

Improving Agricultural Water Productivity in the Indira Gandhi Nahar Pariyojana (IGNP)

A joint project between ICARDA and CAZRI

Vinay Nangia, N.D. Yadava, M.L. Soni and V.S. Rathore

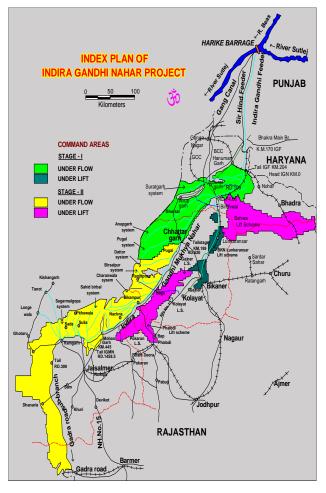
cgiar.org

A CGIAR Research Center

icarda.org

International Center for Agricultural Research in the Dry Areas

Presentation Outline


- ✓ Background and study area characteristics
- ✓ Objectives and methodology
- ✓ Results and recommendations
- ✓ Project knowledge dissemination and capacity development

Background Information

Stage–I of command area has even topography, intensively cropped, surface irrigation (flood, check basin). Water logging, soil salinization, low crop water- and nutrient-use efficiency are major problems

Stage–II of command area has light soils, uneven topography, low and irregular availability of water. Low land- as well as water-productivity, higher interannual yield variability, low water and nutrient capacity of soil, wind erosion are major problems in this area.

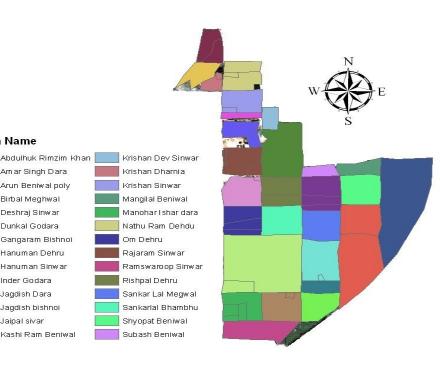
Decreasing water availability for crop production and land degradation caused by *poor crop water management* warrants identification of management strategies to sustainably utilize water in agriculture in the IGNP command area.

STAGE I

Project objectives

Calibration and Validation of CropSyst model using different N doses and irrigation levels

Testing and quantifying the increases in land and water productivity through adoption of **recommended packages** developed using crop modeling approaches


Improved human capacity of local researchers and technicians

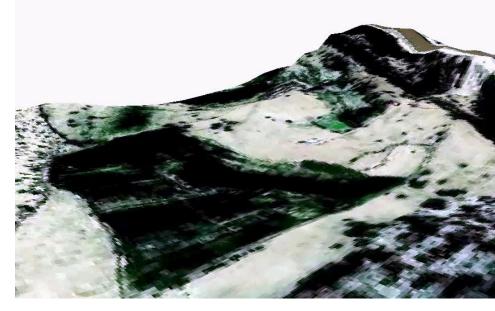
Methodology

STAGE I

For 2012-2014 period, measured following data:

- Date and rate of sowing of different crops -cluster bean, cotton, wheat, mustard, barley and chickpea
- \geq Initiation of different growth stages
- Management practices
- Periodic soil moisture at different depths
- Harvest yield, AGB, N-uptake et al. \geq
- Calibrated and validated CropSyst model for yield, AGB, GAI, N-uptake, soil moisture, initiation of different growth stages, et al.

0.35 0.7 2.1 Kilometers 0 1.4


Farm Name

Methodology

STAGE II

For 2012-2014 period, measured following data:

- Date and rate of sowing of crops by conventional and progressive farmers – ground nut, mustard, cumin, isabgol, wheat, cluster bean, gram,
- Management practices
- Periodic soil moisture measurements at different depths
- Harvest yield, AGB, N-uptake *et al.*
- Input costs, and gross and net profit
- Calculated physical and economic WP
- Calibrated and validated CropSyst model for yield, AGB, N-uptake, GAI, soil moisture *et al.*

