

Management Options for Increased Agricultural Productivity and Soil Improvement in Central Asia

Ram Sharma, Akmal Akramkhanov and Shukhrat Amanov 3 October 2018, Moscow

Presentation made at:

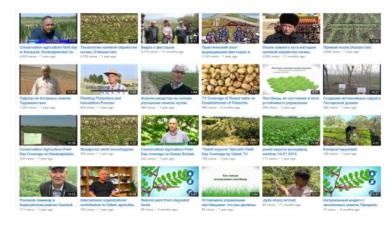
The third Eurasian Food Security Conference "Agricultural and Food Systems Transformation for Better Food Security and Nutrition in Eurasia" Lomonosov Moscow State University, on October 2–4, 2018.

Scope of presentation – Management options

Cropping system diversification

Conservation agriculture

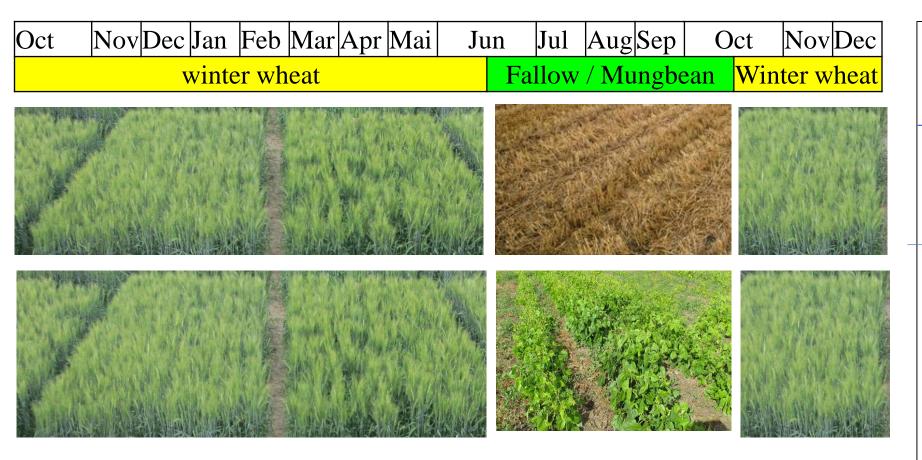
Stress tolerant varieties


Water Management

Rangeland improvement

Knowledge Management

icarda.org


Cropping system diversification

Many ways of diversification

Cropping System diversification on irrigated land

Inclusion of leguminous crops in wheat-wheat rotation

Benefit from mungbean

- Nutrients added in soil
- Additional income from mungbean crop

Cropping system diversification on irrigated land

Increasing cropping intensity by incorporating legumes – an example with mungbean

	Crop rotation	1st YEAR	1st YEAR	2nd YEAR	2nd YEAR	Cropping
	Crop rotation	(Nov-Jun)	(Jul-Sep)	(Oct-Feb)	(Mar-Oct)	intensity
-	L Wheat-Cotton	Wheat	Fallow	Fallow	Cotton	2 crops in 2 years (100%), no legume
4	Wheat- <i>Mungbean</i> -Cotton	wnear	Mungbean	Fallow	Cotton	3 crops in 2 years (150%), once legume
	Wheat- <i>Mungbean</i> -Green manure-Cotton	Wheat	Mungbean	Green manure	Cotton	4 crops in two years (200%), twice legumes
4	Wheat-Mungbean- Wheat-Mungbean	Whaat	Mungbean	Wheat	Wheat- Mungbean	4 crops in two years (200%), twice legumes

Cropping system diversification on rainfed land

Wheat planted on 16 November

Chickpea planted on 28 February

Chickpea planted on 10 October

Conclusion:

- Replace winter cereals with chickpea on rainfed land
- Plant chickpea in autumn and not in spring icarda.org

- 35% higher productivity when planted in autumn
- Higher income from chickpea than growing cereals

6

Cropping system diversification to prevent soil erosion

Some solutions to prevent erosion and improve soils fertility

Direct seeding

Soil mulching

Crop rotation

controlImprove soil fertility

Erosion

Source: A. Nurbekov, ICARDA

Cropping system diversification – salinity management

Dynamic nature of salinity can cause complete loss of winter wheat crop

Wheat varieties tolerant to salinity and frost, Grain yield potential 6.3 t/ha on medium saline field

Salinity tolerant wheat

Salinity tolerant mungbean or other legume

icarda.org

Conservation Agriculture

Benefits

- Lower inputs cost
- Higher stable yields
- Improved soil nutrient exchange
- Enhanced long-run profitability

Conservation Agriculture

Mungbean after wheat using minimum and zero tillage with retention of crop residues in Karshi, Uzbekistan (2011-2013)

Planting method	Spent fuel for	Root length,	Plant height, cm	Yield, t/ ha
	planting, l/ha	cm		
Conventional	53.6	25.4	67.2	1.85
One cultivation	13.6	23.5	68.8	1.97
No-till	5.9	23.8	65.4	2.24

