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1. Basic Data 

 

Name of IARC International Potato Center (CIP)  
Project title 
 

Accelerating the Development of Early-Maturing-Agile Potato for 
Food Security through a Trait Observation and Discovery Network  

Funding type, GIZ 
Project number and 
Contract number 

Project number: 14.1432.5-001.00 
Contract number: 81180345 
 

Reporting period Final report: January 2015–December 2018, including a no-cost 
extension during 2018 

Project coordinator 
and project 
scientists 

Project coordinator: Hannele Lindqvist-Kreuze, Av. La Molina 1895, 
Apartado 1558, La Molina, Lima, Peru. Phone number: +511 349 
6017 (3065). Email: h.lindqvist-kreuze@cgiar.org 
Principal staff members: 

 Merideth Bonierbale, Hannele Lindqvist-Kreuze, Elisa Salas, Elisa 
Mihovilovich, Junhong Qin, Hirut Getinet, Dorcus Gemenet, Awais 
Kahn, Xie Kaiyn, Greg Forbes. Coordination of final report: Phillip 
Kear, Thiago Mendes 

Project partners, 
including national 
agricultural 
research systems 
(NARS) 

Max Planck Institute for Molecular Plant Physiology (MPI-MP): Karin Köhl 
Yunnan Academy of Agricultural Sciences (YAAS): Xianping Li 
Gansu Agricultural University (GAU): Zhang Junlian  
Heilongjiang Academy of Agricultural Sciences (HAAS): Sheng Wanmin 
Ethiopian Institute of Agricultural Research (EIAR): Gebremedhin 
Woldegiorgis  
Amhara Regional Agricultural Research Institute (ARARI): Alemu Worku 

 

2. Final Report 

 

State of Project Implementation 

Output 1: Broad genetic diversity of advanced-bred lines genotyped and phenotyped 
in key environments 

1.1 Extend and adapt phenotyping protocols for key adaptive traits. (Ongoing) 

CIP updated phenotyping protocols available in its Global Trial Data Management System 
(GTDMS) http://cipotato.org/resources/databases/ for conducting large, multi-environment 
trials and developed procedures to enable field books to be uploaded and process them for 
open access available in DataVerse.  

 CIP improved its tuber bulking and late blight (LB) resistance evaluation protocols in Data 
Collector software to account for larger numbers of pairwise comparisons using statistical 
testing than was possible in earlier versions.  

 CIP updated its Participatory Varietal Selection of Potato Clones Using the Mother & Baby 
Trial Design A Gender Responsive Trainer's Guide with analytical software and graphical 
capacity to support the electronic field book. It was uploaded to the GTDMS portal 
(https://research.cip.cgiar.org/potatoknowledge/pvs.html).  
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 Improvements were made to CIP’s protocol and data collection tool for assessing potato 
clones for drought tolerance under field conditions. Twenty-six morphological or 
physiological traits and means for assessing them at five stages of plant development 
have been defined in CIP’s trait dictionary. Fourteen morphological and physiological traits 
are measured twice before and twice after drought initiation; another 12 traits are 
evaluated at harvest.  

 CIP developed the fieldbooks interface with which individual researchers can upload data 
generated using the Data Collector software into the CIP database for safe data storage. 
The field books are searchable by username and other filters.  

MPI-MP worked to identify phenotypic markers for use in drought-tolerance breeding. They 
used automatic phenotyping tools, including laser and infra-red thermometry systems, to 
identify morphological or developmental features of potato that are associated with drought 
tolerance and could be used to simplify selection. (See detailed report in Annex 3.) 

 MPI-MP characterized two populations of genetic material available in Germany under 
field and greenhouse conditions. They subjected potato populations to three different 
drought-stress patterns (early, late, and repeated) and calculated a drought-tolerance 
index as the deviation of the relative starch yield from the experimental median of the 
relative starch yield of all genotypes.  

 The relationship between features (e.g., maximum plant height) or derived growth curve 
parameters (e.g., growth rate leaf area) observed on optimally watered and drought-
stressed plants and drought tolerance was studied. Leaf angle measured pre-dawn was 
proposed as a possible marker for drought tolerance, with validation in different genetic 
backgrounds still pending. The canopy temperature depression calculated as the 
difference between canopy surface temperature and the air temperature was tested as a 
putative drought-tolerance marker.  

 To handle the large amount of data generated with automatic phenotyping, staff and the 
project’s PhD student developed a workflow system. The system handled the exchange of 
data between the storage database, the joining of metadata and environmental data, 
quality control, filtering algorithms, and statistical analysis in SAS. 

The objective of the automatic phenotyping trials of MPI-MP was to identify simple markers 
that can readily be applied in target environments, which requires field validation and training 
of local staff. The planned testing of marker assessment by simple methods in field trials in 
Ethiopia and their dissemination among Ethiopian breeders had to be cancelled as a 
consequence of severe delays in G. Mulugeta Aneley’s PhD. Owing to a late start, illness, 
and technical problems, data are still being analyzed. Candidate drought-tolerance markers 
were identified, but validation in the target environment will have to be done in a subsequent 
project. Data analysis, validation experiments, and PhD supervision will continue at MPI-MP 
through 2019; completion of the thesis is expected for 2019 with institutional funds. The final 
data evaluation will most likely not be finished at the end of the PhD work. Karin Köhl has 
started to conduct additional data analysis and will continue this work to write a manuscript 
for a peer-reviewed journal in 2019. 

1.2 Phenotype the genetically diverse potato panel for 7 traits. (Completed)  

CIP provided more than 360 advanced potato clones from its breeding program comprising 
the project’s “trait observation network” (TON) panel and standardized protocols for 
phenotyping the clones for the projects key traits. Partners introduced the germplasm and 
produced seed for trials, prioritizing trait evaluations according to their needs. For example, 
GAU in semi-arid North China concentrated on drought tolerance and crop duration. LB and 
virus resistances were emphasized by YAAS in the humid subtropical highlands of China. 



 

 

4 

EIAR in Ethiopia’s mid-elevation tropics evaluated panel clones for drought tolerance and LB 
resistance.  

 Seed production involved exchange between programs, with YAAS supplying minitubers 
to other institutions in China. 

 Approximate plans and schedule for conducting the phenotyping trials were developed at 
the start-up workshop in Germany. 

 CIP project members maintained contact with national program researchers throughout 
the project to address queries regarding protocols and data collection. They visited each 
program during at least one cropping season.  

 Field evaluations for all traits planned in the start-up workshop have been completed. The 
field books have been processed and will be made open access in CIP‘s database for 
phenotypic data. Datasets used in upcoming scientific publications will also be made 
available in Dataverse. 

The application of standardized evaluation protocols requires intentional exposure to the 
targeted stress and the use of local and introduced standard clones as controls to assess 
severity. All partners said that they appreciated the rigor of the protocols, which are prerequisite 
for accurate genetic and genomic analysis; however, few applied the recommended 
procedures. CIP project staff accommodated the different trial designs and data sets through 
data collection and collaborative data analysis to enable the multilocation assessment 
required for stability analysis, marker-trait association, and prediction models that make up 
work package 3. CIP staff in Peru, China, and Kenya will use institutional funds to follow up 
with all project partners to understand and address limitations to applying standard evaluation 
procedures following the project period. (The details of the phenotyping trials are given in 
Annex 1.) 

