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Abstract
Aim: The conservation and effective use of crop genetic diversity are crucial to over-
come challenges related to human nutrition and agricultural sustainability. Farmers’ 
traditional varieties (“landraces”) are major sources of genetic variation. The degree 
of representation of crop landrace diversity in ex situ conservation is poorly under-
stood, partly due to a lack of methods that can negotiate both the anthropogenic and 
environmental determinants of their geographic distributions. Here, we describe a 
novel spatial modelling and ex situ conservation gap analysis modelling framework 
for crop landraces, using common bean (Phaseolus vulgaris L.) as a case study.
Location: The Americas.
Methods: The modelling framework includes five main steps: (a) determining relevant 
landrace groups using literature to develop and test classification models; (b) model-
ling the potential geographic distributions of these groups using occurrence (landrace 
presences) combined with environmental and socioeconomic predictor data; (c) cal-
culating geographic and environmental gap scores for current genebank collections; 
(d) mapping ex situ conservation gaps; and (e) compiling expert inputs.
Results: Modelled distributions and conservation gaps for the two genepools of com-
mon bean (Andean and Mesoamerican) were robustly predicted and align well with 
expert opinions. Both genepools are relatively well conserved, with Andean ex situ 
collections representing 78.5% and Mesoamerican 98.2% of their predicted geo-
graphic distributions. Modelling revealed additional collection priorities for Andean 
landraces occur primarily in Chile, Peru, Colombia and, to a lesser extent, Venezuela. 
Mesoamerican landrace collecting priorities are concentrated in Mexico, Belize and 
Guatemala.
Conclusions: The modelling framework represents an advance in tools that can be 
deployed to model the geographic distributions of cultivated crop diversity, to as-
sess the comprehensiveness of conservation of this diversity ex situ and to highlight 
geographic areas where further collecting may be conducted to fill gaps in ex situ 
conservation.
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1  | INTRODUC TION

The effective use of crop genetic resources—including both traditional 
farmer varieties (or “landraces”) and wild relatives—is important in ef-
forts to overcome challenges related to human nutrition and agricul-
tural sustainability (Burke, Lobell, & Guarino, 2009; Esquinas-Alcázar, 
2005; Khoury et al., 2016). Progress in plant breeding and crop diversi-
fication is dependent on crop understanding and utilizing the available 
genetic resources (Glaszmann, Kilian, Upadhyaya, & Varshney, 2010; 
Hajjar & Hodgkin, 2007). The erosion of genetic diversity within many 
common crops has occurred over the last century through a combina-
tion of land use change, habitat degradation and the ongoing adoption 
of improved crop varieties or the substitution of crop species by farm-
ing communities (Hoisington et al., 1999; van de Wouw, Kik, Hintum, 
Treuren, & Visser, 2010). In some crops, only a fraction of the genetic 
diversity once present is still found today in farmers’ fields, for example 
wheat landraces in the Fertile Crescent (Gepts, 2006; Harlan, 1975). 
Consequently, ex situ crop genebanks have become essential not only 
for distributing of genetic resources to various users (e.g. breeders, 
other genebanks), but also for their conservation of such resources 
(Gepts, 2006; Hoisington et al., 1999).

Understanding the representation of crop diversity in ex situ re-
positories provides a foundation for conservation planning (Castañeda-
Álvarez et al., 2016; García, Parra-Quijano, & Iriondo, 2017; van 
Treuren, Engels, Hoekstra, & Hintum, 2009). Methods to assess the 
current degree of representation, and to inform further collecting ef-
forts, have increasingly been developed for over more than a decade 
[e.g. Rodrigues et al., (2004); Maxted, Dulloo, Ford-Lloyd, Iriondo, and 
Jarvis (2008)]. Due to the general lack of genetic data, these methods 
are generally based on ecogeographic methodologies as a proxy for 
assessments of genetic diversity (Khoury et al., 2019; Ramirez-Villegas, 
Khoury, Jarvis, Debouck, & Guarino, 2010). Such methods have proved 
useful in estimating the representation of wild relatives and other wild 
species in genebanks in comparison with standing extant diversity in 
their natural environments (Castañeda-Álvarez et al., 2016; Khoury 
et al., 2019; Syfert et al., 2016). However, their application to cultivated 
plants, whose spatial distributions are determined by anthropogenic 
factors as well as environmental drivers, is limited (Fuller, 2007; Hilbert 
et al., 2017; Morris et al., 2013). This represents a critical gap, since cul-
tivated materials are generally preferred over wild relatives for use by 
plant breeders (Camacho Villa, Maxted, Scholten, & Ford-Lloyd, 2005; 
Hammer, Knüpffer, Xhuveli, & Perrino, 1996).

