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Abstract: Mapping the spatial and temporal dynamics of cropland is an important prerequisite
for regular crop condition monitoring, management of land and water resources, or tracing and
understanding the environmental impacts of agriculture. Analyzing archives of satellite earth
observations is a proven means to accurately identify and map croplands. However, existing maps of
the annual cropland extent either have a low spatial resolution (e.g., 250–1000 m from Advanced Very
High Resolution Radiometer (AVHRR) to Moderate-resolution Imaging Spectroradiometer (MODIS);
and existing high-resolution maps (such as 30 m from Landsat) are not provided frequently (for
example, on a regular, annual basis) because of the lack of in situ reference data, irregular timing of
the Landsat and Sentinel-2 image time series, the huge amount of data for processing, and the need to
have a regionally or globally consistent methodology. Against this backdrop, we propose a reference
time-series-based mapping method (RBM), and create binary cropland vs. non-cropland maps using
irregular Landsat time series and RBM. As a test case, we created and evaluated annual cropland
maps at 30 m in seven distinct agricultural landscapes in Xinjiang, China, and the Aral Sea Basin. The
results revealed that RBM could accurately identify cropland annually, with producer’s accuracies
(PA) and user’s accuracies (UA) higher than 85% between 2006 and 2016. In addition, cropland maps
by RBM were significantly more accurate than the two existing products, namely GlobaLand30 and
Finer Resolution Observation and Monitoring of Global Land Cover (FROM–GLC).

Keywords: Central Asia; Xinjiang; Aral Sea Basin; cropland mapping; Google Earth Engine; Landsat;
reference time series

1. Introduction

Understanding the spatial and temporal dynamics of cropland is an important prerequisite for
regular monitoring of agricultural production (crop area and productivity), supporting management
of land and water resources, or tracing and understanding environmental impacts of agriculture [1,2].
Dependable spatial information is required for analyzing land use intensity or agricultural land
abandonment [3]. The challenge is that in many regions, agricultural statistics are outdated, of
doubtful quality [4], or missing adequate sub-national historical inventory data [5]. One such region is
Central Asia, which has experienced unprecedented expansion of agricultural production, widespread
cropland degradation, and abandonment [6,7]. The expansion and inefficient management have
resulted in a permanent net loss of freshwater resources during the last three decades [8,9]. Due to
aridity and a growing population, there is growing risk of potential conflicts over shared but sparse
water resources [10].
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The literature on cropland mapping with satellite remote sensing is replete with various
approaches and types of data used for this purpose. For example, previous studies used multi-temporal
images of the moderate-resolution imaging spectroradiometer (MODIS) sensors on board the Terra and
Aqua satellites with a 500 m pixel size to create a spatial distribution of cropland annually [11]. The
GlobCover data set from the European Space Agency (ESA, Paris, France) was created from the medium
resolution imaging spectrometer (MERIS) with a 300 m pixel size [12]. Whilst the previous examples
highlight studies that created annual cropland maps that allow for a monitoring application, their
relatively coarse resolution can hamper local and field-level studies. Using higher spatial resolution
data, such as those from Landsat (30 m) that range back for decades, provides the data basis for many
high resolution data sets [13], including global products such as the Finer Resolution Observation and
Monitoring of Global Land Cover (FROM–GLC) [14], Globaland30 [15], or the Global Food Security
Support Analysis Data (GFSAD30AFCE) [16]. However, 30 m cropland maps at global scale are
provided at certain years, such as 2000, 2010 and 2015, so annual cropland maps cannot be generated.

One potentially limiting factor is that the image time series acquired by the Landsat system
contain gaps due to low revisit frequency (16-day) and cloud cover [17], or missing ground stations.
Several strategies have been devised to cope with the limited availability of calibration data and
satellite data heterogeneity (such as irregular Landsat time series). For example, gap filling and data
fusion techniques were proposed to generate image series at 30-m resolution with a high and regular
temporal frequency [18–20]. Liu, et al. [21] generated land cover products with five-year intervals in
China at 30 m, but these methods are time-consuming and labor-intensive from a computational point
of view.

Furthermore, the availability of in situ data is key to calibrating supervised classifiers. However,
collecting this information is time-consuming and can become prohibitively expensive, and human
interpretation of spectral signatures from satellite images can be resource-intensive, time-consuming,
and difficult to repeat over space and time [22]. Some methods seek to identify cropland extent without
the use of any ground training samples [13]. Yan and Roy [23] proposed an automatic object-based
approach to identify crop fields at 30 m resolution; the method showed good potential to identify
crop fields with clearly boundaries from 30-m resolution images. An alternative strategy is generating
time series by calculating phenological characteristics (metrics) from vegetation index time series and
classifying knowledge-based temporal features [22,24–27]. However, one potential drawback of this
method is that the thresholds may induce uncertainty in the labeling process.

Given the above discussion, we present a procedure named reference time-series-based mapping
method (RBM), that can be applied to different agricultural landscapes (i.e., different crop types or use
intensities) for annual cropland mapping. It consists of creating reference time series from training
samples and regular Landsat time series in certain years with artificial immune networks (AINs). Then,
the reference time series are used to process irregular Landsat data to generate annual cropland maps
at 30 m resolution. The proposed methodology was applied to seven distinct agricultural landscapes
in Central Asia (Aral Sea Basin and Xinjiang). We evaluated the annual crop maps using independent
test data and by comparing them with existing 30 m-cropland products.