1.3 Genotype the genetically diverse potato panel by GBS. (Completed) 

In total, 380 tetraploid potato genotypes were subjected to genotyping by sequencing (GBS) 
to identify single nucleotide polymorphism (SNP) markers for trait-association studies and to 
develop the genomic-estimated breeding values (GEBV) of the potato genotypes comprising 
the TON panel when genotypic and phenotypic data are analyzed together. DNA extraction 
was done at CIP and genotyping was outsourced to Cornel University Institute for 
Biotechnology Genomic Diversity facility (www.biotech.cornell.edu/brc/genomic-diversity-
facility). (Details regarding the marker identification are shown in Annex 1.) 

1.4 Marker-trait associations: Associate genotype and phenotype data in GWAS. 
(Completed) 

A bioinformatics workflow was setup to identify SNP markers with tetraploid allele dosage 
from the raw sequence reads generated by the GBS genotyping. Marker trait associations 
were modeled for all the traits separately, and with four different marker-effect models 
utilizing software specifically developed for polyploids. Large-effect quantitative trait loci 
(QTL) for LB and virus resistance were identified in genomic regions known to harbor 
resistance loci to these same diseases. Small-effect QTL were also identified for tuber 
bulking and drought tolerance. The number of association studies and QTL identified are 
summarized in the table below. (Further analysis details are given in Annex 1.)  

 

 

Trait No. of Tests Total No. of QTL in Chromosomes 
Bulking-based maturity 41 7 (chr0, chr1, chr3, chr5, chr9, chr11, chr12) 
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LB resistance 4 3 (chr0, chr5, chr9) 
Virus resistance 5 7 (chr3, chr6, chr7, chr11) 
Drought tolerance 6 3 (chr5, chr7, chr12) 

  
Output 2: New tools and capacities to evaluate traits and link genotypes with 
phenotypes available and used by NARS of China and Ethiopia 

2.1. Convene a workshop on modern genomics for crop improvement and phenotyping 
for NARS researchers. (Completed) 

To bring researchers up to speed in the assessment of new traits and improve the efficiency 
of variety development, it is necessary to build capacity in the use and integrated analysis of 
modern phenotyping and genotyping tools and technologies that can help increase 
experimental accuracy and traits heritabilities and reduce the time needed to make decisions 
that lead to genetic gain. CIP and MPI-MP co-organized a workshop at MPI in Potsdam-
Golm from November 15 –19, 2015. The workshop represented the start-up of the project 
and was critical to establishing a common understanding of the project’s objectives and 
expectations. Five female and nine male participants from China and Ethiopia registered for 
the event. Five female and four male researchers conducted the teaching. 

The workshop consisted of expert lectures, demos, and hands-on exercises that integrated 
computer, greenhouse, and laboratory work. The participants received hands-on training in 
the collection of phenotyping data, data management, sampling from biological experiments, 
genetic linkage analysis, and the design of field experiments. Plans for conducting the  
phenotyping trials were discussed and agreed. A full report of the workshop was presented in 
the project’s first annual report. 

2.2. Develop tutorials for the use of the online database hosting data from Output 3. 
(Completed) 

User-friendly tutorials focusing on the explanation of protocols and online data collection, 
analysis, and visualization tools and database were made available at CIP’s GTDMS 
(https://research.cip.cgiar.org/confluence/display/GDET4RT/Home). 

Training materials to support the use of morphological markers identified by drought- 
tolerance phenotyping with laser and infra-red scanners at MPI-MP can only be developed 
once potential markers are validated, which is pending for 2019. The thesis proposal of Gedif 
Mulugeta includes the development of a tutorial for testing the method in breeding programs. 
This is expected to be completed during his PhD project. 

Output 3: Next generation selection systems for directing and scaling out genetic gain 
defined with network of NARS and end-users 

3.1 Compile stakeholder and expert knowledge and observations on local (subregional) 
potato productivity; crop rotation; and pest, soil, and water risk and management 
practices. (Completed) 

A cropping calendar for potato was made to provide information on agro-ecological, geo-
physical, and temporal characteristics and planting patterns of potato cropping, per country 
and agro-ecological zone, with a focus on Asia. It is modeled after the Food and Agriculture 
Organization’s (FAO) cropping calendar that currently covers more than 100 crops located in 
43 African countries. A template for data collection was designed for each Asian country and 
sent to potato specialists from CIP or partner organizations to collect expert information on 
potato-cropping systems and environments. By overlaying information on potato production 
and yield at subnational level and the farming systems’ map, this tool can help in identifying 
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and targeting intervention regions. The information can also be analyzed quantitatively to 
query the database to see how much potato is grown per country-period combination or 
compare yields for the different cropping periods. The calendar has been taken as part of the 
institutional set of tools at CIP, and its development continues with other funding sources.  

The Climate and Soil Similarity Tool (https://research.cip.cgiar.org/gtdms/similaritytool.html) 
connects statistically analogous locations in Peru, China, and Ethiopia using World Climate 
and soil data from FAO. It can be visualized as a map. Several important improvements were 
made by adding high-resolution data on different soil variables, World Wildlife Fund 
ecoregions, and several variables of climate data. The tool now has the possibility to connect 
with CIP’s BioMart database to extract the localities of the field trials + agronomic data of 
interest. The new architecture allows the inclusion of other mathematical models to identify 
similar regions based on climate and soil. It can be used to predict varietal performance or 
develop recommendation domains for promising technologies or management practices. 
Connecting the phenotypic data with the Climate and Soil Similarity Tool further facilitates the 
understanding of genotype-by-environment interaction patterns. 

 3.2 Conduct gender-integrated, multistakeholder participatory varietal selection, and 
consumer preference studies in Ethiopia. (Completed) 

A gender-mainstreamed participatory varietal selection (PVS) method was used to evaluate 
potato genotypes at Adet Agricultural Research Center experimental station in Amhara, 
Ethiopia. Fifteen potato genotypes new to the farmers were evaluated together with a widely 
grown farmers’ variety. Thirty-two farmers (12 females, 20 males) participated in listing the 
important features they employ in choosing varieties to grow and market. The goals were to 
document the farmers’ trait preferences and to identify potato genotypes with potential for 
variety release. Seven researchers attended as facilitators. Female and male farmers had 
different trait preferences, which also differed from those of the breeders. The results confirm 
that the perspectives of both sexes need to be integrated into breeding programs to ensure 
that new technologies do not disadvantage either one. For example, out of five important 
genotypes, the male and female farmers’ preferences matched for only the top two selected 
by the breeders. And although both men and women were interested in productivity and 
market traits, women had additional requirements, particularly relating to processing.  