Here, we present a conservation gap analysis modelling frame-
work for cultivated crop diversity, that improves on current ecogeo-
graphic methods, using landraces of the common bean (Phaseolus 
vulgaris L.) as a case study. As opposed to previous analyses of the 
distributions of cultivated crop diversity [e.g. Upadhyaya, Reddy, 
Irshad Ahmed, and Gowda (2012), Upadhyaya et al. (2017)], our 
methods explicitly aim to include anthropogenic drivers in the 

modelling of the distributions of landraces. The results predict geo-
graphic areas that are likely gaps in ex situ landrace conservation col-
lections and provide metrics that can be used to track conservation 
progress. These results are supplemented with expert knowledge, 
which is vital for elucidating spatial patterns and drivers of range 
change that are difficult to model.

Common bean is the most widely human-consumed grain legume, 
playing an essential role in food and nutritional security, particularly 
in Latin America and Sub-Saharan Africa (Beebe, 2012; Broughton 
et al., 2003). Two independent domestication events of wild P. vul-
garis have been identified—one in Mexico and Central America, 
and the second in the Andes mountains of South America (Gepts, 
Osborn, Rashka, & Bliss, 1986). Significant movement of genetic 
material and gene exchange between genepools has occurred since 
domestication, with considerable overlap in current geographic dis-
tributions, both in the Neotropics and across other major cultivation 
areas (Singh, 1989; Singh, Gepts, & Debouck, 1991). These processes 
have resulted in recognized secondary regions of diversity in Brazil, 
Europe, Africa and Asia (Escribano & De Ron, 1991; Lobo Burle et al., 
2011; Logozzo et al., 2007).

Globally, there are some 250 ex situ collections of cultivated 
P. vulgaris, with the largest and most diverse maintained at the 
International Centre for Tropical Agriculture (CIAT) with ~40,000 
accessions, and the United States Department of Agriculture (USDA) 
National Genetic Resources Program with ~15,000 accessions 
(Debouck, 2014). Here, we assess the representation of common 
bean landraces in such major genebank collections, including esti-
mating overall conservation and identifying gaps.

2  | MATERIAL S AND METHODS

Our modelling framework first necessitates the defining of the study 
area, gathering of landrace occurrence and characterization data, 
and compilation of environmental and socioeconomic spatial predic-
tor information. The modelling and conservation gap analysis is then 
performed, consisting of five main steps: (a) determining relevant 
landrace groups using the literature to develop and test classifica-
tion models; (b) modelling the potential geographic distributions of 
these groups using the occurrence and predictor data; (c) calculat-
ing geographic and environmental gap scores for current genebank 
collections; (d) mapping ex situ conservation gaps; and (e) compiling 
expert inputs. The overall process is depicted in Figure 1.

2.1 | Study area

Crop landraces have been defined as “dynamic population(s) of 
a cultivated plant that has historical origin, distinct identity and 
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lacks formal crop improvement, as well as often being genetically 
diverse, locally adapted and associated with traditional farming 
systems” (Camacho Villa et al., 2005; Casañas, Simó, Casals, & 
Prohens, 2017). A landrace can be further classified as autochtho-
nous when grown in the original location where it developed its 
unique genetic and socioeconomic characteristics through grower 
selection and allochthonous when introduced from another region 
and then locally adapted. “Secondary” landraces may also be rec-
ognized, developed by the formal plant breeding sector but now 
maintained through repeated farmer selection and seed saving 
(Zeven, 1998).

While landraces cultivated over time in any given location may 
possess novel traits useful for plant breeding, our distribution 
modelling method rests on the premise that these varieties have 
distinct, local environmental adaptations (see 2.4.1–2.4.2). As ad-
aptation to environment is developed over time, the geographic 
areas where landraces have occurred the longest—the origins and 
primary regions of diversity—would be considered to have the 
most significant association between environmental adaptation 
and genetic variation (Khoury et al., 2016). For this reason, land-
race distribution modelling may focus foremost on autochthonous 
ranges.

For our case study, we focused on the Americas as the centre of 
domestication and primary region of diversity for P. vulgaris (Gepts 
et al., 1986). We included all areas extending from the southern 

United States to central Chile and northern Argentina, including 
the Caribbean, as this broadly includes the two reported domesti-
cation events and distributions of the progenitor and close relatives 
of the species (Chacon, Pickersgill, & Debouck, 2005; Gepts et al., 
1986). We also included Brazil since it is geographically close to the 
putative regions of domestication and because existing evidence 
suggests clear relationships between Brazilian bean landraces and 
Andean and Mesoamerican types (Lobo Burle et al., 2011; Lobo 
Burle, Fonseca, Kami, & Gepts, 2010).

