
Contents lists available at ScienceDirect

Geoderma

journal homepage: www.elsevier.com/locate/geoderma

Application of systematic monitoring and mapping techniques: Assessing
land restoration potential in semi-arid lands of Kenya

Leigh Ann Winowieckia,⁎, Tor-Gunnar Vågena, Margaret F. Kinnairdb, Timothy G. O'Brienc

aWorld Agroforestry Centre (ICRAF), Nairobi, Kenya
bWorld Wildlife Fund for Nature (WWF), Nairobi, Kenya
cWildlife Conservation Society (WCS), Bronx, USA

A R T I C L E I N F O

Handling Editor: A.B. McBratney

1. Introduction

Drylands cover over 40% of the earth's surface and support over 2
billion people, globally (Millennium Ecosystem Assessment, 2005). In
East Africa alone, over 250 million people depend on drylands for their
livelihoods (De Leeuw et al., 2014) and in Kenya, 70% of the total land
area is classified as arid- and semi-arid (Batjes, 2004). Over the last
several decades, an increasing and more sedentary human population
has resulted in more pressure on these lands, and an expansion of
agricultural production into marginal dryland areas that were tradi-
tionally rangelands. The result is widespread soil loss and land de-
gradation, as well as increased pressure on protected areas and more
frequent human-wildlife conflict in Kenya (Laikipia Wildlife Forum,
2012; Nyamwamu, 2016). These factors, combined with climate change
and erratic rainfall, continue to increase the vulnerability of drylands in
East Africa (Darkoh, 1998). However, drylands are also considered to
have an important role in mitigating climate change (Lal, 2004; Neely
et al., 2009; Neely and De Leeuw, 2008), are important biodiversity
hot-spots and support a diversity of livelihoods (Mortimore, 2009).
While land degradation is recognized as a major cause of low agri-
cultural and rangeland productivity, estimates of land degradation
within the drylands remain poor and hence also vary widely. For ex-
ample, the (Millennium Ecosystem Assessment, 2005) estimated that
between 10% and 70% of global drylands are degraded. The application
of remote sensing, coupled with systematic field assessments, for
monitoring, assessing and mapping land degradation patterns and se-
verity within landscapes has the potential to significantly improve
current estimates of land degradation, while at the same time allowing
for spatially explicit targeting of restoration options and monitoring of
change over time. Such advances will also ultimately make assessments
of the drivers of land degradation in drylands possible, which is critical
for successful restoration and for avoiding further degradation.

Several studies highlight soil erosion as an important process of land
degradation (Dregne, 2002; Mortimore, 2009; Tiffen and Mortimore,
2002; Vågen et al., 2013a), and as important indicator of land health
due to its negative impacts on soil health and overall land productivity.
Furthermore, poor agricultural and rangeland management practices
are leading to loss of soil organic carbon (SOC), mining of soil fertility,
increased soil compaction, as well as water and wind erosion. These
processes, which are often confounded by climate change and the high
levels of susceptibility to degradation in drylands often result in loss of
overall system productivity and resilience even under moderate stress
(Darkoh, 1998; Vågen et al., 2013b; Vågen and Gumbritch, 2012).
Degraded lands, continually put into production, without restoration or
other conservation measures, can become irreversibly unproductive,
jeopardizing the livelihoods of millions of people who depend on these
systems. Thus, ecosystem restoration has become an important field of
research (Aronson and Alexander, 2013; Crouzeilles et al., 2016;
Dobson et al., 1997; Itto, 2002; IUCN and WRI, 2014; Lapstun, 2015;
Suding et al., 2015; Williams-linera et al., 2011; Young et al., 2005),
especially in dryland areas (FAO, 2015; Herrick et al., 2013; Riginos
and Herrick, 2010).

A growing number of international initiatives are dedicated to re-
storation of degraded lands, most notably the Bonn Challenge (www.
bonnchallenge.org) and AFR100 (www.afr100.orgu. In addition, the
concept of land degradation neutrality (LDN) was adopted as a target
for Sustainable Development Goal (SDG) 15 (Cowie et al., 2018;
UNCCD, 2016). Sustainable Development Goal (SDG) 15 aims to
“protect, restore and promote sustainable use of terrestrial ecosystems,
sustainably manage forests, combat desertification, and halt and re-
verse land degradation and halt biodiversity loss”. Indicators agreed
upon included trends in land use/cover, land productivity and soil or-
ganic carbon stocks. In order to support this agenda, methods and ap-
proaches that are scientifically rigorous and applicable to a range of
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different ecosystems at multiple scales are needed to assess and monitor
land degradation. To aid country practitioners in carrying out restora-
tion activities, the International Union for the Conservation of Nature
(IUCN) and the World Resources Institute (WRI) created a guide to
assess opportunities for forest landscape restoration, where they high-
light the need for more reliable spatial data for assessing restoration
potential (IUCN and WRI, 2014). However, major gaps still exist in

methods to assess land degradation, particularly for spatially explicit
assessments at scales necessary for targeting interventions (Davies
et al., 2012; Lal, 2004; Mortimore, 2009).

