Functionally context socio-ecological type (fCSET) approach to support outscaling of agricultural innovation options

> Quang Bao Le et al. Mind the Gap Project, Final Workshop 11-12 November 2019, Hammamet, Tunis

Science for resilient livelihoods in dry areas

icarda.org

SLM – Sustainable Land Management

Problems

- High contextual diversity of drylands vs. "uniform blanket" approach in promoting site-specific project findings on sustainable land management (SLM) options over large scales
- Lack of tool supporting comparative analyses/assessments of successful SLM options by context, thereby supporting out-scaling efforts

Objective

 To provide land users, projects/programs and policy decision-makers with plausible, robust extrapolation domains for guiding efforts and decisions on outscaling of SLM options

Concept of Functional Context Social-Ecological Type (fCSET) as Geographic Extrapolation Domain

- Contextual socio-ecological type (CSET): a set of contextual factors, including driving forces and boundary conditions which *potentially* shape the interactions between land/agricultural system's structure/functions with management interventions in resulting the system performance.
- Functional contextual socio-ecological type (fCSET): CSET which influences the land-use system performance.
 - Land productivity/crop yield trend
 - Productivity gap (= actual prod./potential prod.)
 - Biomass reserves needed for maintaining ecosystem services
 - Innovation adoptions
 - ➢ Etc.

fCSET approach: capture and manage contextual diversity

Defining and mapping fCSET - How?

among CSETs

analysis

 \succ

Use independent data

ANOVA, regression

. availability

icarda.org

 Multivariate descriptive statistics (principal component analysis -

PCA, cluster analysis - CA)

6

Multi-disciplinary data used

3 performance variables used to test CSETs' functionality

Structure of integrated, pixel-based database

Variables of geographic coordinates allow import every variables (input or output) back to GIS program

Each column is data of a GIS variable/layer

		Х	Y	COUNTRY	COVER_LUSE	PREC_MEAN	PREC_TREND	HUMIDITY	ELEVATION	SLOPE_DEG	SQC_
Fach row	2359865	3.1100	36,1439	4	3000	491	-2	.51	834	5.13	
	2359866	3.1600	36.1439	4	3000	491	-1	.46	689	2.75	
is a list of	2359867	3.1683	36.1439	4	3000	491	-1	.45	676	1.21	
multi-	2359868	3.1933	36.1439	4	3000	491	-1	.48	828	1.40	
disciplinar	2359869	3.2183	36.1439	4	3000	491	-1	.49	842	2.67	
uscipinal	2359870	3.2267	36.1439	4	3000	491	-1	.49	849	2.75	
y data on	2359871	3.2350	36.1439	4	3000	491	-1	.49	878	1.48	
a 1 km ²	2359872	3.2850	36.1439	4	3000	491	-1	.47	820	1.25	
nixel	2359873	3.3350	36.1439	4	3000	491	-1	.44	707	.37	
Pinel	2359874	4 5850	36 1439	4	3000	519	0	57	1413	11 71	

Starting point of fCSET analysis: Land use/cover in 3 Magreb countries

- Putting a regional perspective: not only Tunisia, but also Algeria and Morocco
- Consider major land-use/cover types:
 - ➢ Rain-fed cropland (RF)
 - Grass-based/herbaceous land (GR)

CSETs in rain-fed cropland

Testing functionalities fCSETs in rain-fed cropland

- Responses in three proxies of land degradation/improvement (trend, gap and HA of NPP) are significantly different among 4 fCSETs
- Type RF1: having the highest potential to narrow biomass productivity gap → potential for some intensification
- The other fCSETs: human appropriation approaches the threshold → conservation agriculture needed

Gap between actual and potential NPP (% of pot. NPP)

CSETs in grass-based/herbaceous land

Testing functionalities fCSETs using in grass-based/herbaceous land

- Responses in two proxies of land degradation/improvement (gap and HA of NPP) are significantly different among 3 fCSETs
- Type GR3: having the highest potential to narrow biomass productivity gap
- Types GF2 and GR4: human appropriation approaches the threshold

Periodic trend of NPP (ΔgC/m2/yr)

Gap between actual and potential NPP (% of pot. NPP)

Curent fCSET for supporting outscaling of site-specific findings

Limitations and Precautious Notices

- Limitations:
 - ➤ Combination of data resampled from different scales of data origins → scale mismatches can be issues
 - Mismatch of timing when data collected/generated
 - ➤ Huge very dryland in the NA continent contaminated comparative analysis → better masking would help
- Current fCSETs can help
 - Narrowing geographic consideration in out-scaling,
 - Offering relevant hypotheses for testing;
 - > The integrated, pixel-based database is available for partners' organizations, follow-up projects
- Current fCSETs cannot substitute crucial needs:
 - additionally consider social context (cannot be coded by quantitative data)
 - actions of human actors on ground and across social networks that eventually out-scale innovations.

Thank you !