2.2 | Landrace occurrence and characterization data

Our distribution modelling and conservation gap analysis model-
ling framework requires geographic occurrence (presence) data 
for landraces and information on the locations where these lan-
draces have been previously collected for conservation ex situ, 
as well as characterization data on the landrace accessions. To 
assess the world's common bean landrace collections, we com-
piled available genebank accession-level passport (i.e. site where 
collected) data from major online germplasm databases, including 
the Genesys plant genetic resources portal (Global Crop Diversity 
Trust, 2019) and the United Nations Food and Agriculture 
Organization World Information and Early Warning System on 
Plant Genetic Resources for Food and Agriculture (WIEWS) (FAO, 

F I G U R E  1   Conservation gap analysis 
modelling framework implemented in this 
study
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2019). To ensure inclusion of the crop's major germplasm col-
lections, we specifically gathered occurrence and characteriza-
tion data from the CIAT database (CIAT, 2018), freely available 
at and from the United States Department of Agriculture (USDA) 
Genetic Resources Information Network (GRIN)–Global (USDA 
ARS NPGS, 2018).

Additional occurrences were gathered from the Global 
Biodiversity Information Facility (GBIF) (GBIF.org, 2019), which 
contained 25,670 observations from herbaria, botanic gardens 
and other plant repositories, to provide independent data from 
non-genebank sources. We compiled the datasets into a single 
database and performed a thorough quality check of all records. 
Duplicated observations were eliminated with preference to main-
tain original data, for example, USDA-GRIN or CGIAR records in-
cluded in Genesys or WIEWS were discarded. Coordinates were 
corrected, or if not possible, eliminated, when latitude and longi-
tude were equal to zero, located in inland water bodies or in the 
ocean, located in the wrong country, had an inverted sign in the 
latitude and/or longitude or had low coordinate precision (i.e. with 
less than 2 decimal places). Our full occurrence dataset for P. vul-
garis is available in Dataset S1.

2.3 | Spatial predictors

With the aim of compiling a robust global dataset of important en-
vironmental and anthropogenic drivers of the geographic distribu-
tions of crop landraces, we gathered and/or calculated spatially 
explicit (gridded) information for a total of 50 potential predictors, 
including climate, topography, diversity and domestication and so-
cioeconomic variables (Table S2.1). For climate, we used a total of 
40 variables, derived from a combination of the WorldClim version 2 
(Fick & Hijmans, 2017) and the Environmental Rasters for Ecological 
Modelling (ENVIREM) (Title & Bemmels, 2018) databases. We in-
cluded topography from the Shuttle Radar Topography Mission 
(SRTM) dataset of the CGIAR-Consortium on Geospatial Information 
(CSI) portal (Jarvis, Reuter, Nelson, & Guevara, 2008; Reuter, Nelson, 
& Jarvis, 2007). Two crop genetic diversity and domestication proxy 
variables were included, namely the distance to known common 
bean wild relative populations and the distance to human settle-
ments before year AD 1500. Regarding socioeconomic variables 
(8 in total), we included datasets on the geographic distribution of 
ethnic groups (Weidmann, Rød, & Cederman, 2010); crop yield, har-
vested area and crop production quantity (You et al., 2017); popula-
tion density (CIESIN, 2018); population accessibility (Nelson, 2008); 
distance to navigable rivers (Natural Earth, 2019); and percentage 
of area under irrigation (Siebert, Henrich, Frenken, & Burke, 2013). 
All spatial predictor data were scaled to or computed on a common 
2.5 arc-min grid, using the geographic coordinate system (GCS) with 
WGS84 as datum. A complete description of these data sources and 
their justification for inclusion is provided in Text S2.1 and Table 
S2.1. The full dataset of ecogeographic and socioeconomic variables 
is available in Dataset S1.

2.4 | Landrace distribution modelling and 
conservation gap analysis

2.4.1 | Determination of landrace groups

Crop landraces are domesticated, locally adapted varieties of crops, 
developed through farmer selection over time in specific agricultural 
ecosystems (Camacho Villa et al., 2005; Jones et al., 2008) and, for 
most crops, are considered to number in the thousands (Harlan, 
1975; Jones et al., 2008). Crop landraces are associated with specific 
local adaptation traits and farmer preferences, and an understand-
ing of these drivers is important to modelling their potential distri-
butions. Given the large number of landraces and the knowledge 
necessary to distinguish their biocultural and ecological differences, 
our method seeks a compromise between the recognition of this 
complexity and performance of spatial modelling at scales which are 
feasible and permit comparison with existing genebank collections.

Therefore, the first step of our modelling method was to identify 
recognized groups within the crop that could be tested for whether 
they have distinct environmental and socioeconomic niches. We 
used Google Scholar™ to identify and review publications that, 
through morphological, physiological, chemical, genetic, nomencla-
tural or other characters, establish or propose groups of landraces 
(e.g. by identifying genepools, races, domestication centre(s), ge-
netic clusters or other acknowledged groupings) (Table S2.2).