2. Study Area

The study area consists of seven distinct agricultural landscapes in Central Asia. The choice
of these sites was oriented towards having a range of different landscapes in terms of cropping
pattern, crop rotation, crop types, biophysical conditions (e.g., soil types), irrigation infrastructure, and
irrigation management.

Four sites were selected in Xinjiang, which partly encompasses the Ili-Balkash basin, and three
were selected in the Aral Sea basin (Figure 1). Both regions are located in Central Asia at the heart of
the Eurasian landmass. The Aral Sea basin covers parts of post-Soviet Central Asia and encompasses
circa 1.7 million km2. Under Soviet leadership, the Aral Sea basin experienced a pronounced increase
in irrigated cropland area, from 5.4 million hectares (mha) (1950s) to around 8 mha (1990s) [28].
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However, the unsustainable withdrawal of freshwater and inefficient water use reduced the inflow
of rivers. As a result, the Aral Sea dried out almost completely, and the irrigated cropland became
largely salinized and partly abandoned [28]. After the disintegration of the Soviet Union and the
subsequent institutional and economic changes, agricultural production decreased sharply in many
regions of the Aral Sea basin [29]. In Xinjiang, China, irrigated cropland significantly expanded from
6.68 mha (2000) to 8.46 mha (2010) [30,31], mainly in traditional oasis areas, such as the south and north
foothills of the Tianshan Mountains [32,33]. China’s national development strategy in western areas
and improved techniques for conserving water led to fast cropland expansion in Xinjiang [34,35]. The
seven study areas are located in three countries with arid continental and dry climates, and contain
representative crop types of Central Asia and crop fields of different sizes. Precipitation is in a range
of circa 100–250 mm per year, and agriculture in all study areas relies on irrigation [36]. The Bole
(BL; E in Figure 1) and Manas (MNS; F in Figure 1) landscapes are located in the northern part of
Xinjiang, China. The major crop type, i.e., the crop that covers most of the cultivated area in these two
study sites, is cotton (Table 1), and the cropland is homogenously shaped with a relatively large field
size. The third site is situated in Luntai county (LT; G in Figure 1) in southern Xinjiang, where the
agricultural landscapes are more fragmented. Major crops in this region are cotton, wheat, and maize.
The fourth study region is located in Yining city (YN; D in Figure 1) of Xinjiang; the major crops in this
region are cotton and wheat. Karakalpakstan (KKP; A in Figure 1) and Kyzl-Orda (KYZ; B in Figure 1)
are located in the Aral Sea basin and characterized by vast, regularly shaped agricultural systems with
only a few predominating crops (rice and alfalfa in KYZ, winter wheat and cotton in KKP) [6]. Almaty
(ALM; C in Figure 1) is located in the southeast of Kazakhstan. The major crops cultivated there are
wheat, barley, and cotton.

Table 1. Summary of the seven study areas in Xinjiang and the Aral Sea basin.

Name of Study
Site

(Abbreviations)

Bole
(BL)

Manas
(MNS)

Luntai
(LT)

Yining
(YN)

Almaty
(ALM)

Karakalpakstan
(KKP)

Kyzl-Orda
(KYZ)

Country China China China China Kazakhstan Kazakhstan Uzbekistan

Centre coordinates 82.54E,
44.52N

86.50E,
44.54N 84.51E, 41.53N 81.13E, 43.89N 74.72E,

43.48N
64.39E,
44.99N

59.18E,
42.98N

Elevation (meters
above sea level) 1057.84 480.29 943.88 772.43 949.67 105.47 64.89

Major crops Cotton Cotton Cotton, Maize
Wheat Cotton, Wheat

Wheat,
Barley,
Cotton

Wheat,
Cotton,
Alfalfa

Rice, Alfalfa
Wheat

Length of growing
season April–October April–October March–September April–October April–October April–October April–October
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Figure 1. Study area. Note: Source of land cover classes: GLC global land cover of 2010 [14]. For
the zoomed-in images: (A) fields in Karakalpakstan (KKP), (B) fields in Kzyl-Orda (KYZ), (C) fields
in Almaty (ALM), (D) fields in Yining (YN), (E) fields in Bole (BL), (F) fields in Luntai (LT), and
(G) fields in MNS. The land cover distributions in the upper sub-figure is based on FROM-GLC data.
The zoomed-in sub-figures (A–G) are false color images from July 2016. These images have different
scales because the field sizes in BL, MNS and KYZ are large, while, for the other regions, the fields are
characterized as small. Thus, the zoomed-in images represent the different crop field sizes.

3. Data Sets

3.1. Satellite Data

We sourced all available Landsat-5, -7, and -8 images falling into the area of interest between
April and October (this period was defined as a growing period) during the observation period from
2001 to 2016. The Landsat images used in this study were Tier 1 surface reflectance (SR) data, which
are available from the Google Earth platform.

3.2. Existing Global Land Cover Maps

There are two existing global-scale land-cover products containing cropland extent that can be
used to compare with the cropland maps generated in this study. The first layer, the Finer Resolution
Observation and Monitoring of Global Land Cover (FROM–GLC), is a 30-m global land cover product
from 2010. To generate the product, 91,433 training samples and 38,664 test samples were collected
by visual interpretation of TM/ETM+ images. A segmentation approach was then used to integrate
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multi-resolution datasets, including Landsat TM/ETM+, MODIS Enhanced Vegetation Index (EVI) time
series, bioclimatic variables, Digital Elevation Model DEMs, and soil–water variables, and the random
forest (RF) classifier was used to classify land cover type. Finally, two coarse resolution impervious
maps were used to mask the residential regions. FROM–GLC had an overall accuracy of 65.51%, and
producer’s and user’s accuracies for cropland were 66.62% and 57.60%, respectively [14,37].