3.3 Establish and compare predictive models for GEBV for their predictive accuracy in 
potato based on Output 1. (Completed) 

Genomic selection offers the ability to select parents within a shorter interval and increase 
selection intensity by predicting the performance of untested genotypes. This study used the 
phenotypic and genotypic data reported in Output 1. CIP researchers developed a pipeline 
for calling SNPs considering marker dosage and applied it to identifying the GS models that 
best predict traits related to tuber yield, resistance to LB and viruses, and bulking-based 
maturity in tetraploid potato. They used the univariate genomic best linear unbiased predictor 
(G-BLUP) method to estimate predictive ability of three models that partition genetic effects 
into additive and non-additive types. Since not all genotypes were evaluated in all locations, 
they selected the location with the lowest missing data per trait for model training. A pseudo-
diploidized model gave the best prediction abilities across traits, showing an outstanding 
advantage for resistance to potato virus Y (PVY). Predictive abilities were generally higher 
for LB and PVY resistance than for potato leafroll virus (PLRV) resistance, bulking rate, and 
tuber weight. (The strength and advantages of the three models and other considerations like 
number of markers and size of the training population are detailed in Annex 2.) 

3.4 Apply multitrait selection index using data generated in work package 1. (Partially 
completed) 
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The predictive ability—and thus the progress that can be made in improving multiple traits by 
genomic selection under multivariate models—depends on the genetic and residual 
correlations among the traits considered and genetic correlations across environments. CIP 
used phenotypic data for 144 TON panel genotypes evaluated for four traits (of which one 
was assessed in 2 years) in three locations in Peru to develop a multitrait selection index. 

They based the index on sum of the ranks following analysis of the correlations among 
BLUPs of individual traits from mixed models applied to each of the five traits: LB resistance 
in Oxapampa 2014; PVY and PLRV resistance in Lima 2016; and total tuber weight in Ica 
2016 and 2017. They then used the sum of ranks index for multiple traits in genomic 
prediction under the pseudo-diploidized model developed in Activity 3.3, and compared its 
predictive ability to those of the individual traits. (The approach and results are detailed in 
Annex 2.)  

The multitrait index had the least predictive ability with an average of 0.15 compared with 0.7 
for PVY (highest among the individual traits) and 0.2 for total tuber weight in 2016 (lowest 
among traits). This is attributed to low genetic correlation among the traits and lack of 
positive genetic correlation among the environments in which they were measured. The 
results of this study illustrate the importance of the definition of target populations of 
environments (TPEs) for the success of multivariate predictive models. This activity 
anticipated the use of site characteristics to be documented under Activity 3.1 to define TPEs 
and the assignment of weights to the traits required for each of them. However, the tools 
developed in Activity 3.1 have not yet been applied to defining TPEs among those used by 
the project. Nor have weights been assigned to the traits required for each TPE. CIP will 
continue to refine site characterization data toward the definition of TPEs for potato variety 
development. It is committed to incorporating environmental data and national program 
priorities as well as gender preferences into product profiles. These profiles will complement 
emerging genomic data toward the development and application of multitrait selection indices 
in collaboration with the Excellence in Breeding Platform and the Gender in Breeding 
Initiative of the CGIAR. CIP and partners will seek additional collaborative projects for testing 
and implementation of new prediction and selection methods that utilize the phenotypic and 
genotypic data and models developed in the project. 

3.5 Develop and apply performance prediction tools to support variety recommendation. 
(Ongoing)  

CIP used GEBV in a univariate approach to carry out prediction for 29 traits grouped into 
bulking rate traits, disease traits, and tuber weight traits, using the phenotypic and genotypic 
data from Output 1. Genomic prediction was applied to predict the performance of the 
untested genotypes per location using the genotypes with phenotypic data for each trait in 
each location as a training set. Prediction used the pseudo-diploidized model based on the 
distribution of cross-validation iterations carried out in Activity 3.3. Predictive abilities reported 
are for cross-validation and prediction of missing genotypes within each respective trial. 
(Detailed results are presented in Annex 2.) Predictive abilities varied across trait type and 
environment, with the size of the training set (ranging from 58 to 334 genotypes) seeming to 
play the largest role in prediction accuracy. For the bulking traits (ATMW = average tuber 
marketable weight and AYP = average yield per plant) in three locations, prediction ability 
ranged from 0.25 to 0.53. Disease traits had the highest predictive ability, ranging from 0.57 to 
0.73. Prediction accuracy varied with size of the training population (TP), but some differences 
were found even when TPs were not significantly different. This may be a reflection of the 
accuracy of phenotypic data, which can be influenced by disease pressure or other factors 
that could compromise the resistance data collected. Traits in the total tuber weight category 
had the lowest predictive ability across several locations. Predictive ability ranged from 0.12 
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to 0.56 for the traits and locations concerned. Yield is a more complex trait and environment 
is expected to play a more important role in affecting prediction accuracy. Therefore, proper 
definition of target environments in terms of genetic correlations and multivariate prediction 
across environment is expected to improve prediction accuracy for this type of trait. 

The success of prediction based on the univariate analysis was tested for the case of bulking 
traits by calculating the selection differential (i.e., the difference in trait values between the 
mean of the training set and the mean of the 5% selected fraction based on GEBV). ATMW 
increased in the selected fraction by about 19.4 and 21.0 g in Holetta and Lima, AYP by 0.26 
and 0.07 kg, respectively, in Kunming and Lima, and WMT increased by 0.28 and 1.2 kg in 
Kunming and Lima, respectively. There was no negative selection differential, indicating that 
progress can be made using GEBV as long as the factors affecting prediction accuracy are 
taken into account. Future multivariate analysis may further improve predictive ability and 
selection using genomic selection models combined with breeders’ definitions of target 
populations of environments. This simulated selection exercise illustrates how GEBV can be 
used to select the best bet set of clones in a breeding program, but the elaboration of 
multivariate models along with definition of target populations of environments are pending 
before selections can be made to support the recommendation of best bet clones across 
environments. (See the detailed report in Annex 2.) 

IDO Contribution  
IDO 1 refers to improved productivity in roots, tubers and bananas (RTB) cropping systems. 
IDO 2 refers to increased and stable access to food commodities by rural and urban poor.  

Direct beneficiaries (next-users) of the project’s outputs are potato breeders in the key potato 
producing regions of China and Ethiopia and surrounding countries as well as local potato 
research institutions that will improve their breeding methods, materials, and efficiency to 
evaluate and release potato varieties. The ultimate beneficiaries (end-users) of this project’s 
outputs and outcomes will be potato farmers in poor rural regions who will benefit by having 
access to resilient potato varieties. 