We then used classification models to test the significance of 
these classifications. The classification models allowed us to de-
termine whether the classes identified could be predicted on the 
basis of the spatial predictors from Section 2.3. This process used 
data from the occurrence database (if the distinguishing characters 
of the identified landrace groups were reported in the database) or 
from training datasets containing both characters and geographic 
coordinates, compiled from the literature review. For this analysis, 
we used random forest (RF) (Pal, 2005), support vector machine 
(SVM) (Meyer, Leisch, & Hornik, 2003), K-nearest neighbour (KNN) 
(Guo, Wang, Bell, Bi, & Greer, 2003) and artificial neural networks 
(ANN) (Dreiseitl & Ohno-Machado, 2002). The response variable in 
all models was the group in which a given accession was assigned, 
whereas the explanatory variables were the spatial predictors. 
Models were combined into an ensemble using the mode (i.e. the 
most frequent predicted value amongst models) and tested using 
15-fold cross-validation (80% training, 20% testing). We accepted 
a given classification if each of its classes was predicted with an av-
erage cross-validated accuracy of at least 80% (i.e. 8 of every 10 ac-
cessions are predicted correctly). Finally, we used the trained models 
to predict the corresponding class for any records in the database 
missing such information.

2.4.2 | Modelling landrace geographic distributions

The objective of this step was to develop a Landrace Distribution 
Model (LDM) which describes the probability of occurrence of the 
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landrace groups derived from Section 2.4.1. To predict the probability 
of occurrence for each landrace group, we fitted a MaxEnt model (Elith 
et al., 2010; Phillips, Anderson, & Schapire, 2006) using the “maxnet” R 
package (Phillips, Anderson, Dudík, Schapire, & Blair, 2017). We chose 
MaxEnt as a standard and very commonly used tool for species dis-
tribution modelling (Costa, Nogueira, Machado, & Colli, 2010; Elith 
et al., 2006). MaxEnt has been demonstrated to yield robust results 
when compared with other species distributions modelling algorithms 
(Barbet-Massin, Jiguet, Albert, & Thuiller, 2012; Elith et al., 2006; 
Giovanelli, Siqueira, Haddad, & Alexandrino, 2010).

Variables used in the model were sub-selected from the envi-
ronmental and socioeconomic predictors using a combination of the 
variance inflation factor (VIF) and a principal component analysis 
(PCA) to control for unwarranted model complexity and collinearity 
between explanatory variables (Warren & Seifert, 2011). We first 
removed any variables that did not contribute significantly (defined 
as contributing <15% to the first component) to the variance in the 
PCA and then discarded any variables with a VIF greater than 10 
(Braunisch et al., 2013). The list of variables selected (or alternatively 
eliminated) for use in modelling are available in Table S2.1. We tried 
different model configurations (i.e. only climate, only non-climate 
and both) but present only the best-performing one (i.e. where all 
variables are used). Other results are presented in Text S2.2.

Background points (pseudo-absences) were generated based on 
the three-step method of Senay, Worner, and Ikeda (2013). In short, 
we took a random sample of pseudo-absences from areas that (a) 
were within the same ecological land units [as reported by Sayre 
et al. (2014)] as the occurrence points, (b) were deemed as poten-
tially suitable according to a support vector machine (SVM) classifier 
that uses all occurrences and predictor variables and (c) were further 
than 5 km from any occurrence. The number of pseudo-absences 
drawn was equivalent to 10 times the total number of unique occur-
rences for a given landrace group.

MaxEnt models were fitted through a fivefold (K = 5) cross-valida-
tion process in which 80% of the occurrences (and pseudo-absences) 
were used to train the models, and the remaining 20% were used for 
testing. For each fold, we calculated the area under the receiving op-
erating characteristic curve (AUC), sensitivity, specificity and Cohen's 
kappa as measures of model performance. To create a single prediction 
that represents the probability of occurrence for the landrace group, 
we computed the median across models. Finally, any areas above the 
probability value at the maximum sum of sensitivity and specificity 
were considered the final Landrace Distribution Model (LDM).

2.4.3 | Calculating geographic and environmental 
gap scores

We developed three scores that compare the geographic and en-
vironmental diversity in existing ex situ conservation collections 
against the LDM, revealing ex situ conservation gaps.

The accession connectivity score (SCON) was formed with 
Delaunay triangulation (Lee & Schachter, 1980), that is, triangles 

linking every three (closest) accession occurrence locations, using the 
“deldir” R package (Turner, 2019). For each 2.5 arc-min pixel within 
each Delaunay triangle, we computed SCON following Equation 1.

where, AT−i is the area of the triangle (km2) where the pixel is located 
(i.e. the i-th triangle), max (AT−i, … AT−n) is the area of the largest trian-
gle amongst all triangles, DC−i is the Euclidean distance from the pixel 
to the centroid of the triangle where it is located, normalized by the 
longest distance (using all pixels) within the given triangle, DNV−i is the 
Euclidean distance from the pixel to the nearest vertex of the triangle 
where it is located, normalized by the longest distance (using all pixels) 
within the given triangle.