In the current paper we apply a systematic approach to the assess-
ment of land health with a case study in a Kenyan dryland system in
Laikipia County. We argue that such a systematic approach is critically
important for addressing the challenges of land degradation, for

Fig. 1. Overview maps showing: a) Vegetation classes in Mpala Ranch b) Fractional vegetation cover across Mpala ranch, calculated using Soil Adjusted Total
Vegetation Index (SATVI); c) Map of the administrative boundaries within Laikipia county with the location of Mpala Ranch highlighted; and d) Map of Kenya,
showing the location of Laikipia county in white.
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targeting of restoration efforts, and for monitoring of trends over time,
across multiple spatial scales. Laikipia County is an excellent example
of a dryland region characterized by a mosaic of land management
approaches ranging from wildlife conservancies to commercial live-
stock ranches, pastoral lands and croplands. Continued grazing pressure
and increasing conflicts with wildlife add to the complexity of mana-
ging these lands (Kinnaird and O'brien, 2012). The Laikipia Wildlife
Forum (LWF), a members' network comprised of local stakeholders, and
a number of outside organizations have had mixed success in assisting
Laikipia landowners/users with erosion control and grassland re-
generation (Riginos et al., 2012). Most of these interventions have been
small scale and few include long-term monitoring of progress, under-
scoring the need for targeted restoration. The Strategic Target 3.2 of
The Wildlife Conservation Strategy for Laikipia County further stresses
the need to “maintain or enhance areas of natural habitat that are
currently vulnerable or in decline” through better range management
with systematic and coordinated monitoring (Laikipia Wildlife Forum,
2012).

While several initiatives agree that systematic biophysical assess-
ments across rangeland sites are needed (Karl and Herrick, 2010;
Riginos and Herrick, 2010; Schwilch et al., 2014, 2011), few have
conducted spatially explicit assessments using scientifically rigorous
indicators and analytical frameworks. For example, digital soil mapping
techniques can be applied to assess interactions between soil properties
and processes of land degradation, which is critical for identifying de-
graded areas, assessing the severity of degradation and for designing
restoration interventions that are spatially explicit and effective. In
other words, landscape-scale assessments and mapping of biophysical
indicators of land degradation and soil health are critically needed to
better understand relationships between factors such as aboveground
vegetation structure and diversity, soil health and soil erosion. Fur-
thermore, identifying thresholds or tipping points for indicators such as
vegetation cover, soil organic carbon (SOC) and soil erosion is im-
portant to design management strategies to improve soil health and
increase land productivity across semi-arid landscapes.

We chose Mpala Ranch, a commercial livestock ranch and wildlife
conservancy in Laikipia County in Kenya as a case study to apply digital
soil mapping techniques to identify and target restoration “go to” areas.
We applied a combination of systematic field surveys, including soil
data collection, and remote sensing to address four principal objectives
in this study: 1) Conduct a baseline assessment of soil and land health
indicators for Mpala Ranch; 2) Assess the variation in SOC under dif-
ferent vegetation classes; 3) Create predictive surfaces (maps) of SOC
and erosion; and 4) Assess restoration potential across the Mpala
landscape.

2. Methods

2.1. Site description

We conducted our assessment on the 200 km2 Mpala Ranch, located
in the western sector of Laikipia County, Kenya (0°22′44″ N, 36°53′43″
E) (Fig. 1). Laikipia County is approximately 10,000 km2 and is part of
the ~56,000 km2 Greater Ewaso Ecosystem (Georgiadis et al., 2007).
Rainfall varies from 900mm yr−1 at the equator to< 400mm yr−1 in
the north; most of the population and agricultural activities are located
in the south where rainfall exceeds 500mm yr−1. In the north, livestock
production and wildlife management predominate. Land holdings are
almost entirely private properties and include group or community held
ranches, private cattle ranches and conservancies, traditional grazing
lands for pastoralists and rhinoceros sanctuaries. Cattle stocking den-
sities range from 0 to> 25 total livestock units km−2 (Kinnaird and
O'brien, 2012), and can increase even higher during the dry season and
droughts when pastoralists from outside Laikipia move in. The diversity
of land use provides a gradient against which to assess the impact of
land management on SOC and land degradation risk. Mpala Ranch is an