The second layer, GlobeLand30, is another global land-cover dataset with a 30-m spatial resolution.
It contains 10 land cover classes: cropland, forest, grassland, shrubland, wetland, water bodies, tundra,
artificial surfaces, bareland, and permanent snow and ice, from two base-line years (2000 and 2010).
More than 10,000 satellite images were acquired to cover the entire earth at 30 m resolution. Each class
was identified in a prioritized sequence first and then results were merged together. An approach based
on the integration of pixel- and object-based methods with knowledge was used for the identification
of each class. The overall classification accuracy of GlobeLand30 is 83.5% and the user’s accuracies of
cropland was 82.76% [38].

3.3. Digital Elevation Model (DEM) Data

The Advanced Land Observing Satellite ALOS World 3D—30 m (AW3D30) DEM was released by
the Japan Aerospace Exploration Agency (JAXA, Tokyo, Japan) in May 2016 [39]. It covers the global
terrestrial area within +/−80 degree with 30-m spatial resolution [40]. Images from the Panchromatic
Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the ALOS Satellite were acquired to
generate the ALOS World 3D (AW3D) DEM product (5-m spatial resolution) [39]. Then, the AW3D
DEM was resampled to 30-m. Two methods, average value and median value, were employed during
the resampling procedure so that there were two formats of the AW3D30 DEM: the AVG (average) and
MED (median). In this study, we used the AWAD30 DEM AVG data. The DEM data were used in this
study to exclude regions where cropland is unlikely to occur (see Section 4.7).

4. Methods

4.1. Methodological Overview

An overview of the methodology to create annual cropland maps is shown in Figure 2. Firstly, we
extracted classification features from monthly composited Landsat time series data (Section 4.2), and
then generated training and validation samples using both monthly composited Landsat image time
series and high-resolution images (Section 4.3), respectively. We then used the Gini index importance
score from the RF to evaluate the contribution of each feature for cropland identification, and selected
two features as optimal features for cropland identification in each study site (Section 4.4). Next, we
used the time series of the optimal features for the training samples in 2016 to generate reference
time series using the artificial immune network (AIN) algorithm (Section 4.5), the possible cropland
layer was generated from the DEM data in each study site (Section 4.6), and both reference time
series and the possible cropland layer were used to identify cropland yearly between 2001 and 2016
(Section 4.7). Finally, the classification accuracies of cropland maps were assessed by the validation
samples (Section 4.8), and the cropland acreage dynamics in the seven study sites were evaluated
using the cropland maps generated in this study.
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Figure 2. General flowchart to create annual cropland maps. VHR, very high resolution images, AIN,
artificial immune network.

4.2. Compositing and Feature Extraction from Landsat Images

We used the Quality assurance (QA) band to mask the cloud pixels [41]. For Landsat-5 and
Landsat-7 images, pixels with QA value equal to 66 and 68 remained as cloud pixels; for Landsat-8
images, pixels with QA value equal to 322, 324, 386 and 388 remained as cloud pixels. Next, monthly
image time series were generated using the monthly maximum composition for the multi-spectral
bands: blue, green, red, near-infrared (NIR), and two short-wave infrared (SWIR1 and SWIR2) bands;
data availability generally increased from 2001 to 2016 (Figure 3). We then extracted two types of
information from the monthly composited Landsat images: (i) information from the multi-spectral
bands, and (ii) several vegetation indices calculated from the multi-spectral bands (see Table 2).
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Figure 3. Data availability of each study region. Note: This figure shows the data availability in
the seven study regions of this study. After monthly image composition, we acquired the monthly
maximum normalized difference vegetation index (NDVI) time series between April and October for
each year. Therefore, for each study region, we acquired seven images (one for each month). For each
pixel of an image, for example, the April image of BL in 2016, if no cloud-free period is recorded during
this month, the pixel was labelled “non value” in the composited 2016 April image. Then we used the
number of 50% monthly composited cloud-free periods for each study region/year to represent the
data availability in this figure. For example, the 2016 images in BL show that more than 50% cloud-free
pixels were acquired in all seven monthly composited images, while for the 2003 images in LT, we
acquired only two monthly composited images with more than 50% cloud-free pixels.

Table 2. Features extracted from the Landsat images.