From Equation 1, it is clear that SCON for any given pixel is largest 
(i.e. increases the likelihood of gaps) when the triangle is large (i.e. 
high area), when the pixel is close to the centroid of the triangle (i.e., 
where there are no accessions) and when the distance to the vertices 
(where the accessions are located) is high.

The accession accessibility score (SACC) was calculated by com-
puting travel time from each pixel within the LDM to the nearest 
genebank accession, following Weiss et al. (2018). Travel time was in 
this case estimated through a product of the distance and the speed 
of travel (defined by a friction surface). Once the travel time from 
each location was computed, it was normalized by dividing pixel val-
ues by the longest travel time within the LDM, to derive a metric in 
the range 0–1, with high values reflecting long travel time.

The environmental score (SENV) measures how well the environ-
ments where the landraces are distributed are represented in ex 
situ collections. We first performed a hierarchical clustering anal-
ysis (Ward's method) for the pixels in the LDM using the predictor 
variables used to construct the LDM. On a per cluster basis, we 
computed the Mahalanobis distance between each pixel and the en-
vironmentally closest germplasm accession. The distance was finally 
normalized (0–1), with high values indicative of large distances to 
sites with similar environments that have previously been collected 
for ex situ conservation.

2.4.4 | Mapping ex situ conservation gaps

Spatial ex situ conservation gaps were calculated from the conser-
vation gap scores using a cross-validation procedure to derive a 
threshold for each landrace group and each of the gap scores (SCON, 
SACC, SENV). To do so, we created synthetic (artificial) gaps by remov-
ing genebank occurrences in five randomly chosen circular areas of 
100 km radius within the LDM. We then tested whether these syn-
thetic gaps could be predicted by our method and determined the 
threshold value of each gap score that would maximize the predic-
tion of these synthetic gaps. Performance for each of the five syn-
thetically created gaps was assessed using the AUC, sensitivity and 
specificity. Finally, the average threshold value of each gap score, 

(1)SCON=

AT−i

max
(

AT−i,⋯ ,AT−n

) ∗

(

1−DC−i

)

∗DNV−i
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maximizing the prediction of the synthetic gaps (balanced with mini-
mizing false positives), was used to discretize the gap score datasets 
into areas with a high priority for further collecting (areas with gap 
score above the threshold, assigned a value of 1) as opposed to rela-
tively well-conserved areas (areas with gap score below the thresh-
old, assigned a value of 0).

We then summed the three binary gap score maps, resulting in 
a map with values from 0 to 3. Areas with a value of 0 indicate that 
there are no accession connectivity, accessibility or environmental 
gaps (i.e. well-conserved areas); areas with a value of 1 indicate gaps 
exist due any of accession connectivity, accessibility or environment 
(low confidence gaps); areas with a value of 2 indicate gaps exist due 
to two metrics (medium confidence gaps), and values of three indi-
cate gaps for all metrics (highest confidence gaps). We termed this 
3-value area our “final gaps map.”

Once the final gaps map was calculated, we estimated the cov-
erage of existing germplasm collections. The coverage is simply the 
area considered as gap divided by the total area of the LDM. We 
compute only the coverage resulting from the agreement of the 
three gap metrics, as an upper-level coverage estimation.

2.4.5 | Compilation of expert inputs

Gap analysis is a tool for assessing collection completeness as well 
as to plan collecting (García et al., 2017; Marinoni, Bortoluzzi, Parra-
Quijano, Zabala, & Pensiero, 2015). Collecting based on model pre-
dictions may require extensive discussion with local institutions and 
crop experts including botanists, collectors, agronomists and breed-
ers. This is because agricultural landscapes are highly dynamic, and 
areas predicted with gaps may have been subject to recent land use 
change, varietal replacement by improved or foreign material or sig-
nificant genetic drift, resulting in loss of uncollected genetic material 
predicted to be of value (Hammer et al., 1996; van Heerwaarden, 
Hellin, Visser, & Eeuwijk, 2009; van de Wouw et al., 2010). This 
means that while the “final gaps map” resulting from Section 2.4.4 
provides a detailed regional picture of collecting priorities, the plan-
ning of collecting missions will effectively require discussion with 
experts and further analysis (Greene et al., 1999a,1999b; Jarvis et al., 
2005). In this sense, gap analysis results are a discussion support tool 
that aims at guiding, rather than prescribing where and how collect-
ing may be done. Here, we illustrate this by conducting a semi-struc-
tured interview process with two relevant crop landrace experts. 
These inputs were used to add additional value to the model results.