active cattle ranch that also manages for wildlife, and hosts an inter-
national research center. Mpala Ranch contains five major vegetation
classes: Acacia drepanolobium bushland (ADB), arid zone mixed Acacia
bushland (AZMAB), open Acacia brevispica thicket (ABT), grasslands
(GR) and Mpala scarpline vegetation (MSV) (Young et al., 1997, Center
for Training and Integrated Research in ASAL Development and Mpala
Research Centre Unpublished Data) (Fig. 1). Soils are broadly classified
as black cotton soil, related to the Acacia drepanolobium bushland (Ahn
and Geiger, 1987; Young et al., 1998), red soils associated with all
habitat classes except Acacia drepanolobium bushland, and transition
soils associated with all habitat classes except arid zone mixed Acacia
bushland (Ahn and Geiger, 1987).

2.2. Biophysical field sampling

The Land Degradation Surveillance Framework (LDSF) (T-G. Vågen
et al., 2013) was used to sample a 100 km2 site within Mpala Ranch.
The LDSF is designed for practical and cost-effective soil and ecosystem
health surveillance, and for mapping SOC and soil erosion prevalence,
in particular (Tor-G Vågen et al., 2013; Vågen et al., 2012; Vågen and
Winowiecki, 2013; Winowiecki et al., 2016). The framework is also
designed for monitoring changes over time, and provides opportunities
for targeting improved soil management and land restoration activities.
Specifically, the LDSF is unique in that it systematically assesses several
ecological metrics simultaneously at four different spatial scales
(100m2, 1000m2, 1 km2, 100 km2), using a spatially stratified, hier-
archical sampling design (Vågen et al., 2013b).

For example, field observations were made at both plot-level (1000
m2circular plots) and subplot-level (100m2 circular plots). At each plot
(n=160 per site) observations of slope (in degrees), vegetation struc-
ture using the FAO Land Cover Classification System (forest, woodland,
bushland, shrubland, wooded grassland, grassland, or cropland) (Di
Gregorio and Jansen, 1998), topographic position (upland, ridge/crest,
midslope, footslope or valley), land management and land-use history
were made. Visible observations and classification of soil erosion pre-
valence were made within each circular subplot (n=4 per plot, 640 per
site), (e.g., gully erosion, rill erosion, sheet erosion or none). These soil
erosion observations were used to compute a plot-level severe erosion
index (e.g., if 3 or 4 subplots per plot had visible signs of erosion than
the severe erosion score for the plot was “1”, otherwise, the “0”). Trees
in the LDSF were classified as woody vegetation over three meters tall,
while shrubs were classified as woody vegetation between 1.5 and 3m
in height. All trees and shrubs within each subplot were counted
(n=640 per site) and used to calculate tree and shrub densities. In
addition, herbaceous and woody cover ratings were made using the
Braun-Blanquet scale from 0 (bare) to 5 (> 65%) (Braun-Blanquet,
1932). Composite soil samples were collected at each plot using soil
augers, combining topsoil (0–20 cm) samples from each of the four
subplots into one sample and the four subsoil (20–50 cm) samples into
one subsoil sample per plot. A total of 160 topsoil samples and 160
subsoil samples were collected from a full LDSF site (total= 320
samples). All soil samples were transported to the World Agroforestry
Centre (ICRAF) Soil-Plant Spectral Diagnostics Laboratory in Nairobi,
Kenya directly after sampling.