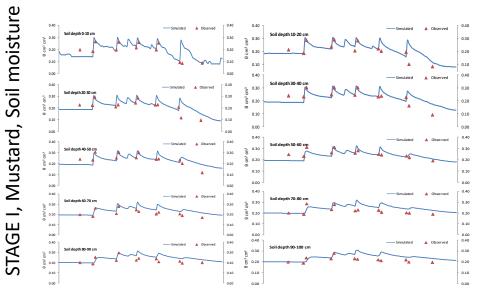
Results-Economic Water Productivity

STAGE I

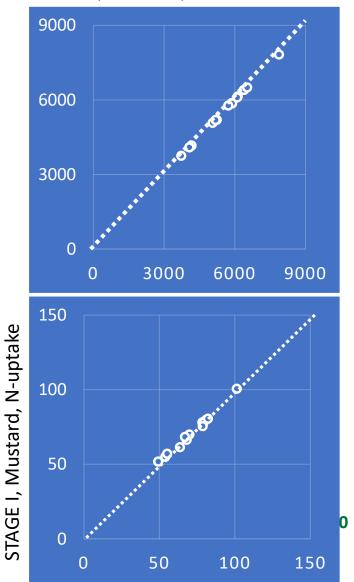
₹

	Yield (kg	/ha mm)	Return (rupees/ha mm)					
Cropping system	Biological	Seed	Gross	Net				
	Yield	Yield	Return	Return				
	Water Productivity (in terms of water applied)							
Cotton - Wheat	13.4	4.8	134.4	79.6				
Cotton - Mustard	12.3	3.6	137.9	78.3				
Clusterbean - Wheat	16.3	5.9	327.1	273.2				
Clusterbean - mustard	15.5	4.6	383.6	323.1				
Cotton – Barley	15.1	5.3	155.3	91.4				
Cotton – Chickpea	12.2	3.7	151.8	91.5				

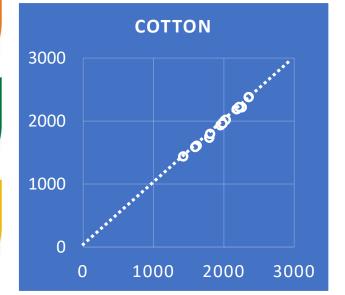
Results-Economic Water Productivity

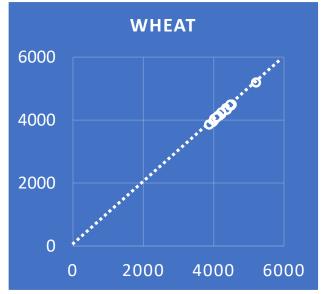

Stage II

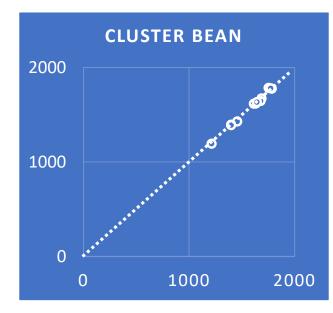
Cropping system	Yield (kg ha⁻¹ mm)				Monetary return (Rupees ha ⁻¹ mm)					
Cropping system	Biological Yield		Seed Yield		Gross Return		Net Return			
	2012-13	2013-14	2012-13	2013-14	2012-13	2013-14	2012-13	2013-14		
Water Use Efficiency (in terms of water applied)										
Groundnut - Wheat	10.6	12.0	4.3	4.9	182.5	201.3	124.6	144.8		
Groundnut - Cumin	7.7	10.1	3.0	3.9	202.4	265.1	142.6	197.7		
Groundnut - Isabgol	7.7	9.4	3.1	3.7	344.5	468.1	283.5	402.7		
Groundnut - Mustard	10.8	14.1	4.0	5.3	207.1	271.3	148.7	204.8		
Clusterbean – Chickpea	12.2	17.1	4.2	6.3	210.5	317.4	140.1	217.2		