Band/Vegetation Index Band Number of the Sensor Refs

Median value

ρ(Blue) 2 (Landsat-8 OLI), 1 (Landsat-7 ETM+ and 5 TM)
ρ(Green) 3 (Landsat-8 OLI), 2 (Landsat-7 ETM+ and 5 TM)
ρ(Red) 4 (Landsat-8 OLI), 3 (Landsat-7 ETM+ and 5 TM)
ρ(NIR) 5 (Landsat-8 OLI), 4 (Landsat-7 ETM+ and 5 TM)

ρ(SWIR1) 6 (Landsat-8 OLI), 5 (Landsat-7 ETM+ and 5 TM)
ρ(SWIR2) 7 (Landsat-8 OLI), 7 (Landsat-7 ETM+ and 5 TM)

Median value

Normalized Difference
Vegetation Index (NDVI)

ρ(NIR)−ρ(Red)
ρ(NIR)+ρ(Red) [42]

Normalized Burn Ratio
(NBR)

ρ(NIR)−ρ(SWIR2)
ρ(NIR)+ρ(SWIR2) [43]

Normalized Difference
Moisture Index (NDMI)

ρ(NIR)−ρ(SWIR1)
ρ(NIR)+ρ(SWIR1) [44]

Green Vegetation Index
(VIGreen)

ρ(Green)−ρ(Red)
ρ(Green)+ρ(Red) [45]

Normalized Difference
Moisture Index (NDSI)

ρ(Green)−ρ(SWIR1640mm)
ρ(Green)+ρ(SWIR1640mm)

[46]

Note: ρ indicates multi-spectral band.

4.3. Collection of Reference Data

4.3.1. Collection of Training Data

To calibrate the classifier model (see Section 4.5), training samples (i.e., pixels) of five land-cover
categories were collected in 2016: (i) Active Cropland (i.e., sown and harvested), (ii) Bareland, (iii)
Grass/Shrub, (iv) Artificial Surface (e.g., built-up surface in urban regions), and (v) Water (e.g.,
rivers, lakes).

To acquire training pixels, we firstly collected polygons in regions of homogenous land cover,
based on a visual inspection of very high resolution (VHR) images available on Google and Bing
Maps. The polygons were cross-checked by interpreting Landsat NDVI time series (Figure 4). Next,
the selected and cross-checked polygons were converted to 30-m pixels (Table 3). In addition, the
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training samples were mainly collected in 2016 because both Google/Bing Maps and 30-m NDVI time
series had the best data availability for 2016. The collection of cropland samples had to consider the
presence of multiple crop types (such as cotton, maize and wheat). Figure 5 shows training samples
that represent cropland and their corresponding NDVI signatures.
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Figure 4. Exemplary training samples and corresponding NDVI signatures from Landsat images.
The NDVI color is presented as R: NDVI in September of 2016; G: NDVI in July of 2016; B: NDVI in
May of 2016. Note: We collected polygons based on very high resolution (VHR) images and visually
interpreted these samples using both Landsat NDVI time series and the VHR image, and finally
converted the polygons to Landsat pixels. These samples are pure pixels as they were collected in
homogenous regions based on the VHR images.

Table 3. Number of training samples (pixels) for different land cover types in seven test sites.

Class BL MNS LT YN ALM KKP KYZ

Cropland 3716 2968 3422 1465 2153 621 381
Bareland 1957 843 6006 273 427 537 1465

Artificial surface 920 511 427 321 273 321 356
Shrub/Grass 1660 542 3012 356 221 1144 346

Water 1628 509 643 221 319 315 205
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4.3.2. Collection of Training Data

The validation focused on assessing the accuracy of the final, annual cropland maps that had a
binary class legend, i.e., Cropland vs. Non-Cropland. This was done in order to ease the comparison of
the accuracy of the maps with the existing products (see Section 3.2, which has different class legends).
Validation samples were collected independently from the training samples using a random sampling
approach. We first generated a random sample of 1000 pixels in each study site and year, respectively,
using Hawth’s tool [47]. Landsat time series and VHR images were then used to visually interpret
these validation samples (Table 4).

Table 4. Number of randomly selected validation samples (pixels) between 2001 and 2016 for cropland
(C) and non-cropland (N) in seven test sites.

Year
BL MNS LT YN ALM KKP KYZ

C N C N C N C N C N C N C N

2001 161 821 356 644 86 914 391 609 115 819 121 879 92 840
2002 164 818 350 650 87 913 396 604 169 819 116 884 136 824
2003 176 806 369 631 93 907 400 600 147 816 110 890 139 836
2004 179 803 381 619 93 907 415 585 169 821 99 901 130 844
2005 183 799 389 611 95 905 416 584 168 821 102 898 71 837
2006 190 792 396 604 92 902 426 574 167 818 101 899 114 808
2007 200 782 400 600 105 895 435 565 152 822 106 894 100 771
2008 199 783 411 589 111 889 439 561 147 830 104 896 69 882
2009 206 776 419 581 120 880 443 557 150 827 122 878 99 744
2010 212 770 430 570 126 874 446 554 207 789 116 884 111 766
2011 226 749 450 549 138 862 439 547 157 759 120 880 112 774
2012 237 745 456 544 149 851 457 543 205 790 112 888 61 778



Remote Sens. 2018, 10, 2057 10 of 23

Table 4. Cont.

Year
BL MNS LT YN ALM KKP KYZ

C N C N C N C N C N C N C N

2013 249 733 471 429 156 844 459 541 188 791 118 881 66 791
2014 255 726 484 516 165 835 458 542 196 794 135 865 56 798
2015 256 726 487 513 181 819 462 538 208 792 140 860 52 760
2016 256 726 492 508 184 816 469 531 202 798 149 851 108 758

4.4. Feature Importance Estimation Using Random Forest

We used the Gini index generated from the random forest (RF) algorithm to select the optimal
cropland identification features [48]. RF is an ensemble machine-learning technique that combines
multiple trees [48]. Each tree is constructed using two-thirds of the training records and the remaining
records are used for a test classification with an error referred to as an “out-of-bag error”. During the
training procedure of RF, every time a split of a node is made on a variable, the Gini impurity criterion
for the descendent nodes is less than that of the parent node. The importance score is the sum of the
Gini decreases for each individual variable over all trees in the classification forest. In this research, the
Gini importance score was obtained using the RandomForest package for R [49]. The number of trees
in the ensemble was set to 1000 to allow convergence of the error statistic, and the number of features
to split the nodes in the trees was set to the square root of the total number of input features [50].