CIP and the CGIAR Research Program on Roots, Tubers and Bananas (CRP–RTB) regularly 
conduct ex post and ex ante studies of potato area and yield in intervention countries and 
regions. They participate in systems-oriented CRPs’ monitors combined cropping outputs and 
development and sustainability indicators. The project targeted 300,000 ha of cereal‐based 
systems in China and nine other Asian countries with new next-generation potato-breeding 
capacities, methods, and materials from international collaboration. The introduction of agile 
potato varieties can still be expected to increase potato production by 12% and contribute to 
an estimated 8% increase in the total crop output of 205,000 poor households in China and 
260,000 poor households in nine other Asian countries. Increases in the area productivity in at 
least six sub-Saharan Africa countries will be realized with 5% increments in potato 
productivity. Economic and environmental benefits are expected from productivity gains and 
less frequent seed replacement and pesticide use where these are currently significant 
requirements for potato production, once resilient potato varieties are adopted, 

More than five NARS organizations (project partners) have accessed the tools and technologies 
from CIP and stand to benefit from research in drought-tolerance markers identified by MPI-
MP or CIP in collaboration with partners. Smallholder farmers in Ethiopia (22 women, 23 men) 
took part in PVS trials that started to involve development partners in matching the demand of 
smallholders with the supply of new potato varieties. The project’s strengthened breeding and 
networking capacities will require continued scientific exchange and communication as well as 
upstream and downstream links with academic institutions and development projects to 
realize impact.  
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New candidate varieties identified as resilient, productive, and adapted to local conditions of 
the selected environments of China and Ethiopia reached the stages of performance trials 
and will be incorporated into each national program’s variety development scheme from seed 
production through farmers’ evaluation. The success of NARS programs will be enhanced as 
a result of the large amount of new, improved genetic diversity introduced and used in 
population and variety development and capacities of the research teams.  

Research Outputs 
Output 1. Broad genetic diversity of advanced-bred lines genotyped and phenotyped in key 
environments. Overall rating: 2.4 

Indicators Rating and Comments 
Phenotyping protocols 
refined and standardized for 
key traits by month 24 

Rating: 1 
Improvements were made to four protocols as well as to 
data management pipelines, user interfaces, and structures 
enabling open access. 

The diversity panel 
multiplied for seed tuber 
production in China and 
Ethiopia 

Rating: 2 
Minituber and seed production is the greatest bottleneck in 
clonal evaluation and variety development. The project’s 
strong advantage was the achievement of germplasm 
distribution prior to start-up using CIP’s and partners’ 
institutional funds, so that seed production could largely be 
accomplished in year 1. Strong programs (YAAS) with 
excellent facilities for tuber production contributed resources 
to producing starting material of the panel for other programs 
in China. Ethiopian partners struggled to produce seed 
sufficiently; thus their trials were conducted without the full 
complement of the panel.  

Diversity panel phenotyped 
for 7 traits across sites by 
month 36 

Rating: 2 
Nearly all trials planned were completed and data compiled. 
However, the standard protocols recommended to ensure 
comparability and optimize the utility of results in genetic 
analysis were generally not applied by the NARS partners.  

GBS data of the diversity 
panel ready by month 24 

Rating: 1 
This was generated without incident and available ahead of 
schedule. 

Low-tech shoot phenotyping 
parameter identified from 
high-tech laser scanning 
data by month 24 

Rating: 2 
Strong hypotheses were developed from successful 
experiments and the application of automatic phenotyping.  

Field validation of new 
parameter on multiple sites 
by month 30 

Rating: 6 
Validation script has not yet been done due to delays in the 
PhD research following a late start and illness. Thus 
extension of new methods to Ethiopian breeders will not be 
achieved during the project as planned. 

Data evaluation pipeline 
defined and flow charts and 
commented evaluation scripts 
published online by month 24 

Rating: 3 
Data analysis scripts will be made available in the scientific 
publications to follow the project period. 
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Output 2. New tools and capacities to evaluate traits and link genotypes with phenotypes 
available and used by NARS of China and Ethiopia. Overall rating: 2 

Indicators Rating and Comments 
10 NARS researchers with updated 
capacity in current breeding 
approaches (trait evaluation, marker-
assisted selection, data management 
and evaluation) during project year 1 

Rating: 1 
More than 10 national researchers attended the 
workshop, which was of high quality and well-rated 
by participants.  

Training of young researcher from 
target countries in automatic 
phenotyping and modern data 
management, leading to PhD thesis 
on validation of phenotypic parameter 
derived from automatic phenotyping 
in agro-environments 

Rating: 3 
Training was strong in terms of practical research, 
workshop, and conference attendance as well as 
instruction on research and writing skills. But the 
PhD was not completed during the project life time 
due to a late start and illness. It will continue with 
institutional funds at MPI-MP. 

Output 3. Next generation selection systems for directing and scaling out genetic gain 
defined with network of NARS and end-users. Overall rating: 3.6 

Indicators Rating and Comments 
Key informant survey 
results of baseline data for 
risk assessment and 
sustainable productivity 
gains available by month 24 

Rating: 2 
The cropping calendar was developed, but this was not as 
diligently applied to site characterization and documentation 
of conditions and constraints in the projects target environments 
as would have been ideal. Our intention was for additional 
surveys to be conducted, but these were not performed as 
they were not specifically budgeted in the project.  

Seed for participatory trials 
available by month 12 

Rating: 2 
This was done successfully by the Ethiopian partner. 
However, the clones were not from the TON panel as we had 
hoped they would be, due to the time required for identifying 
locally adapted material for use in farmer assessment. 

Detailed report on 
multistakeholder PVS and 
consumer preference studies 
with gender integration 

Rating: 2 
Report on PVS was provided on time, but no specific survey 
of consumer preferences was performed.  

Site characterization data 
and interrelation with 
phenotypic data 
documented by month 30 

Rating: 4 
Although data collection template (i.e., cropping calendar) 
was developed and applied for Asian countries and the 
climate similarity tool was improved to address Peru, China, 
and Ethiopia, these tools were not specifically applied to 
characterizing the experimental sites or the breeding targets 
addressed by the project.  

Locally important traits 
ranked and weights 
assigned for breeding by 
end of year 3 

Rating: 5 
The choice of trait phenotyping experiments made by each 
partner reflected local priorities, but the exercise of 
converting these to weighting factors that could be used in 
multitrait selection models was not achieved.  

PhD thesis on predictive Rating: 5 
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models for GEBV for potato 
ready by the end of the 
project (with 
complementary funds)  

An additional PhD was not achieved since complementary 
funds were not identified. However, CIP project members 
and supporting statisticians used genotypic and phenotypic 
data of the project to develop and test prediction models and 
multitrait selection indices. In addition, the project coordinator 
HLK planned and is currently conducting a sabbatical study 
in the UK on bioinformatics to advance methods for 
performance prediction with GBS. An MSc thesis was 
completed on drought tolerance assessment of the diversity 
panel in Ethiopia.  

Stability analyses of LB 
resistance published by 
month 3 

Rating: 3 
The analysis has been conducted and a scientific paper is in 
preparation based on the work reported in Annex 1. 

Cross-locational meta-
analysis of virus resistance 
published by month 36 

Rating: 3 
The analysis has been conducted and a scientific paper is 
under preparation based on the work reported in Annex 1. 

