# The road to sorghum domestication

Concetta Burgarella<sup>1,2</sup> (concetta.burgarella@gmail.com)

A. Berger<sup>1,2</sup>, N. Terrier<sup>2,3</sup>, A. Donkpegan<sup>1,2</sup>, V. Ranwez<sup>2,4</sup>, N. Chantret<sup>2,3</sup>, S. Glémin<sup>5</sup>, M. Deu<sup>1,2</sup>, D. Pot<sup>1,2</sup>

<sup>1</sup> CIRAD, UMR AGAP, F-34398 Montpellier, France, <sup>2</sup> AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France, <sup>3</sup> INRA, UMR AGAP, Montpellier, France, <sup>4</sup> Montpellier SupAgro, UMR AGAP, Montpellier, France, <sup>5</sup> CNRS, UMR ISEM (Institut des Sciences de l'Evolution Montpellier), Montpellier, France

#### Context

- Sorghum bicolor is the fifth cereal worldwide for grain production and the staple food for 500 million people.
- It is a C4 species (as maize and sugarcane) native of North Eastern Africa. Due to its **adaptation to heat and drought** stress, its importance is expected to increase in the current context of global warming [1].
- The cultivated pool is characterized by a clear domestication syndrome (plant architecture, shattering, dormancy and seed weight; Fig. 1) and a great phenotypic and genetic diversity [2].
- In spite of its agronomic importance, the evolutionary dynamics of sorghum domestication and the genetic bases of adaptation to the different environmental contexts are not well understood.





Fig. 1 - Wild (S. b. ssp. verticilliflorum, a) and cultivated (S.b. ssp. bicolor, b) sorghum panicles

#### Questions

- Is there an effect of domestication on gene expression?
- If yes, which genes and metabolisms are concerned?
- Are differentially expressed genes under selection?

### Materials and Methods

- The transcriptome of leaf, flower and stem was sequenced in 9 wild and 11 landrace accessions.
- Reads were mapped on the Sorghum bicolor genome v.3.1. Differential expression analysis was performed with the newtuxedo pipeline [3] and edgeR [4]. Genes were considered Differentially Expressed at a 1% False Discovery Rate.
- Genotype calling was done following the strategy proposed by [5] and polymorphism estimates were calculated with dNdSpiNpiS [6].

#### Table 1 - Expression and diversity of significantly differentially expressed (DE) versus non-DE genes

|        | Genes<br>(DE analysis) | Ratio genes overexpressed in Crop / overexpressed in Wild | Genes<br>(polymorphism<br>analysis) | Crop      |                             |                   | Wild      |           |                   |
|--------|------------------------|-----------------------------------------------------------|-------------------------------------|-----------|-----------------------------|-------------------|-----------|-----------|-------------------|
|        |                        |                                                           |                                     | $\pi_{N}$ | $\pi_{\scriptscriptstyleS}$ | $\pi_{N}/\pi_{S}$ | $\pi_{N}$ | $\pi_{S}$ | $\pi_{N}/\pi_{S}$ |
| DE     | 949                    | 0.231                                                     | 469                                 | 0.49      | 3.76                        | 0.13              | 0.60      | 4.68      | 0.13              |
| non-DE | 23698                  | $1.1^{1}$                                                 | 9867                                | 0.50      | 3.35                        | 0.15              | 0.66      | 4.06      | 0.16              |

 $<sup>^{1}</sup>$  Significantly different  $\chi^{2}$  test p-value < 2.2e-16

Table 2 – Gene Ontology terms most represented among DE genes

|  |                                   | Ontology           | GO.ID      | Term                                                  | P-value  |
|--|-----------------------------------|--------------------|------------|-------------------------------------------------------|----------|
|  | Genes<br>Overexpressed<br>in Crop | Molecular.Function | GO:0005524 | ATP binding                                           | 7.90E-08 |
|  |                                   | Molecular.Function | GO:0008017 | microtubule binding                                   | 1.20E-07 |
|  |                                   | Molecular.Function | GO:0005086 | ARF guanyl-nucleotide exchange factor activity        | 1.90E-05 |
|  | Genes<br>overexpressed<br>in Wild | Biological.Process | GO:0015979 | photosynthesis                                        | 9.80E-23 |
|  |                                   | Molecular.Function | GO:0016655 | oxidoreductase activity, acting on NAD(P)H or quinone | 5.70E-07 |
|  |                                   | Biological.Process | GO:0015986 | ATP synthesis coupled proton transport                | 1.00E-07 |



Fig. 2 – Comparison of polymorphism levels between DE and non-DE genes in crop and wild samples. Ratio crop/wild of  $\pi_N$  (a),  $\pi_S$  (b).  $\pi_N$  /  $\pi_S$  (c).



Fig. 3 – Variability of isoform expression balance in crop (y-axis) against wild (x-axis) samples [7]. Points are single genes, x=y black dashed line, linear interpolation (red line).

## Results

- Changes in expression levels are observed in 949 genes, which are mostly overexpressed in wild accessions (77 %, Table 1).
- Genes involved in photosynthesis and in reduction-oxidation processing of seed storage proteins are over-represented (Table 2).
- Among the DE, two genes for which functional evidences of impact on the phenotype are available have been identified: dwarf2, that regulates the stem internode length [8], and a phosphoribulokinase, involved in step 2 of photosynthesis [9].
- Selection against deleterious mutations is stronger in DE genes than in non-DE genes for the wild compartment (lower  $\pi_N / \pi_s$ ), but the contrary is observed for the crop pool (Fig. 2).
- Lower polymorphism diversity (Table1) and variability of the isoform expression balance (expression ratio of the alternative proteins coded by a single gene) are observed in the crop pool (Fig. 3).











 $<sup>\</sup>pi_{\rm N}$ : non-synonymous polymorphism;  $\pi_{\rm S}$ : synonymous polymorphism. In  $10^3$  units.