For selecting optimal cropland identification features, we calculated the sum of the Gini scores of
all seven temporal phases for each feature for each pair of land cover types (such as Cropland and
Bareland). The calculations were repeated 10 times, and features with the highest average Gini score
sum for each pair were calculated. Then, the two most important features were selected as optimal
features for each study site. We only selected two features with a high contribution as optimal features
because the low contribution feature will reduce the separability among different classes. Next, the
time series of these two features were used to generate the reference time series for each study site.

4.5. Generating Reference Landsat Time Series

We used artificial immune network (AIN) algorithms (antibody network, ABNet) to generate
the reference time series [51,52]. AIN methods are inspired by the human immune system, and these
algorithms have shown good potential to solve pattern recognition problems. AIN-based algorithms
call the input training samples “antigens”, and the “antibodies” were generated from the “antigens”
to identify crop “antigens”, which is similar to the work of the human immune system. The training
procedure of the AIN algorithms was to generate the “antibodies” using the training samples, and
the classification procedure was to classify images (“new antigens”) and identify cropland using the
“antibodies”. Generally, the antibodies contained three attributes: the crop type, central vector, and the
recognizing radius (Figure 6a). In this study, the central vector of each antibody was defined as the
reference time series. The procedures for generating the antibodies contain five steps: pre-selection,
cloning, mutation, adaptive calculation of new antibodies, and antibody reorganization (Figure 6b) [53].
The first step (pre-selection) is to select an antigen as the preselected antigen, which could best
represent the unrecognized antigen population. The second step (cloning) is to clone a large number
of pre-selected antigens, and the third step (mutation) is to randomly mutate the cloned antigens and
generate “possible antibodies”. The next step (adaptive calculating new artificial antibody) is to use all
“possible antibodies” to recognize the “antigens”. The “possible antibody” which could identify the
most recognized “antigens” were then defined as an “antibody”, and the “antigens” which could be
identified by the “antibodies” were labeled as recognized “antigens”. Finally, the training procedure
finished when all “antigens” were identified by “antibodies”. The advantage of AIN-based algorithms
is that these algorithms can contain multiple “antibodies” that represent multiple situations of each
land cover class, which is suitable for cropland mapping as cropland contains multiple crop types
and the NDVI time series of cropland have standard derivations (see Figure 5). In this study, the
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time series of the two optimal features (Section 4.1) of the training samples were used as antigens to
generate the antibodies. The Euclidean distance was selected as the similarity measure because it is
easily calculated [54].
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4.6. Annual Cropland Identification

We used the reference time series to identify cropland between 2001 and 2016 annually. The
classification procedure was to calculate the Euclidean distance between the vector of a pixel and the
optimal feature time series of each reference time series, and the pixel was labeled as the land cover
type of the antibody with the minimum distance. We were able to improve this method and solve
the “missing data” problem. For example, among the seven time phases we applied in this study, if a
pixel had five available time phases, we could extract the values at the “high-quality” time phase and
identify the pixel with “missing data” (Figure 7). After that, we merged the Shrub/grass, Bareland,
Water, and Artificial Surface as non-cropland and generated the binary cropland extent maps.
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4.7. Generating Possible Cropland Layer

We used the AWAD30 DEM data to calculate the slope of the terrain in each study area, and we
defined pixels with a slope of less than 15 degrees as “potential cropland” area [55,56]. This binary mask
was finally used to post-process the annual cropland maps; only pixels having less than 15 degrees
were possible to be classified as cropland according to Chinese cultivated land regulation [57].

4.8. Accuracy Assessment

We used metrics from the confusion matrix to assess the quality of the annual cropland maps [58].
These include the producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA), and Kappa
coefficient of variation (kappa). All these accuracy metrics were calculated from the validation samples.
In addition to this, we evaluated the accuracy of existing cropland layers, FROM-GLC, and Globaland30
in 2010. We applied McNemar’s test to evaluate the pair-wise statistical significance of the difference
in accuracy between FROM-GLC, Globaland30, and RBM-based maps in 2010 [59]. McNemar’s test is
a non-parametric test based on the standardized normal test statistic, as in Equation (1):

Z =
f12 − f21√
f12 + f21

(1)

where f12 is the number of samples that are correctly classified by classifier 1 and incorrectly classified
by classifier 2. We defined three cases of differences in accuracy between classifier 1 and classifier 2
according to McNemar’s test:

1. No significance between classifiers 1 and 2 (N): −1.96 < Z < 1.96.
2. Positive significance (classifier 1 has higher accuracy than classifier 2) (S+): Z > 1.96.
3. Negative significance (classifier 1 has lower accuracy than classifier 2) (S−): Z < −1.96.