2.3. Soil laboratory analysis and mid-infrared spectroscopy (MIRS)

Soil samples were air-dried then ground to pass through a 2-mm
sieve. Soil samples analyzed for mid-infrared (MIR) absorbance were
further processed by (i) taking a subsample of ~10 g for further drying
at 40 °C for 24 h, (ii) grinding the dried samples using a RM 200 Retsch
motor grinder to attain a particle size between 20 and 53 μm, and (iii)
loading three subsets of the sample (about 1–2 g each) onto an alu-
minum sample plate. MIR absorbance was measured on a Tensor 27
HTS-XT instrument from Bruker Optics at the ICRAF Soil-Plant Spectral
Diagnostics Laboratory in Nairobi, Kenya. Measured wavebands ranged
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from 4000 to 601 cm−1 with a resolution of 4 cm−1. MIR is a widely
used methodology for predicting important soil properties such as SOC,
pH, base cations and texture (Brown, 2007; Madari et al., 2006; Reeves
III et al., 2006; Shepherd and Walsh, 2002; Terhoeven-urselmans et al.,
2010; Vågen et al., 2006). The ICRAF GeoScience Laboratory has a MIR
spectral database with over 80,000 soil spectra. Soil samples that had
both MIR spectra and wet chemistry data were used to develop MIR
prediction models for the various soil properties (Vågen et al., 2016),
and is further elaborated in Section 2.4. Processing of the MIR spectra
followed the procedures outlined in Terhoeven-urselmans et al. (2010),
with first derivatives computed using a Savitsky-Golay polynomial
smoothing filter implemented in the locpoly function of the KernSmooth
R package (Wand, 2015) prior to prediction model development.

The use of MIRS allows for rapid and low cost soil analysis as only
10% of the soil samples from an LDSF site are analyzed using traditional
wet chemistry methods (see Section 2.4). A random subset of 32 stan-
dard top- and subsoil samples were analyzed for OC, pH, exchangeable
bases and texture using traditional wet chemistry methods (e.g., topsoil
and subsoil samples from one reference plot per cluster (n=16 clus-
ters) for a total of 32 soil samples from the LDSF site). pH was analyzed
in a 1:2 H2O mixture (20 g of soil: 40mL de-ionized water) that was
shaken for 30min at moderate speed on a horizontal shaker then let
stand for 20min before reading on a Eutech Cyberscan 1100 pH meter.
Exchangeable bases were extracted using a Mehlich-3 method (Mehlich,
1984) (4 g of soil in 40mL of the Mehlich 3 extracting solution) after
being shaken for 5min on a reciprocating shaker. The filtrate was
analyzed for base cations: potassium (K), calcium (Ca), magnesium
(Mg) and sodium (Na) on ICP OES (Model-Thermo iCAP6000 Series) at
Crop Nutrition Laboratory Services in Nairobi, Kenya. Total N and OC
were measured by dry combustion using an Elemental Analyzer Isotope
Ratio Mass Spectrometry (EA-IRMS) instrument from Europa Scientific
after removing inorganic C with 0.1 N HCl, at the IsoAnalytical La-
boratory located in the United Kingdom. Clay content was measured
using a Laser Diffraction Particle Size Analyzer (LDPSA) from HORIBA
(LA 950) after shaking each soil sample for 4min in a 1% sodium
hexametaphosphate (calgon) solution, at the World Agroforestry Centre
(ICRAF) Soil-Plant Spectral Diagnostics Laboratory in Nairobi, Kenya.

2.4. Statistical analysis

2.4.1. Prediction of soil properties from MIRS
Soil properties were predicted using a random forest (RF) (Breiman,

2001) model for each of the soil properties included in the study based
on the first derivative of the MIR spectra described earlier. The use of
RF models for predicting soil properties is also described in Vågen et al.
(2013). In brief, RF modeling is an ensemble modeling approach, where
in the case of this study many decision trees are combined or bagged to
predict the different soil properties based on MIR absorbance. The
ICRAF MIR database, which consisted of about 3939 soil MIR spectra
with matching reference soil samples (e.g., 16 topsoil and 16 subsoil
samples from each LDSF site) from 123 LDSF sites was used to develop
the soil property prediction models. The calibration models developed
using these MIR spectra and reference samples were then applied to the
MIR spectra from Mpala and validated against the 32 reference samples
collected at the Mpala LDSF site.

2.4.2. Assessing the effects of vegetation types on SOC
The effects of vegetation cover types on SOC were assessed using a

linear mixed effects (lme) model with ln(SOC) as the dependent vari-
able, vegetation classes, woody cover and herbaceous cover as the in-
dependent variables. Sampling clusters were included as random effects
in the model. We chose a mixed-effects modeling approach because of
the hierarchical nature of the data, and the need for an approach that
takes the grouping effects in the data into account.

2.4.3. Prediction of soil properties using Landsat reflectance data
Landsat 8 (LC8) imagery from January 2015 were downloaded from

the United States Geological Survey (USGS) and Operational Land
Imager (OLI) bands were calibrated to top-of-atmosphere (TOA) pla-
netary reflectance using the following equation, correcting for the sun
angle:

′ =
+

ρλ
Mρ Qcal Aρ

sin θse
·

( )

where ρλ′ is TOA spectral reflectance, Mρ is a band-specific multi-
plicative rescaling factor, and Aρ is a band-specific additive rescaling
factor. Qcal is the product digital number (DN) and θse is the local sun
elevation angle. Imagery from the month of January was used because
this corresponds to the dry season in the region, which has low cloud
contamination, better image quality and corresponds to dry season field
data collection.