- Fuel saving
- Higher yield
- Improves soil health

Source: A. Nurbekov, ICARDA

Tillage management NT= No tillage; CT=Conventional tillage

Benefit-cost ratio for double-cropped mungbean under no-till and conventional tillage in Uzbekistan

Cost items	NT			СТ		
	Durdona	Local	Marjon	Durdona	Local	Marjon
Yield kg/ha	427	250	407	395	237	427
Crop price per kg/usd	2.1	2.1	2.1	2.1	2.1	2.1
Yield USD/ha	897	525	855	830	498	897
Total variable costs, USD/ha	570	570	570	668	668	668
Profit, Profit	327	-45	285	162	-170	229

Profitability may depend on choice of crop variety

Tillage management

Raised-bed planting: maximizing water use efficiency

- 25% average saving in applied irrigation water
- 30% average increase in grain yield
- 73% average increase in water use efficiency
- 30-50% saving in the quantity of seed used for planting.

Source: ICARDA

https://www.icarda.org/update/raised-bed-planting-

maximizing-water-use-efficiency

Sustainable land management

Laser technology improves farm productivity

- saves up to 25% irrigation water
- Lowers soil movement during irrgation
- Enhance the effectiveness of salt leaching

Source: ICARDA

https://www.icarda.org/blog/%5Bnode%3ABlog%20type %5Dlaser-technology-improves-farm-productivity

Ecosystem management

Country	Ecosystem		Results / Interventions (Preliminary)
Kyrgyzstan –	gyzstan – highland pastures	Introduction of sustainable rangeland utilization, mitigation of grazing pressure and rehabilitation of pasturelands	
Tajikistan	foothills and low mountains	Schnee- stufe Mattenstufe	Application of no-till in irrigated agriculture, improved land use (intensive gardens), and rangeland improvement (+protection against natural disasters
Kazakhstan	forestry and rainfed	Nadelwaldstufe	Increased utilization of ecosystem services in desert forests
	agriculture	7	Development of year-round rangeland plant compositions
Turkmenistan	stan lowland pastures	Misch- und Laubwaldstufe	Introduction of perennial and annual grasses; Pasture rotation.
Uzbekistan	Irrigated agriculture	Obst- und Weinstufe	Introduction of advanced crop production methods: Leave mulch on fields; introduce crop rotation, plant forest belts around fields

Source: N. Nishanov, ICARDA

Rangeland improvement and diversifying sources of animal feed

- Controlled grazing
- Utilization of desert land for fodder production
- Alternative sources of animal feed and fodder
- Dual purpose crops
- Multipurpose tree species
- Agro-forestry

Rangeland improvement and diversifying sources of animal feed

Key to sustainable meet production from

Knowledge sharing and capacity building

- Formal and informal training
- > print materials
- > short videos
- ➤ website (cacilm.org)
- ➤ On-site demonstrations

Management Options for Increased Agricultural Productivity and Soil Improvement in Central Asia

Summary

- Cropping system diversification
- Conservation agriculture
- Tillage practices
- Ecosystem management approach
- Animal and rangeland improvement
- Knowledge sharing / capacity building

ICARDA New Strategy 2017 - 2026

CGIAR SLOs

REDUCED POVERTY

FOOD & NUTRITION SECURITY

SUSTAINABLE MANAGEMENT OF NATURAL RESOURCES

Taking Research to Scale - Partnerships for Impact

SRATEGIC
RESEARCH
OUTCOMES
(SRO)

RESEARCH

Collect, Conserve and use agricultural biodiversity in drylands in order to meet future climate and market related

challenges.

SRP1.

SRP2. Improved and resilient crops for greater food security in face of climate change and market volatilities.

SRP3.

Develop
integrated
drylands farming
systems for
improved and
resilient
livelihoods.

SRP4.

Support the establishment of functional value chains and viable off-farm activities for diversified incomes and improved livelihoods in drylands.

SRP5: Support sustainable use and management of water and land resources in drylands.

CROSS-CUTTING OUTCOMES (CCO)

Climate Change
Adaptation & Mitigation

Gender Equity & Youth

Capacity Development

Big Data & ICT

Step forward

- Change in mindset on integrated production system
- More investment in R4D on SLM and related capacity building
- Enabling policy
- Value chains for commodities
- NO ACTION IS NOT AN OPTION

Acknowledgements

- Governments of Central Asian countries national research institutions, NGOs, CBOs, Private Sector, Farmers' organizations, Communities, Farmers, and Individuals
- CGIAR Centers Bioversity, CIMMYT, ICARDA, IFRRI, IWMI
- Non-CGIAR institutions: ECFS, ICBA, WorldVeg, Michigan State University, Bonn University, and others
- Donor organizations: WB, ADB, IDB, BMZ/GIZ, EU, FAO, GEF, IFAD, Russian Federation, Turkish Government, UNDP, USAID, and others

Others