 
 

Achievement of the Purpose 

Purpose: Increase the capacity of NARS in the project’s target regions to identify new trait 
diversity and/or superior potato genotypes and use new methods to release resilient potatoes 
to end-users in a reduced time frame. Overall rating: 1.7 

Indicators Rating and Comments 
At least 3 resilient 
candidate varieties 
ready for regional 
trials of new variety 
registration in each 
country 

Rating: 2 
With present procedures for potato variety assessment, at least 4 
years are required to identify most promising materials and produce 
sufficient seed for regional variety testing, even when accelerated 
release schemes are applied. Each NARS partner has identified 7–
40 promising clones that are being advanced in their selection 
schemes. This project was dedicated to accelerating procedures 
through prediction models that could enable successful 
recommendation of elite clones for direct variety testing in target 
environments. Its objectives were diversity enhancement, capacity 
building, and research toward new efficient breeding methods that 
may allow faster progress in variety identification. 

30 new parental 
lines selected for 
crossing program of 
NARS 

Rating: 1 
Achieved by mid-project; progenies already are developed and 
under selection by the partners. 

Greater resistance 
and higher yields in 
reduced cropping 
season 
 

Rating: 2 
Advantages of selected TON panel clones over predominant 
varieties were reported by each program. 

 

Achievement of the Goal 

Goal: To increase food security and income through sustainable intensification of cropping 
systems and value chains by increasing the availability and access to early-maturing, robust, 
and low-input potato varieties. Rating: 2 
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Indicators Comments 
At least 5 NARS 
organizations 
engage with CIP 
in an improved 
germplasm 
distribution and 
selection system 

All partners and additional programs received TON panel clones and 
protocols. The 5 NARS partners built new capacities in evaluation and 
selection and are participating in research, analysis, and publication of 
results. Additional interaction is needed to agree on evaluation methods 
for each trait since standard protocols were rarely applied by NARS; to 
provide training on genome-wide association studies (GWAS) and 
prediction models; and to test and compare these under field conditions 
before we can say that next-generation breeding is in practice. 

 

 
Gender Equity Aspects 
Rating: 2  

The team was prepared to stress the importance of a gender-integrated approach when 
engaging scientists, students, laborers, and end-users. This would help to ensure that the 
project reaches a gender-balanced participant and user pool, in an effort to promote gender 
integration and equity in decision-making, access to training opportunities, and ultimately, to 
benefit from the project’s results. Specific project activities targeted 50% of women’s 
participation. This was achieved for the participants of the Phenomics and Genomics 
workshop, in the engagement of researchers at all levels from leadership to technical, and in 
the PVS trial conducted in Ethiopia.  

Activities of Output 3 intended to guide breeding decisions and strategies, included the 
activity to “compile stakeholder and expert knowledge and observations on local 
(subregional) potato productivity, crop rotation and pest, soil and water risk and management 
practices.” This was realized through the development of a cropping calendar (Activity 3.1); 
in hindsight, however, it could have been an excellent opportunity to collect information on 
gender roles in potato production and enrich the description of target environments and 
market segments. Ideally, this activity might have been conducted in collaboration among 
breeders and social and other biophysical scientists.  

 

3. Major Research Findings 

This project constituted CIP’s largest and most concerted international distribution of elite- 
bred potato materials to strategic locations and partner programs. Genomic data were 
generated and applied to improve understanding of the genetic structure and genomic 
constitution of elite breeding materials and trait sources. New experience and capacities were 
developed for genomic-assisted breeding under a new collaborative modality. 

Main highlights from trait analysis include the identification of genotypes with stable LB 
resistance across all test locations, with resistance to PVY, PLRV, or PVS, and with early-
bulking-based maturity. Main highlights from genomic analysis include the development of a 
set of SNP markers for CIP germplasm that take tetraploid allele dosage into account. Some 
of these markers will be selected for a mid-density molecular marker assay that is being 
developed in collaboration with the Excellence in Breeding platform. The marker set enabled 
the estimation of linkage disequilibrium and population structure in CIP-bred germplasm, 
which will support additional future marker-trait association studies and molecular breeding 
approaches. Specific markers associated with important traits were identified (see Annex 1). 
Main highlights from statistical approaches include the use of mixed models and incorporation 
of the row-column design into phenotypic data analysis. These enabled more accurate 
assessment of the performance of the genotypes in the different trials and thus improved the 
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precision of the marker trait associations and prediction models developed.  

GEBV were incorporated into selection indices using univariate and multivariate models that 
enabled the prediction of performance of panel genotypes in and across environments. The 
most important factors contributing to accurate genomics-assisted prediction of individual 
and combined trait levels were illustrated for the case of simple and more complex traits 
addressed in potato breeding (see Annex 2). 

Each partner program identified outstanding candidate varieties and/or trait sources for 
immediate incorporation into their breeding programs with the following types of highlights: 

YAAS evaluated 336 panel clones for LB resistance and bulking-based maturity, and more 
than 200 clones for drought tolerance and virus resistance. It reported on the 5–10 top 
clones for each trait, prioritizing earliness in the maturity trial. Two clones were identified for 
variety (DUS) testing in Yunnan: CIP398180 and CIP397036.7. They selected 48 LB-
resistant clones as parents for breeding and obtained 9,430 seeds from 10 crosses in 2017 
and 21,266 seeds from 114 crosses in 2018. A crossing plan was implemented with 80 
locally selected, top-performing TON panel clones in Yunnan during 2018. 

Among the selections used in crosses to enrich their breeding populations, HAAS partners 
found CIP 393371.157 to be outstanding for its generation of seedlings with uniformly long, 
oval shape, yellow flesh, and yellow-skin tubers with shallow eyes. Attention to the project’s 
evaluation protocols gave more precise results that are of great value to the breeding 
program. Some aspects of the drought phenotyping protocol were found inconvenient and in 
need of improvement. These involve the measurement of canopy cover, which is 
complicated by senescence, and the measurement of stolons when these emerge from the 
soil and become stems. Better attention may be needed to hilling of the crop in such cases. 
A minimum number or weight of tubers should be specified as requirement for determining 
starch or dry matter content, as the method proposed is not reliable on very small samples 
attainable from stressed or poorly adapted clones. 

GAU managed to evaluate 330 panel clones for drought tolerance and maturity applying the 
project’s standard protocols over two seasons. The many measurements required for drought 
tolerance phenotyping made costs for travel to field sites very high, and they are thus very 
interested in establishing efficient high throughput field phenotyping methods. While access to 
the diversity panel was highly appreciated, they expressed interest in contributing to basic 
research on drought-tolerance mechanisms. GAU carried out a more basic research project 
on drought tolerance of potato simultaneously with this one, for which the TON panel clones 
were used. Synthetic analysis across projects would be extremely valuable. 

One trial at EIAR intended to assess drought tolerance had to be considered for yield and 
quality only due to inability to exclude rain from the drought treatments. Five early-maturing 
clones (CIP397036.7, CIP396285.1, CIP304405.42, CIP304371.58, and CIP304351.109) 
gave total tuber yields equal or higher than ‘Belete’, which yielded 50 t/ha. Likewise, 22 mid-
maturing and 14 late-maturing clones yielded more than 50 t/ha. Production of sufficient seed 
for all of the planned trials was not possible due to the large number of clones in the panel. 
Sufficient seed could only be produced from 125 panel clones. When 75 were selected for LB 
resistance, only 57 of these could be advanced and preliminary yield trials due to insufficient 
quantitates of seed. Nineteen clones were selected for resistance to LB and will be advanced 
to farmer participatory trials. Among these CIP-304366.46, CIP-393077.159, CIP-393371.157, 
CIP-393077.54, and CIP-398190.605 yielded better than the standard variety. 