Prediction models for SOC and soil erosion were then developed by
extracting TOA calibrated band reflectance values for each LC8 image
band and building a spectral library of LC8 band values for the field
surveyed plots in the LDSF database, dropping plots where the LC8
band quality assessment band shows cloud cover. Random forest
models were developed for SOC and soil erosion, using a library of LC8
reflectance values from a total of 77 LDSF sites with LC8 reflectance
values (11,683 survey plots), using 70% of the data for model cali-
bration and the remaining 30% for validation of the prediction model.
The calibration and validation datasets were randomly drawn, without
replacement.

Model performance for the prediction of soil erosion prevalence was
assessed by calculating the receiver operator characteristic (ROC) curve
for predicted versus measured soil erosion. This approach graphs sen-
sitivity on the y-axis and 1-specificity on the x-axis, which represent the
fractions of true positives and false positives in the validation predic-
tions of soil erosion, respectively. A perfect test would have sensi-
tivity= 1 and 1-specificity= 0. We also calculated the area under the
ROC curve (AUC), which is 1 for a perfect test and 0.5 in cases where
the prediction model is performing very poorly. An AUC value that is
higher than 0.8 indicates good model performance, while values higher
than 0.9 would indicate excellent performance.

Prediction model performance for SOC was assessed by both cal-
culating the r2 for predicted versus measured values for both the cali-
bration and validation datasets, as well as root-mean-squared errors of
prediction (RMSEP). Difference measures such as RMSEP summarize
the mean difference of the units of measured and predicted values and
generally give a reasonable picture of how the model is performing. By
running these calculations on both the calibration and the validation
datasets, we also get a measure of the stability of the calibration model,
which is critical for predictive modeling.

Finally, the prediction models were applied to a LC8 scene from
January 2015, producing maps of estimated soil erosion prevalence and
SOC, respectively for the Mpala ranch.

All calculations and statistical analysis were conducted using R
statistics (R Core Team, 2015) and KNIME (Berthold et al., 2007), while
map layouts were made in QGIS.

3. Results and discussion

3.1. Tree and shrub densities

A total of 157 plots were sampled in the Mpala ranch, three plots
were not sampled in cluster 16, due to logistical circumstances. All
LDSF data are available on the World Agroforestry Centre- ICRAF
Harvard Dataverse (https://doi.org/10.7910/DVN/9HoKEE). Five dif-
ferent vegetation classes were classified and sampled within the ranch:
Acacia drepanolobium bushland (ADB) (n=16 plots), arid zone mixed
Acacia bushland (AZMAB) (n=13 plots), open Acacia brevispica thicket
(ABT) (n=104 plots), grasslands (GR) (n=7 plots) and Mpala
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scarpline vegetation (MSV) (n=17 plots). We calculated average tree
and shrub densities for each of the five Mpala vegetation classes in
order to describe the structure of the vegetation (Fig. 2). Overall, the
average tree density for the surveyed plots was 75 trees ha−1 with open
Acacia brevispica thicket (ABT) and arid zone Acacia Bushland (AZAB)
having the highest tree densities compared to the other vegetation
classes. This is most likely explained by this dominance of Acacia bre-
vispica in ABT and Acacia etbaica and Acacia mellifera in AZAB. MSV and
ADB vegetation classes had low tree densities (20 and 6 tree ha−1,
respectively). Average shrub density for the site was 325 shrubs ha−1

with AZAB and ADB having the highest overall shrub densities. The
relatively low tree densities and high shrub densities in areas with
Acacia drepanolobium are consistent with a previous vegetation assess-
ments in the whistling thorn (Acacia drepanolobium) vegetation class on
black cotton soil, which found that 92–95% of the Acacia drepanolobium
were< 4m tall (Young et al., 1997). This means that a large proportion
of these species are classified as shrubs in the LDSF as they are< 3m
tall. These data highlight structural variation across the vegetation
classes.