3  | RESULTS

3.1 | Environmentally distinguishable groups of 
common bean landraces

Our literature review indicated that a single major classifica-
tion system based on genetic, morphological and physiological 

characteristics has been accepted for common bean landraces. This 
system, first proposed by Singh et al. (1991), classifies beans into 
two genepools—Andean and Mesoamerican. The Andean genepool, 
derived from the domestication event proposed to have occurred 
around Peru, Chile and Bolivia, is composed of typically larger-
seeded genotypes. The Mesoamerican genepool, derived from the 
domestication event in Mexico and Central America, is typically 
composed of smaller-seeded genotypes (Singh et al., 1991). These 
and subsequent authors divide these genepools into races accord-
ing to morphological criteria, agro-ecological adaptation and genetic 
data (see Table S2.2 for a complete list of publications reviewed). 
The Andean genepool is divided into races Chile, Nueva Granada 
and Peru, whereas the Mesoamerican genepool contains races 
Guatemala, Durango–Jalisco and Mesoamerica (Blair, Díaz, Hidalgo, 
Díaz, & Duque, 2007; Blair, Díaz, Buendía, & Duque, 2009; Singh 
et al., 1991).

We tested a variety of accession-level data pertinent to common 
bean genepools, including seed protein type; seed weight, colour 
shape and brightness; and landrace names. Based on degree of ac-
ceptance in published literature and availability of accession-level 
data with geographic coordinates, we ultimately based our training 
data on genepool designations given in the CIAT accessions dataset 
and specific accession numbers gathered from the reviewed litera-
ture (Table S2.2).

Our average classification accuracy at the genepool level was 
86% (88.3% for Andean and 85% for Mesoamerican landraces), indi-
cating that these two genepools have distinct environmental and so-
cioeconomic signatures, with Mesoamerican beans being present in 
lower, drier and hotter places compared to Andean beans. Identified 
predictors (see Figure S2.1) for the classification models agree with 
previously reported predictors of domesticated and wild bean dis-
tributions (Cortes, Monserrate, Ramirez-Villegas, Madrinan, & Blair, 
2013; Ramirez-Villegas et al., 2010). At the race level, the classifica-
tion accuracy was low 58.5% as a mean across all races and hence 
deemed not informative. Based on these results, we concluded that 
the genepool level was the most appropriate for all subsequent dis-
tribution modelling and conservation gap analysis steps. Hence, in 
all following sections we show results separately for Andean and 
Mesoamerican common bean landrace groups.

3.2 | Geographic distributions of common bean 
landrace groups

Figure 2 shows the predicted geographic distributions of Andean 
(Figure 2a) and Mesoamerican (Figure 2b) landraces. Cross-validated 
MaxEnt models performed well with mean AUC values of 0.973 
(Andean) and 0.996 (Mesoamerican). The MaxEnt-based LDMs also 
indicated that 23 variables were important for the geographic pre-
diction of landrace presence. Importantly, seven of these are non-
climatic variables (Table S2.1), and amongst these, we find that 
accessibility and the geographic distribution of ethnic groups con-
tribute substantially to the model.
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As expected, Andean landraces were predicted to be mostly dis-
tributed across the Andes mountains and to a lesser extent in Mexico 
and Central America. The converse was true for Mesoamerican 
landraces. Andean landraces were also predicted to occur in Brazil, 
which is considered a secondary diversity centre for common beans 
(Lobo Burle et al., 2010, 2011). Overlap was particularly evident 
in the geographic intermediate zone in Central America, (Beebe, 
Rengifo, Gaitan, Duque, & Tohme, 2001; Beebe et al., 2000) and in 
some areas of Peru.

3.3 | Conservation gap maps for common 
bean landraces

Conservation gap maps, displaying the overlap of results for the three 
gap scores per pixel, are shown in Figure 3. Figure S2.2 shows the 
individual gap scores, whereas Figure S2.3 shows model performance 
and coverage estimation. Overall gaps are larger for Andean com-
pared to Mesoamerican beans, with representation of their distribu-
tions in genebanks estimated at 78.5% for the Andean and 98.2% for 

F I G U R E  2   Predicted geographic distributions of Andean (a) and Mesoamerican (b) common bean (Phaseolus vulgaris L.) landrace groups

F I G U R E  3   Final gaps map for Andean (a) and Mesoamerican (b) common bean (Phaseolus vulgaris L.) landrace groups. Red indicates areas 
where the three gap scores (SCON, SACC, SENV) agree in identifying a gap
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the Mesoamerican genepool. There is significant agreement amongst 
the gap areas identified by the accessibility, connectivity and environ-
mental scores, and all performed well at predicting gaps.

For Andean beans, overlapping gap areas were found in the 
northern Venezuelan Andes, the Santander department in Colombia, 
specific pockets in the Andean hillsides between the Central and 
East cordillera in Colombia, the highlands of Ecuador, several areas 
in western and southern Peru, a major area in northern and central 
Chile, and central Brazil. In Mexico and Central America, noting that 
Andean bean variation is considered less diverse compared to South 
America (Becerra Velasquez & Gepts, 1994; Beebe et al., 2001), 
gaps were identified in the states of Oaxaca and to a lesser extent in 
Chiapas. Gaps were also predicted for Andean beans in Guatemala 
and Panama.