 

4. Assessment of Research Findings 
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CIP’s global mandate to develop and share breeding materials, practices, capacities, and 
information to improve the lives of poor male and female potato farmers and consumers has 
been strengthened by the collaborative mode of the project.  

Five NARS programs contributed to the evaluation of an immense wealth of elite-bred potato 
germplasm, accessing standardized protocols and best practices for trait assessment that 
will help ensure favorable results in their potato breeding and research programs. Their 
capacities were further enhanced through collaboration on data analysis and training on 
genomic approaches and tools. As a result of the project, the partners are more prepared to 
take advantage of emerging technologies and tools that will help accelerate and deliver genetic 
gains. CIP is more aware of abilities and gaps that influence the transfer of technology required 
for impact. Resilient candidate potato varieties are in national variety development pipelines, 
and elite sources of needed traits have been incorporated into NARS potato populations for 
sustained improvement that will proceed with increased speed and precision. The German 
partner brought the potential of automatic phenotyping to bear on potato improvement and 
provided expert knowledge and experience to male and female researchers of China, Ethiopia, 
and Peru to help them and their downstream partners address climate change. Women 
played major roles in proposal development and research, training, and communication for 
project implementation and assessment on the part of MPI, CIP, and the NARs. 

PVS coordinated by ARARI in Ethiopia, as well as first steps in variety testing in each project 
country, provided links with extension programs. Because of increased awareness and rigor 
regarding evaluation and selection, these and development projects in Ethiopia, Peru, and 
China will have earlier access to adapted and resilient potato varieties for extension to 
farmers and release authorities. Demo trials can be established with locally adapted, 
disease- and stress-resistant varieties identified in the project to illustrate economic and 
ecological advantages of these characteristics to policymakers, farmers, and students. 
Policymakers’ awareness of national program researchers’ needs for knowledge and 
facilities may translate into sound investments in scientific research and training in agriculture 
and, particularly, for women.  

It is regrettable, however, that more varieties are always released than adopted by farmers. 
Thus the involvement of men and women farmers in seeing, assessing, and selecting the 
latest material from breeding programs is positive for breeders and farmers alike. Breeders 
gain perspective on the market segment they are addressing by which to add critical features 
to their selection criteria, and access relevant, lower input production environments before 
variety release. This helps to ensure stability and robust performance of new varieties under 
the variable conditions of end-users. Where allowed by national policy, PVS is an economical 
means to assess genotype-by-environment interaction and provide seed of new candidate 
varieties to poor farmers otherwise unlikely to access them after release.  

 

5. Knowledge Sharing and Partnerships for Impact 

5.1 Research institutes (IARC, NARS) 

Seven NARS programs received most of the TON panel clones for trait evaluation and use 
in breeding, research, and variety development. The five partner programs were given 
access to protocols and the projects phenotypic and genotypic data, data analysis, and 
management pipelines. These partner programs also participated in the project workshop 
and hosted expert visits from CIP’s trait specialists and project coordinator. Frequent contact 
was maintained by Skype and by several opportunities for CIP staff to visit partners, or for 
partners to meet and discuss progress in their respective national potato-breeding meetings.  
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The project achieved a fair gender balance in terms of technical staff involved in research 
and training. Recruitment of the PhD student originally identified a female candidate who 
was accepted for studies in Germany, although she later cancelled her plans and recruitment 
had to begin again. The German partner, also serving as PhD supervisor, and three of the 
six originally committed, internationally recruited CIP project scientists (including the project 
coordinator) were women. Five female and nine male participants from China and Ethiopia 
registered for the project workshop; teaching was done by five female and four male 
researchers. The Ethiopian PhD student is male. A female Chinese research associate 
supported the project from CIP–China and is now conducting her PhD at the Chinese 
Academy of Agricultural Sciences, which was one of the institutions outside of the project 
receiving the diversity panel. However, the main contact and principal scientist at each of 
the participating national programs is male. Outreach to potential beneficiaries through PVS 
in Ethiopia sought to include women farmers; one-third of the participants were women. 

Follow-up is needed with each partner program. Tutorials should be adapted to accommodate 
the facilities and limitations that prohibited partner programs from applying CIP’s standardized 
phenotyping protocols. Accurate phenotyping and characterization of stress conditions in 
test environments are needed to enhance understanding of complex traits like drought 
tolerance and crop duration, and are required for reliable genomic and genetic analysis and 
the development of prediction models.  

Putative morphological markers for drought tolerance identified through automatic 
phenotyping by the German partner have a strong theoretical basis. These have been 
partially validated under experimental conditions but remain to be tested in target 
environments and extended to national program breeders. Delays in the PhD research 
necessitated a transfer of funds from the planned trials in Ethiopia, which should be 
conducted, and research and analysis are completed in 2019. 

As a complement to the phenomics and genomics workshop held in year 1, the national 
program partners are anxious to begin to apply genomic and morphological markers and 
prediction models for next-generation breeding. This should be facilitated by a workshop in 
which final project results based on analyses that were conducted in the last year of the 
project can be detailed and discussed. When the PhD student returns to Ethiopia, he should 
present his thesis results to his own and additional national program institutions in order to 
share the knowledge gained. Project scientists are also committed to presenting results in 
scientific conference and literature. 

The CRP–RTB and CIP are committed to next-generation breeding, including through the 
RTB clusters on this subject and by leading the RTB breeders’ community of practice and 
the CGIAR Gender in Breeding Initiative.  

5.2 Development partners like extension and training institutions, farmers, agribusiness, 
and policymakers 

The majority of the project’s investments in research and training targeted national program 
breeders, with farmers, consumers, and businesses being the ultimate beneficiaries. PVS 
coordinated by ARARI in Ethiopia provided the only direct link with extension programs. 
However, CIP’s standardized protocol and tutorial on PVS, which was improved during the 
project, are accessible to and have been used by several development projects running in 
parallel with this current one. It enables training of trainers through practical exercises 
directed to rural populations and makes special efforts to integrate gender into the variety 
assessment and uptake process. 

And though specific efforts were not made to reach policymakers or connect with development 
partners, there may be benefit to interacting with a larger range of institutions to raise 
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awareness of the importance of resilience traits in crop varieties, and even of new research 
methods such as genomics. Increased awareness by development project members and 
policymakers of the advantages of resilient or climate-proof varieties would contribute to 
their extension and use in production. Demo trials can be established with locally adapted, 
disease- and stress-resistant varieties identified in the project to illustrate economic and 
ecological advantages of these characteristics to policymakers, farmers, and students. 
Policymakers’ awareness of national program researchers’ needs for knowledge and 
facilities may translate into sound investments in scientific research and training in 
agriculture and, particularly, in plant breeding.  