Results-Modeling-Stage I

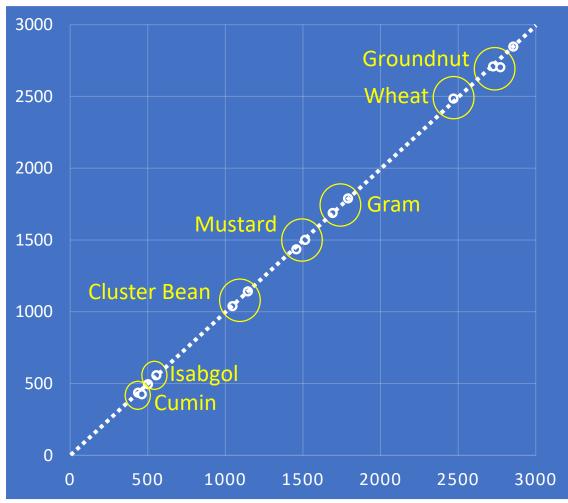
STAGE I, Mustard, yield

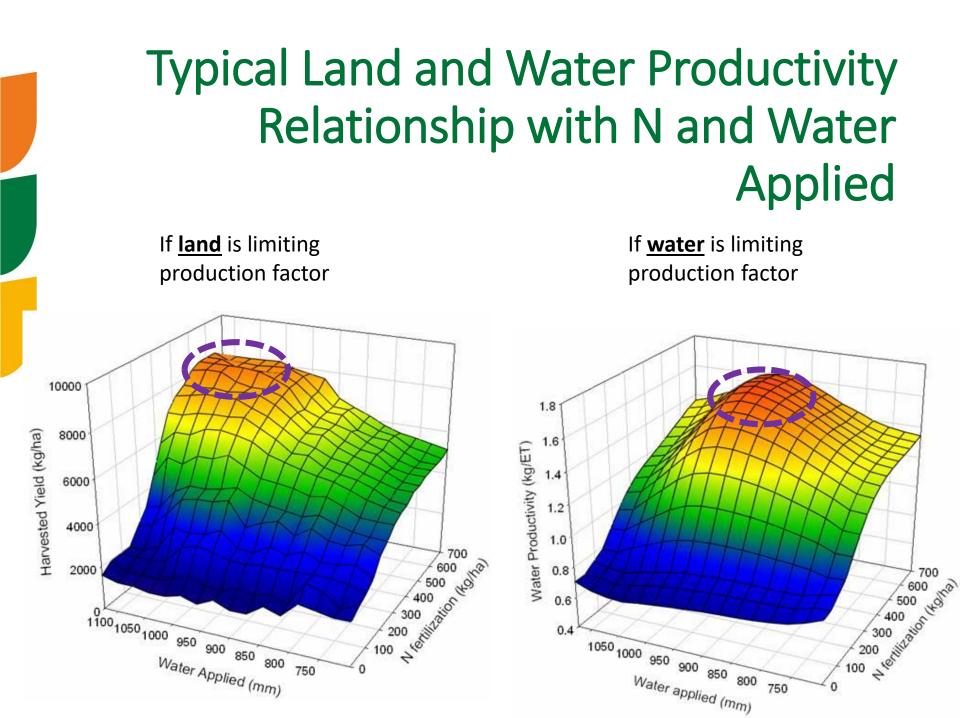


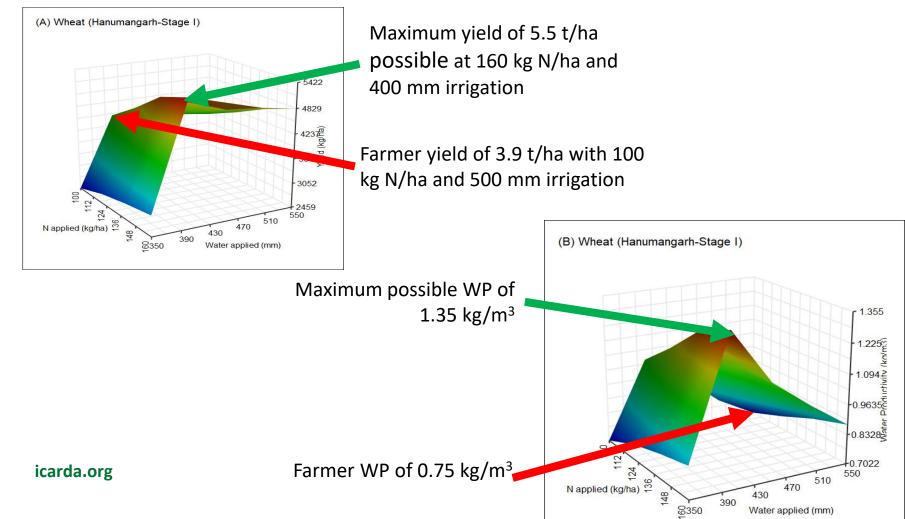



STAGE I, Mustard, AGB

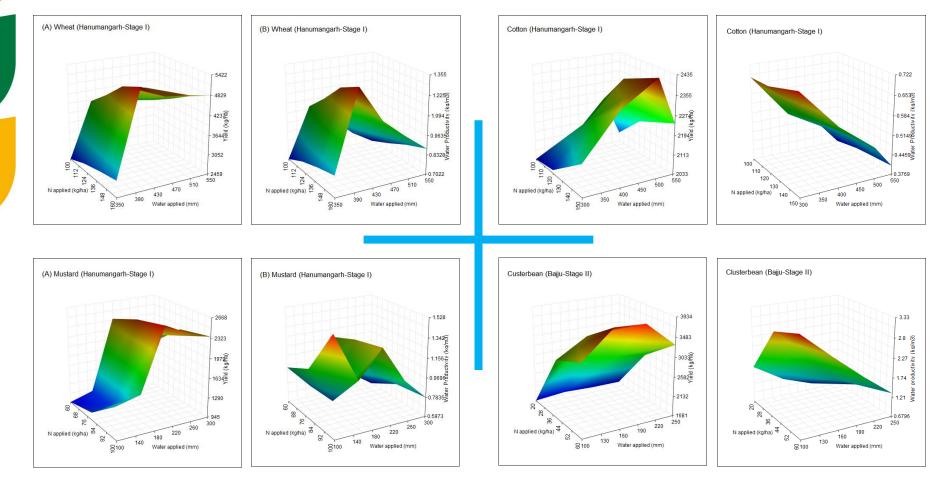
Results-Modeling-Stage I

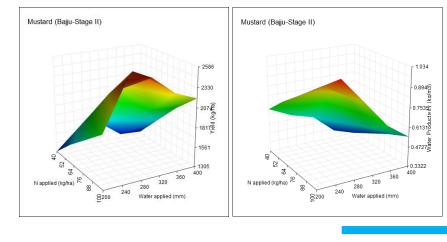


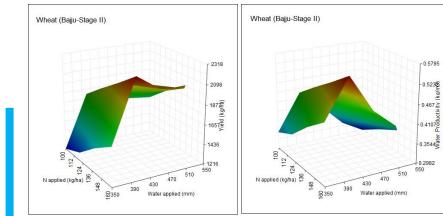


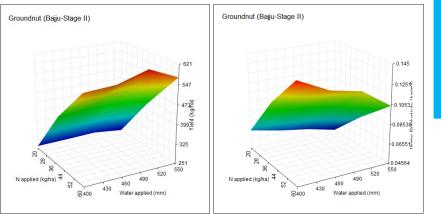

Results-Modeling-Stage II

STAGE II, Yields – Observed vs. Predicted




Wheat-Stage I 35-year Scenario Output Land vs. Water Productivity




35-Year Scenarios of N and Water Interactions

35-Year Scenarios of N and Water Interactions

Recommended Packages-Stage I

Сгор	Farmer N	Farmer Irrigation	Farmer Yield	Farmer WP	Recomme nded N	Recomme nded Irrigation	WP	% WP increase
Wheat	100	500	3900	0.79	160	400	1.36	72
Cotton	100	400	2050	0.50	150	300	0.72	44
Mustard	60	300	1750	0.55	100	200	1.53	178
Cluster Bean	60	100	900	0.90	100	100	1.53	70

Recommended Packages-Stage II

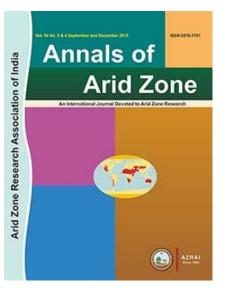
Сгор	Farmer N	Farmer Irrigation	Farmer Yield	Farmer WP	Recomme nded N	Recomme nded Irrigation	WP	% WP increase
Cluster bean	20	200	1700	0.47	60	100	1.27	290
Mustard	60	350	1800	0.51	100	250	1.03	102
Wheat	100	550	1600	0.29	160	400	0.58	100
Groundnut	40	550	400	0.07	60	400	0.15	114

Conclusions

- Stage I has great potential for saving water and increasing physical WP by 44-178% by adoption of packages that maximize WP
- ✓ For stage I, cluster bean-mustard crop rotation is most economically water productive cropping system
- ✓ Stage II has even greater potential for saving water and increasing physical WP by 100-290% by adoption of packages that maximize WP
- ✓ Since, energy and water storage are expensive, stage II farmers should adopt crop rotations that give highest economic WP. Groundnut-isabgol rotation was found to be best option for farmers in stage II.