5. Results

5.1. Feature Selection

Figure 8 shows optimal features in all seven study sites and pair-wise; the Gini importance scores
for all features are shown in the Supporting Material Tables S1–S7. Among all features, NIR, SWIR2,
NDVI, and NBR are selected, and the NDVI is selected in all seven study sites. Among all land cover
types, NDVI shows good potential to identify Cropland from Bareland and Water. For Cropland and
Bareland, the Gini importance scores of June NDVI in BL and August NDVI in YN are 307.61 and
179.75, respectively. For Cropland and Water, the Gini score sums of the NDVI are 359.84 and 487.57 in
YN and KKP, respectively. For separating Cropland from Artificial and Grass/Shrub, the Gini scores
of NDVI are lower; for instance, the Gini score sums of NDVI in BL and MNS are 213.22 and 136.78.
Besides the NDVI, the NIR band is selected as the optimal feature in BL, MNS, LT, and ALM. The NIR
shows potential to discriminate Cropland from Bareland, Water, Artificial Surface, and Grass/Shrub;
the Gini score sums of NIR for Cropland and Grass/Shrub are 207.97 and 1120.44, respectively, which
are higher than the NDVI Gini score sums (136.78 and 104.18). NBR is selected in YN and KKP, as
NBR has a high Gini score when identifying Cropland from Artificial Surface and Grass/Shrub; the
Gini score sums are 147.6 and 145.25 for separating Cropland and Artificial Surface and Cropland and
Grass/Shrub in YN, respectively. SWIR2 is selected in KYZ, with the Gini score sums being 51.29 and
66.55 for separating Cropland and Artificial Surface, and Cropland and Grass/Shrub, respectively.
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5.2. Accuracy Assessment of the Annual Crop Maps

The reference time series acquired by the training samples of 2016 show good potential to identify
croplands. This is evidenced by the generally high overall classification accuracies (>90%) that this
method achieved in most landscapes and years (Figure 9). In BL and MNS, both producer’s accuracy
(PA) and user’s accuracy (UA) of Cropland are higher than 85% after 2002. Figure S1 shows a
representative region in BL. The agricultural landscapes in BL are typically rectangular mosaic crop
fields and the cropland distribution maps showed clear field boundaries. The cropland expanded
between 2005 and 2015, as described by the cropland distribution map. In MNS, rectangular crop
fields show clear field boundaries, but heterogeneous fields have some speckle noise on the cropland
maps. The misclassified pixels are mainly mixed pixels, NIR, and NDVI, and profiles of the mixed
pixels are different from the reference profiles (Figure S2).
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The classification accuracies of the other five study sites are lower than BL and MNS. In Luntai,
the PAs of Cropland are higher than 85% in only six years, and the UAs of Cropland are higher than
85% between 2005 and 2016. The crop fields in LT are characterized by small field size, and the mixed
pixels lead to low classification accuracy (Figure S3). Classification accuracy is low between 2001 and
2004; both PAs and UAs are lower than 70%. This is because the images were not acquired monthly
over these four years. For example, in south LT, only satellite observations of September were acquired
in 2002, and the images in September cannot separate Grass/Shrub from Cropland. Although some
stripes were observed in the Landsat NDVI time series, cropland maps are not affected. In YN, the PA
of Cropland is higher than 85% between 2006 and 2016, and the UA of Cropland is higher than 85% for
the 16 years (Figure 9). Cropland could be identified in a homogenous area, and the extension of the
cropland during 2006 and 2016 could be extracted (Figure S4). In KYZ and KKP, both the UAs and PAs
are higher than 85% between 2006 and 2016. The low classification accuracies before 2005 are mainly
due to the missing image time series. For example, only two time phases between April and October
were acquired in KYZ. While the field sizes are small in KKP, the croplands are cross-distributed with
in-rotation fields, which led to the misclassification of cropland. Classification accuracies of cropland
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are low in ALM; the UAs are higher than 80% only in 2006, 2010, and 2016 (Figure 9). The low UAs are
mainly because of the confusion among Cropland, Grass/Shrub, and Bareland. Figure S5 shows that
NDVI time series of some winter crops are similar to Bareland, which are abandoned fields. Crops
with a long growing season have similar NDVI times series to vegetation in the mountain area; only
fields with summer crops are correctly identified.

5.3. Comparison with Existing 30-m Land-Cover Products

We compared the classification result of RBM and two existing 30-m land-cover products,
FROM-GLC and GlobaLand30 in 2010, by classification accuracy comparison (Table 5), McNemar’s
test (Table 6) and wall-to-wall comparison (Figure 10). All three products generate accurate cropland
maps in BL with overall classification accuracies being higher than 95%, and PAs and UAs higher than
90%. For the other six study sites, the RBM outperforms the two existing products. In MNS, YN and
KYZ, PAs of RBM were similar to GlobaLand30, and the UAs of RBM were slightly higher. Also, the
accuracy of RBM was slightly higher than FROM–GLC in LT and KKP. In ALM, the UA of RBM was
significantly higher than GlobaLand30 and FROM–GLC.

Table 5. Classification accuracy comparison with FROM–GLC and GlobaLand30 in seven study regions.

