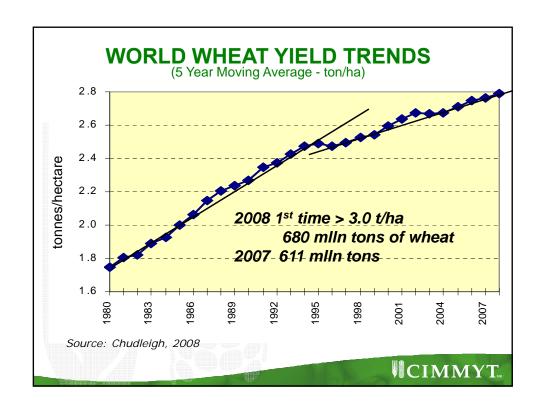
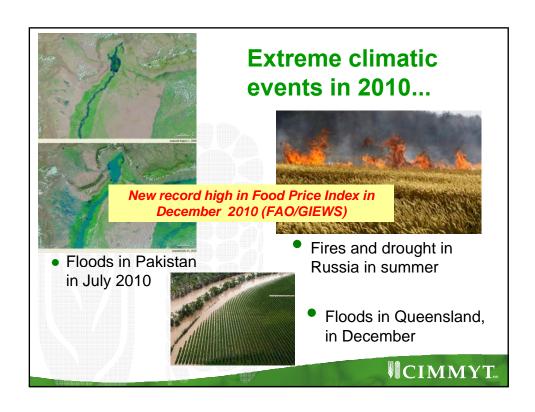
CIMMYT Achievements and Challenges in a Changing Climate with focus on Central Asia

Etienne Duveiller

Global Wheat Program, Mexico

14th Meeting of the Steering Committee of the CGIAR
Collaborative Research Program for Sustainable Agricultural Development in
Central Asia and the Caucasus
Tashkent, 20 Sept 2011





Importance of wheat

- Globally the most important food crop
- Second most important food crop in the developing world after rice
- Food to 2.5 billion poor people (< 2 USD) in 89 countries</p>
- Provides calories (20%) and protein (20%) in LDC
- Most traded food crop (20%)

Expected Climate Change Effects in Kazakhstan

- Rise in the seasonal and annual surface air temperature
- Almost constant or increase in winter precipitation
- Decline in summer precipitation
- An increase of precipitation will not compensate for increase in air temperature
- Increased irregularity of rainfall in time
- For all scenarios, the change trends towards increased aridity/drought

North and Central Kazakhstan. Summer, 2010

For food prices to remain constant, annual yield gains would have to increase From 1.6% to 2.4% for maize From 0.9% to 1.5% for rice Climate change From 1.0% to 1.7% for wheat Water, nutrient & Projected demand by energy scarcity 8 2050 (FAO) -Wheat World-wide average yield (tons ha^1) - Maize extrapolations 6 5 Potential effect 4 of climatechange-induced 3 heat stress on today's cultivars (intermediate Agronomy Breeding CO₂ emission scenario) 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 **CIMMYT**

Core breeding priorities

- Grain yield potential and yield stability
- Durable resistance to rusts (including Ug99) and other diseases
- Water and nutrient use efficiency
- Heat tolerance
- End use quality
- Adaptation to conservation agriculture
- High Zn and Fe concentration

Kazakhstan Rainfed Irrigated Wheat area, ha 14.1 mln 0.8 mln Yield, t/ha 1.2 2.2 Yellow rust, Leaf rust Major diseases Leaf rust, Stem rust, Septoria **Major abiotic** Drought Low temperatures, stresses **Drought** Major varieties Omskaya 18, Pamyati Steklovidnaya 24, Almaly, Aziyeva, Akmola 2 **Progress CIMMYT.**

CIMMYT-Kazakhstan Program on Wheat Improvement

- Wheat germplasm enhancement: spring wheat high latitude and winter wheat breeding
- Efficient soil and water management :
 Conservation Agriculture for wheat production
 and crop diversification
- Capacity Building and NARS strengthening

Wheat Germplasm Enhancement

- 1. Kazakhstan-Siberia Network on Spring Wheat Improvement (KASIB)
- 2. Shuttle Breeding "Mexico-Kazakhstan/Siberia" for Spring Wheat
- 3. Winter Wheat Breeding
- 4. Biofortification on Iron & Zinc Content in Wheat

Kazakhstan-Siberia Network on Wheat Improvement (KASIB)

Objectives:

- Spring wheat germplasm exchange within 17 Northern Kazakhstan and Siberian (Russia) programs which grow more than 20 mln ha of spring wheat
- Evaluation of the germplasm; promotion of the best varieties into farmers fields; involving the best germplasm in breeding programs
- Communication through annual meetings, traveling seminars, visits and publications

Presently KASIB Network includes all breeding programs of the region – 17 institutions, i.e. 100% coverage!!!