Broad communication of the project’s outputs through avenues like donor fact sheets, 
newspapers, and press will be valuable for informing the public on new technologies. This 
will contribute to sustainable agricultural production, in turn influencing consumers’ and 
farmers’ choice of resilient seed and safe food and contributing to a clean environment.  

The typical period of 15 or more years for new varieties to be released to farmers delays the 
impact of research on their livelihoods. Involvement of downstream partners in product 
development, combined with efficient breeding methods, should help create demand and 
result in better fitting varieties in reduced timeframes. 

As several TON panel clones have been identified for variety testing in each partner program, 
these should be advanced to demo trials and PVS that expose female and male farmers as 
well as consumers to the new diversity. Information collected on trait preferences of women 
and men will be incorporated into breeders’ selection schemes; the involvement of women in 
scaling-up of seed quantities should be emphasized. National program scientists should join 
development partners in demonstrating and communicating the positive contributions of 
resilient varieties to sustainable production, incomes, and food security.  

 

6. Training 

Individual young researchers from target countries were trained via thesis research on trait 
assessment, automatic phenotyping, and modern data management and through related 
capacity-building events. 

Mr. Gedif Mulugeta from Ethiopia conducted PhD research in Germany on the identification 
and validation of phenotypic parameters derived from automatic phenotyping in agro-
environments. His thesis is entitled, “Identification of phenotypic markers for the prediction 
of drought tolerance in potato Solanum tuberosum L.),” and he was supervised by Prof. Dr. 
Michael Lenhard, Potsdam University, and Dr. Karin Koehl, MPI-MP. His thesis research 
involved hands-on training in all aspects of expertise needed to conduct drought-tolerance 
trials, set up laser and infrared scanner phenotyping system, and carry out statistical analysis, 
including the development of a workflow for data integration and analysis. He attended 
conferences, workshops, and academic meeting presentations. Instruction was provided on 
abstract writing and poster presentation techniques. Mr. Mulugeta participated in a 1-day 
course on Good Scientific Practice at MPI, Plant Phenotyping Forum at Tartu, Estonia, and 
an image analysis workshop at Wageningen University Research Center. He was part of a 
scientific team of two women and one man (50% of the PhD students at MPI-MP are female). 
His university supervisor is male, his group leader female. The PAC consisted of two men 
and one woman. The supervisor of the IMPRS PhD school is female. Completion is 
anticipated for 2019. 

ARARI reported that Zerihun Kebede submitted his thesis to the School of Plant Sciences, 
School of Graduate Studies, Haramaya University, in partial fulfillment of the requirements 
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for a MSc in agriculture (plant breeding). He completed and defended his thesis in 2018. 

 

7. Lessons Learned 

The research project was well planned, starting with proposal development and the 
logframe. The start-up workshop provided an opportunity for all partners to meet and 
become familiar with the project plan, in addition to its objective of building capacity and 
phenotypic and genotypic assessment for crop improvement. 

For CIP major lessons learned concern the need for more careful attention to budgeting for 
travel and time for interaction among project partners. While the start-up workshop was 
successful for orientation and technical training, additional face-to-face meetings should 
have been planned and carried out to communicate the importance of, and understand the 
limitations to, the application of standard phenotyping protocols by each partner. Major 
aspects of CIP’s collaboration were confirmation of the TON diversity panel and its provision 
to the partners, communication and back-stopping on standard phenotyping protocols, 
improvement of these and data management pipelines, provision of genotyping data, GBS 
pipeline development, analysis of trait variation by phenotyping and GWAS, and development 
of genomic and phenotypic selection models for single and multiple traits. CIP co-organized 
the workshop on Phenomic and Genomics for Crop Improvement. It provided two instructors 
and training materials in the form of software for phenotyping and experimental design, data 
collection and analysis, and data sets for the hands-on exercise on genetic mapping.  

It was disappointing that despite clarity of protocols and support for their use, NARS 
partners used their own established designs and methods for trait assessment. This made 
comparative analysis challenging. Accurate phenotyping is required for reliable marker-trait 
associations. It is possible that the use of diverse and nonstandardized procedures for trait 
evaluation across the partner programs may result in weak or even false associations and 
prediction models. On the other hand, the provision of a large panel of elite germplasm 
representing the breadth of CIP’s long-term breeding efforts is sure to enable phenotypic 
selection of trait donors for improvement of NARS breeding populations and resilient 
varieties for incorporation into the targeted cropping systems and environments. Successful 
identification of useful parents and clones by each partner program was due to the inclusion 
of elite materials expected from long-term collaboration to be adapted to the target 
environments, and bred for the traits prioritized in the project, and existing capacity of the 
NARS to grow out and select potato genotypes. 

CIP collaborated on PVS in Ethiopia by providing time and expertise of a gender expert and 
an agronomist—both women. Data from PVS in Ethiopia were collected under the PVS 
module of CIP’s GTDMS and contribute to a repository of information on preference traits of 
female and male farmers and consumers for new potato varieties. It was not possible to use 
newly introduced panel clones in the PVS trials. The large number of materials involved 
necessitated considerable investment in seed production and selection before a small 
number of the most promising candidate varieties could be identified. 

 

8. Outlook Future Research and Development Pathway 

Introduction of a large panel of advanced-bred potato clones from CIP to partners in China 
and Ethiopia, coordinated trait evaluation trials, and the development of new tools and 
approaches to assist breeding and enhance capacity of project partners to use the new trait 
sources and methods were proposed to help speed up the selection and release of early- 
maturing and disease-resistant potato varieties. As all partners were familiar with evaluation 
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for LB resistance, application of the standardized protocol required only minor interventions 
to ensure comparability of results across locations. However, in the case of drought 
tolerance, CIP’s protocol proved to be too complicated for most program to apply due to 
recommendation for the measurement of many parameters. For this reason some programs 
conducted it only once during the project, or did not follow the standard protocol. Drought- 
tolerance phenotyping for potato is in its infancy. The complex procedures were intended to 
help define which component traits—physiological, morphological, or biochemical—contributed 
to drought tolerance and good performance under which type of drought scenarios and in 
which genetic backgrounds. In fact, the multilocation trials conducted in the project aimed at 
understanding drought tolerance by phenotyping, and a precise and efficient protocol for 
characterization was to be developed with the results. Instead, partners became bogged 
down with the measurements assigned. Moreover, they may not have understood that the 
purpose (like that of the German partner) was to improve understanding of this complex trait 
and, eventually, identify a subset of parameters associated with drought tolerance that would 
comprise an evaluation protocol for use in future trials and breeding programs. Such 
research objectives are difficult to address with large amounts of germplasm and across 
programs with varying capacities and conditions.  