Study
Site RBM FROM

–GLC GlobaLand30 Study
Site RBM FROM

–GLC Globaland30

OA(%) BL 96.33 95.73 96.29 MNS 92.6 81.3 88.9
Kappa 0.8928 0.8798 0.8911 0.8468 0.6202 0.8068

C
PA(%) 92.92 92.87 92.75 85.35 80 85.81
UA(%) 90.37 90.45 91.67 97.09 77.3 88.79

N
PA(%) 97.27 97.11 99.04 98.07 82.28 97.54
UA(%) 98.04 98.19 98.76 89.87 84.5 93.93

OA(%) LT 97.9 91.7 95.1 YN 95.3 72.49 92.3
Kappa 0.9043 0.8272 0.7639 0.9049 0.4363 0.8452

C
PA(%) 91.27 90.26 73.81 94.84 47.49 94.84
UA(%) 92 85.93 86.32 94.63 90 88.68

N
PA(%) 98.86 97.83 98.17 95.67 96.21 90.25
UA(%) 98.74 98.48 96.3 95.84 66.61 95.6

OA(%) KKP 96 78.51 91.23 KYZ 95.68 94.8 70.68
Kappa 0.8223 0.4763 0.8028 0.8766 0.8607 0.4143

C
PA(%) 93.97 81.64 88.28 98.07 91.39 100
UA(%) 76.76 48.99 75 83.88 82.81 41.48

N
PA(%) 96.27 77.69 95.7 95.06 97.51 62.99
UA(%) 99.18 94.16 99.76 99.47 98.85 100

OA(%) ALM 96.92 85.52 78.34
Kappa 0.8674 0.5008 0.4317

C
PA(%) 93.69 79.28 99.1
UA(%) 83.87 45.83 36.79

N
PA(%) 97.39 86.42 75.33
UA(%) 99.07 96.64 99.83

Notes: OA = overall accuracy, PA = producer´s accuracy, UA = user´s accuracy. “C” denotes Cropland, “N” denotes
Non-Cropland, “RBM” denotes reference-time-series based mapping method.

Table 6. McNemar’s test result of RBM results and the two existing cropland maps (Z value and
significant level).

BL MNS LT YN ALM KKP KYZ

RBM vs. Globaland30 0.94 (N) −0.14 (N) 0.75 (N) 0.93 (N) 6.22 (S+) 9.76 (S+) 0.19 (N)
RBM vs. FROM–GLC −0.29 (N) 9.41 (S+) 1.51 (N) 5.17 (S+) 1.97 (S+) 6.64 (S+) 1.01 (N)
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Table 6 shows that RBM significantly outperforms Globaland30 in KKP and KYZ, and outperforms
FROM–GLC in MNS, ALM, KKP, and KYZ. From the wall-to-wall comparison, RBM was able to
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identify crop field boundaries. Note that FROM–GLC and GlobaLand30 cannot identify the roads
between the cropland fields, particularly in LT and YN. In addition, RBM identifies the homogenous
cropland in KKP and ALM, but FROM–GLC and GlobaLand30 fail to map these cropland fields,
while RBM and FROM–GLC fail to identify the fragmented croplands in the region, and GlobaLand30
overestimates the fragmented cropland.

5.4. Land Use Intensity Change between 2001 and 2016

We used the annual cropland map generated from RBM to analyze the cropland change between
2001 and 2016. In the four study sites in Xinjiang, cropland acreage shows an increasing trend. Between
2002 and 2016, cropland acreage increases from 2007 km2 to 2970 km2 in BL, and between 2001 and
2016, it increases from 2858 km2 to 4930 km2 in MNS. In LT, cropland acreage increases from 780 km2

to 1299 km2 between 2001 and 2016, and from 1704 km2 to 3053 km2 in YN (Figure 11). Figure 11
shows the cropland intensity between 2001 and 2016. The cropland intensity of most cropland in these
four study regions is higher than 15, and yellow patterns are the cropland expended between 2001 and
2016. Generally, cropland extended as Bareland is transformed to Cropland; croplands do not expand
into the other three study regions. The cropland acreage is around 700–900 km2 in KYZ, 600–800 km2

in KKP, and around 500–600 km2 in ALM. Figure 12 shows that the cropland intensities of the crop
fields in these study regions are around 8 during the 16-year period, which means that the fields are in
rotation and there is no clear expansion or shrink trend.
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Figure 11. Annual change in cropland area in seven test sites in Central Asia: (a) BL, (b) MNS,
(c) LT, (d) YN, (e) KYZ, (f) KKP, (g) ALM. Note: The area of cropland increased in BL, MNS, LT,
and YN between 2001 and 2016, and in KKP, KYA and ALM, cropland acreage does not have the
increasing trend.
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Figure 12. Cropland changes and the number of cropped years for each pixel. Note: crop intensity
means among the 16 years of this study, the number that a pixel identified as cropland was defined as
the cropland intensity (cropped years). In this figure, we show the cropland extent at 2001, 2006, 2011,
and 2016 for all study regions, and also show the cropland intensity. In the cropland intensity image,
green patterns represent low cropland intensity regions and red patterns represent high cropland
intensity regions. Generally, BL, MNS, LT, and YN had higher land use intensity than the other four
study regions. In addition, the images of this figure share the same scale bar.
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6. Discussion

This study proposed a reference time-series-based method to automatically generate the annual
cropland extent at 30-m resolution. The “core” of the method is the “reference time series”. The
first challenge was to collect training samples which were used to generate the reference time series.
As “Cropland” contains multiple crop types, the training samples of the major crop types should
be included in the training samples data set. We used images of May, July and September Landsat
NDVI to collect training samples for “Cropland”. Different vegetation is shown as different colors
in this composed image (Figure 4); for example, winter crops (such as winter wheat) is blue and
cotton is yellow. Samples for each color were then selected as “Cropland” training samples to ensure
sample richness.