KASIB Network Activities

2000: KASIB establishing

2010: 12th KASIB SBW

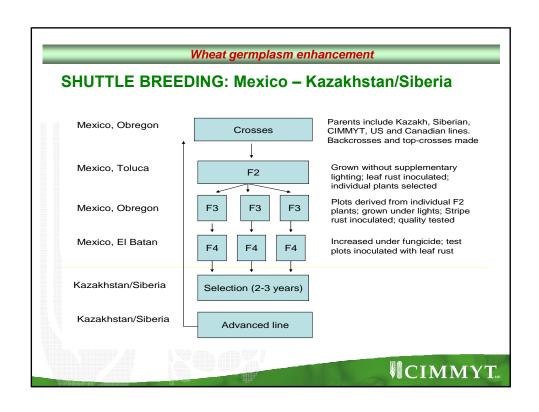
12th KASIB SDW

For the period 2000-2010:

505 varieties studied

370 BW varieties 135 DW varieties

The main breeding traits:


- Yield potential
- Drought resistance
- Cold resistance
- Disease resistance (LR, SR, Septoria etc.)
- Grain quality

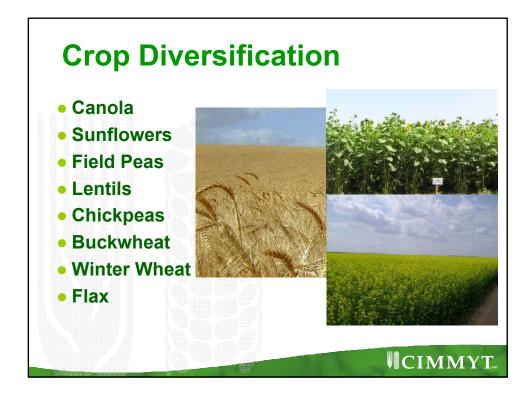
LANGU STEEL AND STEEL AND

Up to 40% of KASIB material are involved in breeding programs

VICIMMYT...

Shuttle Breeding Mexico-Kazakhstan/Siberia. Efficiency of F7 selection (9th KSBN) in the different locations (2010)								
Locations of the selection	Number of planted	Number of	% of se					

Locations of the selection	Number of planted populations	Number of selected populations	% of selected populations			
Kazakhstan						
Actobe ARS	202	138	68			
East-Kazakhstan ARI	202	151	75			
Karaganda ARI	202	101	50			
Karabalyk ARS	202	101	50			
Pavlodar ARI	202	202	100			
Fiton Breeding Company	202	51	39			
Russia						
Kurgan ARI	140	121	60			
Kurganseed Company	140	59	25			
Omsk ARI	140	22	16			
Omsk ASU,	140	131	94			
Novosibirsk ARI	140	136	97			
Tyumen ARU	140	136	97			
Chelyabinsk ARI	140	71	51			



Ug99 Stem Rust resistance of Kazakh/Russian wheat varieties. Kenya, 2008-2010

Variety	2008	2008-2009	2009	2010
	Main season	Off season	Main season	Main season
Susceptible checks, Kenya	100S	60-70S	70-80S	80-90S
Stepnaya 62	5RMR	TR	-	20MRMS
Lutescens 12 65/93	10MR	5MR	-	15RMR
EI-4-11/7	-	-	5RMR	5R
Omskaya 37	10MR	-	-	5R
Omskaya 38	30MRMS	5MR	-	15R
Lut.242/97-2-9	-	ı	5R	5R
T.t - 173	-	-	TR	TR
Lut.242-97-2-32	-	-	5MR	5R
BC2 Er.59/L.20639	-	-	10MR	5R
Niva2/Lut.22211	-	-	5RMS	5RMR
Lut. 23419	-	-	10MR	5R

Conservation Agriculture for Wheat Production in Kazakhstan

- In 2000 CIMMYT initiated large-scale Conservation Agriculture activities in North Kazakhstan
 - 0 ha (2001), 500,000 ha (2007), 1,200,000 ha (2008), 1,500,000 ha (2009) with continued rapid increases in area according to a recent assessment conducted by CIMMYT
- Utilization of CA-based technologies has become an official state policy in agriculture in Kazakhstan
- Since 2008, the government of Kazakhstan has been subsidizing farmers who are adopting CA-based technologies
- Kazakhstan among the top 10 countries with the largest areas under no-tillage in the world

Source: R. Derpsch & T.Friedrich, 2009. Global Overview of Conservation Agriculture Adoption, FAO

III. Strengthening NARS capacity

Seminars/Workshops/Field days/Human resource development activities in 2010/11

#	Event	Status	Number of events	Number of people
1	Conference (CA)	International	1	200
2	Workshops (CA, Breeding, Biotechnology)	International, National	4	200
3	Seminars/trainings (CA, Breeding, Biotechnology)	International, National	5	220
4	Traveling seminars (Conservation Agriculture, Breeding, PGR, Biotechnology)	International, National	5	120
5	Field days (CA, breeding)	National	10	500
6	Visits/ travels /trainings of Kazakhstan scientists/specialists abroad			10
7	Bringing international scientists and specialists to Kazakhstan for providing consultations			20
L.T	TOTAL			1270

Conclusions

- Predictions of changes in major crops as a result of Climate
 Change still contain great uncertainties
- Adapting control measures to climate change is not likely to be fundamentally different from adjustment to technological innovations or changes in the economic framework
- Breeding for wide adaptation and disease resistance is paramount
- Sustainable agronomic practices are needed for the yield potential of new varieties to express
- There will be surprises: If the main prediction is surprises, the capacity to deal with these is to provide the correct scientific advise investing in a diverse scientific base to provide effective solutions.