3.2. Soil functional properties

Infrared spectroscopy is a well-established methodology for pre-
dicting soil properties such as SOC, pH, base cations, total nitrogen (TN)
and texture (Brown et al., 2006; Madari et al., 2006; Reeves III et al.,
2006; Shepherd and Walsh, 2002; Terhoeven-urselmans et al., 2010;
Vågen et al., 2006), and as expected prediction model accuracy was
very good for the soil samples collected at the Mpala ranch (Fig. 3).
When assessing the relationship between measured and predicted va-
lues for each soil property, using the 32 reference topsoil and subsoil
samples from the Mpala site, r2 values were 0.98 for SOC, 0.98 for TN,
0.96 for pH, 0.98 for exchangeable bases, and 0.96 for clay. These re-
sults are better than those reported by Terhoeven-urselmans et al.,
2010for a globally distributed library of soil laboratory spectra, mostly
due to the much larger sample size available for model development in
our study and consistent laboratory methods for all samples used. The
results presented in the following sections are derived from MIR-pre-
dicted soil property values.

Soil fertility has important implications for overall land

productivity. Table 1 shows a summary of key soil fertility indicators
such as SOC, TN, pH, exchangeable bases (Ex Bases) and clay content
for the Mpala site. The soils in the study area had high variability, with
topsoil pH ranging from 5.5 to 8.3 and exchangeable bases from 5.75 to
65.99 cmolc kg−1 (Table 1). The high exchangeable bases were related
to sodic soils, which also have high pH, as shown in Fig. 4. Such soils
include the locally classified black cotton soil type (Fig. 4). Fig. 4 also
shows that the locally classified red soil had low pH values and that the
locally classified transition soil spanned the range of both pH and ex-
changeable bases. In total, 120 plots were sampled in the red soil type,
15 plots in the black cotton soil type and 22 plots in the transition soil
type. Average topsoil OC was 11.20 ± 4.55 (n=157) and average
subsoil OC was 8.76 ± 2.78 (n=132) (Table 1). The relatively low
SOC contents of the soils in this study are common in semi-arid systems,
as reported in other studies including by (Glaser et al., 2001) for de-
graded and non-degraded savanna woodlands in semi-arid northern
Tanzania (13.1 and 21.3 g C kg−1, respectively). Results from other
semi-arid savanna LDSF sites in Ethiopia, such as Mega and Merar, had
average SOC values of 20.0 and 25.2 g kg−1, respectively. The Merar
site was dominated by Vertisols, which explains the higher SOC values
(Tor-G Vågen et al., 2013). Studies on the carbon sequestration po-
tential of dryland systems indicate that low net primary productivity in
drylands is often due to low SOC and TN (Lal, 2004). While the soils of
the Mpala study area do not have critically low SOC (defined as< 5
g kg−1 by the UNCCD), the effects of erosion on SOC was quite strong
within the study area, with an average topsoil OC of 10.4 g kg−1 in
severely eroded plots (n=121) versus 13.5 g kg−1 in non-eroded plots
(n=36). The effect of erosion was strongest in grassland and open
Acacia brevispica thicket (ABT) plots (Fig. 5). These results highlight the
importance for reducing soil erosion, across all the vegetation classes as
a mechanism for stabilizing and increasing SOC content. Total N values
were low across the site, with about 99% of the samples falling below a
critical threshold of 0.2 g kg−1 N in topsoil, indicating relatively low
potential productivity. These N values also correspond to previous
studies on N content in Mpala soils, which have been reported to be
about 0.1% in topsoil (0–15 cm) collected from semi-arid bushlands
surrounding bomas (Augustine, 2003). Several studies also assessed
seasonal N dynamics in grassland systems in order to inform optimized
grazing intensities for livestock, using soil N mineralization, litter

Fig. 2. Boxplot of tree densities (a) and shrub densities (b) in the five different vegetation classes within the Mpala Ranch. The vertical lines show overall average tree
and shrub densities, respectively.
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decomposition quality and rates and C:N ratios (Augustine and
McNaughton, 2004; Frank and Groffman, 1994; Shariff et al., 1994).

3.3. Effects of vegetation types on SOC

We found a weak effect of vegetation class on SOC overall
(F= 2.037, df= 4, 91.377, P=0.096). However, the highest SOC
values were under ADB and MSV vegetation types, while open ABT and
AZAB had lower SOC (Fig. 5). Young et al. (1998) identified five species

of perennial bunchgrass in the ADB vegetation class on Mpala. The
higher SOC values in Acacia Drepanolobium are likely due to a combi-
nation of inherent soil properties, such as high clay content, as well as
dense herbaceous cover. Erosion prevalence had a strong effect on
topsoil SOC, with decreasing SOC in more eroded areas. The effects of
erosion were more pronounced in grassland areas (Fig. 5) where se-
verely eroded plots had very low SOC. Increasing herbaceous cover
densities had a positive effect on SOC (F=4.114, df= 4, 37.59,
P=0.007) (Fig. 6) and SOC was significantly higher in plots with

Fig. 3. Predicted versus measured soil properties based on MIR absorbance.