The image time series are essential for cropland mapping, but another challenge in deriving
annual cropland maps at 30-m spatial resolution is that regular image time series cannot be acquired,
particularly before 2010. We then used the monthly composition strategy to generate the monthly
Landsat images, as this strategy made use of all available Landsat pixels. Although the monthly
composition reduced the “no data” pixels in the Landsat time series, some time series were still
“irregular”. For example, some pixels of 2007 in LT showed serious “stripe noise” due to the Landsat-7
images (Figures S3 and S4). In this case, most classifier and standard cluster methods cannot process the
irregular time series with missing values. However, the reference time-series-based method proposed
in this study contributes to classifying cropland with irregular image time series. Reference time series
are derived from the training samples in 2016, and sample pixels acquired Landsat records in all seven
months. To identify an irregular time series, we can extract a subset of reference image time series
corresponding to the “good quality” temporal phases in the irregular time series, and then identify
cropland by comparing the subset reference time series and the image time series. Therefore, although
some “stripe noise” or missing data is in the Landsat time series, the cropland map is not affected by
this noise (Figures S3 and S4).

The optimal features selected in this study are mainly the NDVI and NIR bands. The NBR
and SWIR2 bands were selected in KYZ and KKP. NDVI made the most contribution to identifying
“Cropland” from “Bareland”, “Artificial Surface” and Water, while the NIR band contributed to
distinguishing “Cropland” from “Shrub/Grass”. This is consistent with Zhu and Woodcock [60] in
that NIR and SWIR time series showed large differences when pixels changed from forest to agricultural
land. Additionally, images in some important temporal phases are essential for cropland mapping, and
the May to August images have a high Gini score sum in this study (Tables S1–S7), which is consistent
with the growing season of the major crop types in the study sites. For example, winter crops (such as
winter wheat) have high NDVI in May, and cotton and maize have NDVI peaks in July [24,61]. Thus,
acquiring optimal features at important temporal phases contributes to correct cropland identification.
We selected two features to generate reference time series, although NDVI was selected in all seven
study sites and the NIR band was selected in four sites; the optimal features may vary in different
regions. Generally, the optimal feature could distinguish “Cropland” and “Shrub/Grass”, and in
different study regions, different vegetation types led to variation of the optimal features. When
applying this method in a large area, feature contribution should be carefully evaluated to ensure that
the selected feature time series were representative of the major vegetation types in the study area.

Seven study sites were used to evaluate the method proposed in this study, and we generated
high classification accuracies in BL, MNS, YN, and KYZ, but low classification accuracy in ALM, LT,
and KKP, which means RBM still has some uncertainty for cropland extent mapping. There are several
reasons for the uncertainty: (1) The small field size in some study regions. Generally, small field size
leads to mixed pixels with the mixed signature of multiple crop types [62]. As a result, the mixed time
series do not match any reference time series and lead to the wrong classification (Figure S2). Low and
Duveiller [63] quantitatively assessed the effect of pixel size on uncertainty and found that regions with
heterogeneous landscapes (such as KKP) have higher classification uncertainty, due to the decrease of
pixel purity and increasing number of mixed pixels. (2) Images at the important temporal phases were
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not acquired. There are some serious data missing and only a limited number of Landsat records were
acquired, for example, in 2003 for Bole and 2002 for YN. When all features of the important temporal
phases are missing, the reference time series failed to extract cropland. (3) The confusion between
“Cropland” and other land cover types. There were “Cropland” and “Shrub/Grass” that had similar
NDVI and NIR time series in ALM (Figure S5), and the confusion led to misclassification. (4) The
representativeness of training samples. As we used the training samples to generate reference time
series, if the NDVI time series of some typical crop types were not recorded in the training samples, the
RBM could not identify cropland with these typical crops and this led to misclassification. (5) Although
the slope layer derived from a DEM was included to mask the vegetation in the mountain area, the
shrub and grass in flat regions were still misclassified as cropland.

7. Conclusions

Generating yearly cropland distributions at 30-m resolution is challenging because Landsat time
series are not acquired regularly, and training samples need to be collected annually. In this paper, we
presented a method to generate annual cropland distribution maps using reference image time series,
which could handle the irregular Landsat time series. The method was evaluated in seven study sites
(BL, MNS, LT, YN, KKP, KYZ, and ALM). The main conclusions are as follows:

(1) The reference time series method showed good potential to identify “irregular” Landsat time
series and generate annual cropland distribution. Classification accuracies of the Cropland are
higher than 85% in most cases. However, mixed pixels caused by small field size, the loss of
image at important temporal phases and signature confusion between “Cropland” and other
land cover types led to misclassification.

(2) The NDVI, NBR, NIR and SWIR2 bands were selected as optimal features for cropland mapping
in 2016, and NDVI was selected as the most important feature.

(3) The annual cropland maps created in this study are a useful basis for monitoring cropland
distribution dynamics. Both wall-to-wall comparison and acreage statistics showed that the
cropland expanded significantly in BL, MNS, and YN during the past 16 years, and the cropland
in these four study regions had high cropland intensity. The cropland acreage in KYZ, KKP, and
ALM have lower cropland intensity as the fields in these study regions were in rotation, and no
clear expansion or shrinkage trends were observed.

The reference time-series-based method showed good potential to generate continuous cropland
extent maps annually. Future work should focus on using images with a better spatial resolution
to identify the cropland with small fields. Additionally, more features, derived from SAR and
LiDAR sensors, should be considered to further solve the confusion between “Cropland” and other
natural vegetation.
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