For the Mesoamerican genepool, the largest overlapping pre-
dicted gap was found in the area around Belize–Guatemala–south-
ern Mexico (state of Campeche). Smaller overlapping gap areas 
were predicted in the states of San Luis Potosi, Jalisco and Sinaloa 
in Mexico. Across South America, southern Peru is predicted to be 
a gap.

3.4 | Expert inputs for common bean landrace 
distributions and conservation gaps

To illustrate how gap analysis results may be used to discuss col-
lecting priorities, semi-structured interviews were carried out with 
two national and international Phaseolus scientists from the study 
region. One expert, Daniel G. Debouck (DGD), member of many 
collecting missions for the genus across many countries in the 
Americas, and expert in bean taxonomy, ecology, domestication 
and diversity and conservation (both in situ and ex situ) (Freytag 
& Debouck, 2002). He discussed both Andean and Mesoamerican 
beans for the entire Americas. The second expert was Eduardo 
Peralta (EP), a retired scientist, bean expert and breeder from 
Ecuador, pioneer in bean breeding in the Andean region that 
helped consolidate the National Legumes Program in Ecuador. He 
discussed Andean beans in the Andes. Detailed maps are shown 
in Figure S2.4.

Regarding areas of interest for collection for the Mesoamerican 
genepool, the experts indicated collecting should be prioritized in 
predicted gaps in San Luis Potosí, Oaxaca and Chiapas (Mexico), as 
well as in Belize and Ecuador. Notably, Ecuador is not predicted to be 
a gap by our method. For Andean landraces, the experts suggested 
collecting in the Venezuelan Andes and in the Santander department 
of Colombia. For the Colombian and Ecuadorian Andes, however, 
they indicated that collecting work would need to be done with pre-
cision (i.e. collecting only in specific sites and genotypes) rather than 
in an extensive manner.

Many areas were also identified by the two experts as unlikely 
to be considered collecting priorities. There were many areas, es-
pecially for Andean beans, where the experts indicated that it is 
likely that landraces are already lost due to traditional cropping 

practice replacement. This is the case in northern Chile and in 
southern and coastal Peru, where beans have been replaced by 
grape cropped for wine and pisco. Other areas were considered 
by experts to not be collecting priorities since these are mostly 
“documentation” gaps (e.g. central Brazil for Andean beans); this 
is because these materials are mostly in national collections, and 
passport information (including coordinates of collection sites) 
from these collections was not available or had insufficient quality 
for inclusion in our analyses.

4  | DISCUSSION

Here, we documented the development of a novel modelling frame-
work to predict the distributions of crop landraces and to identify 
gaps in ex situ germplasm collections with relation to geographic 
and environmental variation in their distributions. We base our 
framework on the rationale that the distributions of landraces can 
be predicted using environmental and socioeconomic drivers, and 
that important conservation gaps can be identified by character-
izing the geographic (accessibility and connectivity) and environ-
mental space across which previous collecting has been carried out. 
Previous studies assessing gaps in landrace collections only used cli-
mate drivers and did not explicitly assess gap prediction robustness 
(Upadhyaya et al., 2012, 2017; Upadhyaya, Reddy, Irshad Ahmed, 
Gowda, & Haussmann, 2010) nor introduce expert inputs to prior-
itize collecting.

Our analysis suggests that both genepools of P. vulgaris are rel-
atively well conserved and that progress towards comprehensive 
representation ex situ may be relatively fast if targeted collecting 
is performed in the areas outlined in the results. This contrasts with 
results for common bean wild relatives, for which research indicates 
that about two-thirds of the wild species in the genus need further 
conservation action, and about half are considered high priority for 
further collecting (Castañeda-Álvarez et al., 2016; Ramirez-Villegas 
et al., 2010).

For Andean beans, gaps were predicted throughout most 
bean-producing countries in South America, with the highest prior-
ity being Chile, Peru, Colombia and specific spots in the Venezuelan 
Andes. For Mesoamerican landraces, the results target regions of 
Mexico, Belize, Guatemala and to a lesser extent South America 
(mostly Peru) for further collecting. While current common bean col-
lections already hold substantial diversity from across the Americas 
(Beebe et al., 2000, 2001), our results, supplemented by expert opin-
ion, indicated that further collecting is warranted, especially where 
valuable traits such as phosphorous use efficiency (Beebe, Lynch, 
Galwey, Tohme, & Ochoa, 1997) or heat stress tolerance (CGIAR, 
2015) may be found.

Our ongoing review of other crop landraces indicates that the 
classification approach, based on recognized groups, can be widely 
applicable to other crops (van Heerwaarden et al., 2011; Lasky 
et al., 2015; Ndjiondjop et al., 2018). Moreover, the continuous 
generation of new genetic diversity data and related knowledge 
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(Crossa et al., 2016; Halewood et al., 2018) will facilitate the fur-
ther application of our methods, which are ultimately dependent 
on the availability of robust classification, occurrence and charac-
terization data.

