 14819 (3) expressed resistance in Akola, Badnapur,
Patancheru, and Sehore but susceptibility in Bangalore, Kanpur,
Khargoan and hence were not stable across environments.
This variation may be attributed to the different climatic
conditions, presence of different fungal variants and virulence
of the pathogen at those locations. ICPL 20109 (16) and
ICPL 20096 (6) expressed consistent resistant reactions in all
the 18 environments and thus were highly stable. A boxplot
of genotypes also confirmed the stable performance of these
two genotypes as indicated by a disease score close to zero
as compared with other genotypes. Further, these genotypes
were placed farthest toward the left side, indicating the
lowest wilt incidence across all the environments in the GGE
biplot.

Projections of the environments with respect to their vector
length and positive PC1 score in GGE biplots indicated high
disease incidence and good levels of discriminative ability (Yan,
2001; Egesi et al., 2009). For instance, in our study Ka-07 and
Ka-08 with higher vector lengths and high PC1 score supported
higher wilt expression and discrimination than others. A boxplot
of the environment also confirmed that the isolate from Kanpur
is more virulent than the remaining isolates, indicated by a
larger box size. This variation in the wilt incidence at all
locations and in all genotypes may be due to the virulence of
the pathogen population or difference of the genotypic characters
or of the ecological conditions or combination of all the
factors. Relationships between environments were specified by
the hierarchical clustering of environments. Environments where
disease incidence of the genotypes was reduced were grouped
together in cluster I and environments where genotypes were
found with higher disease incidences were grouped separately
in cluster II and III. These results are in accordance with

the Spearman’s correlation matrix as indicated by the positive
correlation of the environments within the cluster.

In conclusion, this study sheds light on the G × E interaction
influencing wilt incidence in pigeonpea and calls for future
studies to understand how G × E interactions influences wilt
incidence. A GGE biplot, in integration with Boxplot and
multiple comparison tests enabled us to identify stable genotypes
to wilt (ICPL 20109, ICPL 20096, ICPL 20115, ICPL 20116, ICPL
20102, ICPL 20106, and ICPL 20094) based on their performance
across diverse environments. These genotypes can be deployed in
future location-specific pigeonpea resistance breeding programs.
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