Table 1
Summary of soil health variables for the 157 plots sampled in the Mpala LDSF, by topsoil and subsoil, respectively. Ranges are shown in brackets after the means.
These are the predicted values from the MIR spectra.

SOC (g kg−1) Total nitrogen (%) pH Ex bases (cmolc kg−1) Clay (%)

Topsoil
(0–20 cm)
(n=157)

11.20
(5.07–28.92)

0.100
(0.039–0.189)

6.44
(5.51–8.26)

15.06
(5.75–65.99)

56
(27–76)

Subsoil
(20–50 cm)
(n=132)

8.76
(3.59–22.66)

0.084
(0.048–0.228)

6.61
(5.49–8.47)

17.70
(5.80–56.84)

59
(25–77)
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woody cover> 40% (F=31.282, df= 1, 116.09, P < 0.001) in-
dicating interaction effects between woody and herbaceous cover
(Fig. 6). These findings have important implications for management of
these rangelands, including specific interventions to rehabilitate woody

and herbaceous cover.

Fig. 4. Relationship between pH and exchangeable bases by local soil classification in the Mpala site.

Fig. 5. Topsoil SOC values by vegetation class: Vertical lines show average SOC in severely eroded plots (n=126, SOC=10.4 g kg−1) and plots where no erosion
was observed (n=31, SOC=13.5 g kg−1), respectively.
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3.4. Prediction and mapping of SOC based on Landsat 8

We tested the RF prediction model for SOC on a validation dataset
(n=6936 plots) with results showing a RMSEP of 9.12 g C kg−1 and a
r2 of 0.84 (Fig. 7), or in other words good predictive performance
overall. We therefore applied the SOC prediction model to a Landsat 8
scene from January 2015 for the Mpala Ranch. As can be seen in Fig. 8,
the map of SOC for Mpala shows a decrease when going from south to

north. The higher SOC values in the southern part of the study area
correspond to areas with the black cotton soil type, as well as areas with
dense vegetation cover along the MSV, compared to the lower SOC
values in the drier north, which was predominantly AZAB (Fig. 1). Fine-
scale variations in SOC can be seen across the ranch, with spatial pat-
terns that are associated with both woody and herbaceous cover den-
sities and land degradation status, as discussed earlier.

Fig. 6. Boxplots of topsoil OC values for different herbaceous cover ratings, split by woody cover higher than 40% (top) and lower than or equal to 40% (bottom). The
vertical line shows average SOC for the site (11.2 g kg−1).

Fig. 7. Predicted vs measured SOC for calibration and vali-
dation model runs, respectively. The black dotted line shows
the regression line for calibration model predictions, while
the red dashed line shows the regression line for the vali-
dation model predictions. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to
the web version of this article.)
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3.5. Prediction and mapping of soil erosion based on Landsat 8

Prediction model performance for soil erosion was good (Fig. 9),
with an overall accuracy of about 85% (AUC=0.87 – Fig. 10). The
ROC curve in Fig. 10, also shows good model precision and we there-
fore proceeded to predict erosion prevalence for Mpala based on the
same satellite imagery used for predicting SOC. About 77% of the
Mpala ranch is eroded, or has more than a 50% probability of erosion
based on our predictions. If we consider only areas that have erosion
prevalence higher than or equal to 75%, about 36% of the ranch is
eroded. The map of erosion in Fig. 8 shows lower erosion in the
southern part of the ranch, particularly on black cotton soils in the
south-western part of the study area. The most important erosion hot-
spots are found in the central and northern sections of Mpala, and along
some of the riverbanks. As can be seen from the line graph to the right
of the erosion map in Fig. 8, erosion prevalence increases quite dra-
matically north of the Mpala scarpline.