While our framework contributes to revealing existing gaps 
in current germplasm collections and to highlighting geographic 
areas where novel diversity may be collected, the question re-
mains as to the extent to which the results can support on-the-
ground collecting work. Our discussion with experts indicates 
that priorities for collecting can be drawn using our predicted 
gap maps. Moreover, previous ecogeographic analyses have 
proven useful for collecting planning (García et al., 2017; Jarvis 
et al., 2005; Marinoni et al., 2015). To further translate our re-
sults for action, designing tools for real-time collecting mission 
support (e.g. route tracing) that combine the outputs with exist-
ing technologies for map visualization and navigation would be 
advantageous.

4.1 | Challenges and limitations to landrace 
distribution modelling and conservation gap analysis

Predicting the distributions of cultivated plants, whose ranges are 
determined by anthropogenic along with environmental drivers, 
presents a challenge that has not been fully resolved in geospatial 
sciences. While we attempted to gather the widest range of qual-
ity input occurrence and predictor data and used state of the art 
approaches to ensure high species distribution model (SDM) perfor-
mance, several further improvements can be suggested.

With regard to occurrence information, particularly for gene-
bank collections, we incorporated data from the two central global 
repositories for such information (Genesys and WIEWS) and in ad-
dition (due to our focus here on common bean) insured the full com-
pilation of data from the world's two largest P. vulgaris collections 
(CIAT and USDA). This said, these sources are not fully representa-
tive of all common bean collections worldwide, including collections 
such as the Agricultural Research Institute (CIAP) in Cuba. Ongoing 
initiatives, such as Genesys that list in a single location passport and 
(eventually) characterization data for many genebanks (Global Crop 
Diversity Trust, 2019), may help resolve this data challenge in the 
future. On the other hand, national policies influencing germplasm 
distributions hinder the international accessibility of many such 
“low-visibility” collections (Castiñeiras, Esquive, Lioi, & Hammer, 
1991; Lobo Burle et al., 2011).

We also note that coordinate information, which is an essen-
tial input into our methods, is missing for many current genebank 
accessions. Further efforts to georeference records missing co-
ordinates but possessing locality information, and to make this 
information easily available online, will facilitate a more robust 
assessment of the state of conservation of crop landraces ex situ.

Distributions of crop landraces are influenced by factors be-
yond the environmental and socioeconomic predictors used here. 
These may include other abiotic (e.g. soil parent material and other 

edaphic characteristics), biotic (e.g. mycorrhizae, pathogens and pol-
linators), and agriculturally relevant socioeconomic (e.g. farm sizes 
and farming systems) factors. Further development of high-resolu-
tion global datasets will be needed to incorporate such information 
into our analyses. Similarly, we note that model uncertainty can be 
a challenge and highlight the need to use model results as a “dis-
cussion support” tool to prioritize collecting. Finally, while we em-
ploy a widely used distribution modelling algorithm, it is possible 
that incorporating other methods, or forming ensembles of multiple 
methods, could improve our prediction of gaps (Grenouillet, Buisson, 
Casajus, & Lek, 2011).

4.2 | Landrace conservation gap analysis for 
global targets

The high value of crop landrace diversity in breeding programmes 
and for farm-level resilience (Camacho Villa et al., 2005; van Etten 
et al., 2019; van de Wouw et al., 2010), and the evident erosion of 
these resources in their primary and secondary centres of diver-
sity (van Heerwaarden et al., 2009; Mekbib, 2008) justify urgent 
action to secure ex situ the diversity of landrace still cultivated 
by farmers and in addition (though not discussed in this arti-
cle) to invest in farmer-based (i.e. in situ/on farm) conservation 
(Bellon, Dulloo, Sardos, Thormann, & Burdon, 2017). The United 
Nations Sustainable Development Goal (SDG) 2.5, the Convention 
on Biological Diversity (CBD), Strategic Plan for Biodiversity 
2011–2020, Aichi Biodiversity Target 13 (CBD, 2010a) and Global 
Strategy for Plant Conservation (GSPC) Target 9 (CBD, 2010b) and 
Article 5 of the International Treaty on Plant Genetic Resources 
for Food and Agriculture (ITPGRFA) (FAO, 2002) all discuss and/
or establish targets for the maintenance of genetic diversity of 
cultivated plants and their wild relatives, both in situ and ex situ. 
Recently, Khoury et al. (2019) proposed an indicator to track the 
conservation of useful wild plants, which furthers tested gap anal-
ysis methodologies for wild flora (Ramirez-Villegas et al., 2010). 
Here, we developed a coverage metric that, if implemented for a 
sufficiently large number of crops, could be used to track progress 
towards the conservation of cultivated plants for SDG 2.5, Aichi 
13 and other important international goals.
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