Knowledge sharing and capacity development activities in the project

Knowledge sharing and capacity development activities in the project


बीकानेर। प्रादेशिक अनुसंधान केन्द्र बीकानेर एवं ईकार्डा के संयुक्त तत्वावधान में गुरूवार को कृषि वि.वि. के सभागार में आयोजित कार्यशाला में विषय विशेषज्ञों ने इंदिरा गांधी नहर परियोजना क्षेत्र में फसल जल उत्पादकता बढ़ाने के लिए राज्य सरकार के स्तर पर जल बचत एवं प्रबंधन नीति बनाए जाने पर जोर दिया। उद्घाटन सत्र में जल प्रबंधन क्रियान्वयन की बाधाओं, जल बचत तकनीक, कृषि प्रणाली विकास, कृषि विविधता े, फार्म स्तर पर जल प्रबंधन, वर्षा जनित

Knowledge sharing and capacity development activities in the project

www.rajasthanpatrika.com

...तो 30 वर्षों में 20 फीसदी कम हो जाएगा पानी

डंदिरा गांधी नहर क्षेत्र में जल उपयोग दक्षता वुद्धि पर गोष्ठी

ක්තාබද (ම ගතිත

patrika.con औद्योगिकरण, शहरीकरण और जीवन शैली परिवर्तन के कारण कृषि के लिए उपलब्ध जल में निरतर कमी आ रही है और आगामी 30 वर्षों मे उपलब्ध जल में 20 फीसदी तक की कमी आ जाणगी। एक तरफ पानी की उपलब्धता कम हो रही है और दूसरी रफ रोजमर्ग के जीवन एवं कषि उत्पादन के लिए पानी की मांग निरतर बत रही है। ऐसी स्थिति में पारंपरिक जल संग्रहण के तरीकें व तकनीकी भविष्य में बहत बडा काजरी. प्रादेशिक अनसंधान केंद्र गए। कार्यशाला के अतिथि शष्क एवं आईसीए आर-इकार्डी के संयक्त वागवानी संस्थान के निदेशक डॉ. तत्वावधान में 'इंदिरा गांधी नहर क्षेत्र एसके शर्मा, काजरी के प्रधान में जल उपयोग दक्षता वद्धि' विषय वैज्ञानिक डॉ. एके मिश्रा व डॉ. काजरी के कपि वैज्ञानिक कपि

बीकानेर में हुई जल संरक्षण गोष्ठी में शमिल प्रतिभागी

गया। कार्यशाला में कथि के लिए जल मांग व उपलब्धता जल प्रबंधन की मख्य चनौतियों. सहित अन्य विषयों पर व्याख्यान दिए

पर कार्यशाला का आयोजन किया देवीदयाल, आईएबीएम निदेशक डॉ. राजेश शर्मा, काजरी अध्यक्ष डॉ. एनडी यादव, इकार्डा के जल वैज्ञानिक डॉ. विनय नॉगिया आदि थे। कार्यशाला में अर्डसीएआर. कपि विश्वविद्यालय, कपि विभाग के अनसंधानकर्ता अधिकारी प्रसारकर्ता एवं शोधार्थियों ने भाग लिया।

कषि नवाचार के मॉडल विकसित

नवाचार के लिए इस प्रकार के मॉडल विकसित कर रहे हैं, जो विभिन्न सिंचाई तथा अन्य प्रबंधन कियाओं अधिकतम उपज त्पादकता बढा सकते है। कषि वैज्ञानिक वीएम राग्रीज व जॉ एनजी बताया कि मॉराल को विकसित करने के लिए जलवाय मदा, प्रबंधन तकनीकि और फसल गण के आंकडे डालकर मॉडल को डंबलअप किया जाता है। उधर धरातलीय स्तर पर इन चारों आंकडे को समावेशित कर फसल बोर्ड जाती है और बाद में उसके उत्पादन परिणामों को मॉडल से मेच किया जाता है। इस तरह दो-तीन साल तक परिणाम देखने के बाट मॉडल विकसित होता है। इसका फायदा यह मिलता है कि जब किसान अपनी जमीन, पानी, जलवाय व प्रबंधन तकनीकि के हिसाब से उनसे फसल उत्पादन के बारे में जानकारी मांगत तो उसे मॉडल के हिसाब से कौनसी फसल, कब, कितने पानी और प्रबंधन तकनीकों के साथ बोनी चाहिए कि उसको उसका उत्पादन ज्यादा मिल सकें, इसकी जानकारी ही जा सकती है।

Thank you