3.6. Mapping of land restoration potential

Land restoration potential was mapped at 30-m resolution, com-
bining estimates of SOC and soil erosion prevalence. Areas
with> 20 g C kg−1 and<50% erosion prevalence were classified as
areas that do not need immediate restoration, while areas with SOC
between 10 and 20 g C kg−1 SOC and erosion between 50 and 75%
were considered areas of high restoration potential, needing moderate
efforts to restore. Finally, areas with< 10 g C kg−1 and>75% erosion
were classified as areas in critical need of restoration, and with a high
level of effort required. As highlighted earlier, these indicators of land
degradation (soil erosion prevalence) and soil health (SOC) were in-
fluenced by aboveground vegetation, including woody and herbaceous
cover, as well as climatic factors. Given the important interaction ef-
fects of woody and herbaceous cover on soil erosion reported earlier,
restoration efforts need to consider herbaceous and woody cover, as
well as vegetation type and diversity. Low overall SOC values and high

Fig. 8. Maps of SOC (left) and erosion prevalence (right) for Mpala, based on Landsat 8 imagery from January 2015. The graph to the left of the SOC map shows
average SOC for each line (row) in the map going from the south to the north of the study area. Similarly, the graph to the right of the erosion map shows the average
probability of erosion for each line (row) in the map of soil erosion predicted values for the study area, going from south to north across the conservancy.
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erosion prevalence were key biophysical constraints across the study
area. The northern and northeastern regions of Mpala were mapped as
areas requiring a high level of effort to restore. These areas have a drier
climate and low fractional vegetation cover and may in some cases
become irreversibly degraded unless interventions are implemented
urgently. Areas classified as having no immediate need for restoration

correspond with areas that have higher fractional vegetation cover such
as the Mpala Scarpline Vegetation class. As shown in Fig. 11, a large
proportion of the Mpala Ranch can be considered degraded based on
this analysis, but with moderate effort required for restoration. Inter-
ventions in these areas are critically needed to avoid further degrada-
tion and to restore ecosystem functions.

4. Conclusions

Semi-arid drylands are prone to land degradation. Increasing po-
pulation and a degraded natural resource base continues to increase the
pressure on these ecosystems. In response, several international, na-
tional and local efforts have dedicated resources to restoration of dry-
lands. This study aimed to fill some of the gaps in spatially explicit
information on land degradation in the semi-arid lands of Kenya in
order to assess land degradation status and restoration potential, and
inform restoration intervention efforts by focusing on a case study from
the Mpala Ranch in Laikipia county. This study illustrated the utility of
combining systematic field data collection with remote sensing to de-
velop maps of restoration potential in the semi-arid lands of Kenya.

The results of our study showed that spatial variation in SOC and
soil erosion prevalence was high across the Mpala. The effects of soil
erosion on SOC were strong, decreasing SOC across all five vegetation
classes in the study area, with the strongest effects in grasslands and
open ABT plots. There were also strong effects of woody and herbac-
eous cover on topsoil OC, with higher SOC in plots with 40% or more
woody cover and 15% or more herbaceous cover. There was also a

Fig. 9. The distribution of predicted probabilities (prevalence) of soil erosion
for plots with observed erosion and plots where no erosion was observed in the
field.

Fig. 10. Receiver operator characteristic (ROC) curve for the prediction of erosion.
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strong climatic gradient with decreasing rainfall from south to north of
the Mpala Ranch, which corresponded to increasing erosion and de-
creasing SOC, respectively. These findings have important implications
for the types of restoration activities that can potentially be carried out
in semi-arid drylands of Kenya to restore ecosystem function, such as
the need for specific efforts to increase both woody and herbaceous
cover in order to increase SOC and reduce soil erosion. Further, ap-
propriate grass species for each vegetation class need to be identified,
ideally based on the degradation status of the area being restored.
Previous studies have shown that the competition between grasses and

trees in Acacia drepanolobium areas on Mpala Ranch can limit tree
growth, but with a lower degree of competition in areas with lower soil
fertility (Riginos, 2009).

We developed three classes of restoration potential based on SOC
and erosion prevalence. For example, areas with low degradation status
and SOC concentrations higher than 20 g kg−1 were determined to not
require immediate restoration. However, prevention of land degrada-
tion in these areas is needed. This class was mostly located in the
southern part of the Mpala Ranch, particularly in areas with Acacia
Drepanolobium on black cotton soil. Areas that had a high potential for
restoration were defined as having moderate soil erosion and SOC va-
lues higher than 10 g kg−1 and<20 g kg−1. These areas require mod-
erate effort to restore as they will not have crossed critical thresholds of
severe degradation. Finally, areas with high erosion prevalence
(> 75%) and low SOC (<10 g kg−1) were classified as areas in critical
need of restoration, but where a high level of effort will be required to
restore SOC and other ecosystem functions. The map of restoration
potential can be used to identify hotspots and to target restoration ac-
tivities that maximize the multiple benefits and ecosystem functions of
the landscape, taking into consideration required efforts, including for
cattle ranching activities and wildlife conservation.
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