Likewise, the determination of crop duration across environments that influence phenology is 
complex, but better understanding from the integration of genetic, physiological, and 
environmental perspectives would inform breeding and germplasm exchange and variety 
recommendation schemes. The bulking-based maturity trial is intensive in seed requirements 
and data collection as three harvests are performed and tubers are classified by size to 
indicate plant development. A lecture and practical training in potato development, phenology, 
and maturity were given by CIP at YAAS, which contributed to better understanding of the 
protocol for its reliable application. However, not all programs benefited from this training, 
and few may have appreciated the purpose of the bulking-based maturity assessment, as 
related to adaptation and thus crop duration under a given set of conditions. 

CIP’s virus-resistance evaluation protocol is also complex, in that it requires three seasons 
of assessment with exposure to virus pressure (PVY or PLRV) as well as carryover of seed 
and assessment of both infection and impact on yield/degeneration. CIP’s program in Peru 
and YAAS’s in Yunnan applied the virus-resistance assessment protocol, which will enable 
validation of previous assessments and increased the precision of phenotypic data for the 
diversity panel.  

Utility of the project results such as prediction models will require relevant and accurate 
descriptions of target populations of environments. The cropping calendar established the 
means for collecting data for environmental classification and was used to support actors in 
the potato sector in making decisions. However, to embrace the diversity of potato-cropping 
systems in Asia and, therefore improve targeting of development interventions, it is important 
that the next phase collect data according to smaller areas within the current farming systems. 
The development of this tool continues at CIP using other funding sources. Once in an 
advanced stage, the maps with potato-related cropping information per country and agro-
ecological zone will be made available online on the FAO’s calendar webpage. Synthetic 
analysis of environmental and systems data began in the context of the prediction models to 
support the development of recommendation domains for varieties or next-generation 
selection tools. The collaborative stability analysis CIP and YAAS conducted for LB resistance 
comes close to this objective and should be carried out for the remainder of the project’s 
traits with the partners. 

Prediction models remain to be validated in and across environments. The advantages, 
costs, and benefits of phenotypic versus genomic selection models should be communicated 
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with NARS. Promising clones selected by either approach still need to be tested with 
development partners in the interest of release and adoption. Short-term funding opportunities 
make continuity along impact pathways very challenging. Though this project may not qualify 
for it, the new opportunity for second-phase projects offered by GIZ is a welcome contribution 
to the need for longer term collaboration that is required to realize goals such as networks of 
NARS applying and benefiting from next-generation breeding approaches. 

 

9. Summary 

The project sought to increase the capacity of NARS in and beyond the project’s target 
regions to identify new trait sources and methods to select and release early-maturing, 
resilient potato varieties to end-users in a shorter time. Automatic phenotyping, GWAS, 
genomic selection, and PVS were variously adapted and applied by five NARS programs in 
Ethiopia and China, CIP, and MPI–MP (which also hosted a PhD student from Ethiopia) in a 
highly coordinated network of inter-linked activities. These partnership arrangements were 
designed to facilitate an inter-connected series of research trials spanning the biophysical 
environments that challenge sustainable potato and systems productivity gains.  

The three project outputs were achieved with the indicator-based rating fully in line with the 
expectations. CIP managed the project’s finances and each annual report met donor 
expectations. For the project period, the project provided approximately one-fifth the 
operational resources available to the Genomics and Crop Improvement Program that is 
executed at CIP. The foundation of the project was a genetically diverse potato panel (TON 
panel), which assimilates 40 years of CIP’s and partners’ research in germplasm enhancement. 
The project built on CIP’s long-term linkages with NARS in Africa and Asia to realize the 
project’s three major outputs: (1) Panel of diverse, elite potato lines genotyped and 
phenotype for key traits; (2) New tools and capacities to evaluate traits and link genotypes 
with phenotypes available and used by NARS in China and Ethiopia; and (3) Next generation 
selection systems for directing and scaling out genetic gain defined with network of NARS 
and end-users. Phenotyping and genotyping of the TON panel was largely successful, with 
genotyping and necessary analytical pipelines being developed ahead of or on time (although 
NARS faced limitations in producing sufficient seed for inclusion of the entire panel in their 
field trials). Germplasm distribution was rapid and efficient, beginning in fact before the 
project was approved. But the unprecedented number of genotypes in the panel stretched 
the capacity of most partners for seed production. In some cases, the quality of phenotypic 
data suffered due to lack of experience or ability to carry out the recommended intentional 
exposure trials with limited interference from natural causes such as rainfall on a drought trial 
or uncontrolled disease. Remarkably, one partner (YAAS) with excellent facilities for potato 
research produced and provided seed tubers of the majority of the panel clones to other 
partners in China, enabling a rapid start on pivotal phenotyping activities. An additional 
challenge came from the interdependent nature of the types of data to be collected and 
analyzed on their own account and in combination with other types. The phenotypic and 
genotypic data generated in this project constitute a significant amount of extremely valuable 
information on the performance of CIP breeding products across different agroecologies 
generating much value in relation to the monetary investment. The application of the genomic 
selection developed in Output 3 was successful when applied for predicting trait values of 
missing genotypes in the project’s field experiments. Yet it could not be applied to developing 
recommendations for genetic material across locations due to insufficient data on the 
characteristics of test and target environments. Related to this, the ranking and weighting of 
locally important traits that required the development of multitrait selection indices could not 
be achieved. In hindsight, along with greater interaction on the use of standard phenotyping 
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protocols and training on data analysis, the proposal should have contemplated more than 
one face-to-face meeting/workshop to maximize understanding of complex objectives and 
accomplish group tasks. CIP researchers also learned of the risk of insufficiently budgeting 
for all commitments, since their plan to include a second PhD student in the project with 
complementary funds could not be fulfilled as such funds could not be raised.  
 

10. Publications, Papers, Reports, and Other Media 

Already published conference presentations: 

 Oral presentation by Hannele Lindqvist-Kreuze at the APA 2016–10th Triennial 
Conference (Ethiopia, ~50 attendance). 

 Oral presentation by Karin Köhl and co-authors: Integrated Plant and Algal Phenomics 
Meeting (Prague, August 2018, ~100 attendance); EAPR/EUCARPIA Joint Meeting 
(Rostock, December 2018, ~100 attendance). 

 Poster by Gedif Mulugeta Aneley (Integrated Plant and Algal Phenomics Meeting 
(Prague, August 20).  

 Oral presentation by Xianping Li, Junhong Qin, Wei Jiang et al. Evaluation of potato 
resources introduced from International Potato Center in Yunnan. Proceedings of the 
China potato congress, Harbin map publishing house. 2018: 174–177 (in Chinese, ~100 
attendance). 

 Oral presentation by Hannele Lindqvist-Kreuze: Seminar at the Earlham Institute, UK, 
2019 (~30 attendance). 

 PhD advisory committee 1st report (submitted June 7, 2017) 

 PhD advisory committee 2nd report (final version submitted May 11, 2018) 

Planned publications: 
Articles/journals:  

 Aneley, G., Haas, M., and Köhl, K. Prediction of drought tolerance in potato from shoot 
phenotyping. To be submitted 2019/20 to Functional Plant Biology.  

 Lindqvist-Kreuze, H., et al. Stability of late blight resistance and virus resistance and the 
identification of QTL in CIP breeding materials evaluated in Peru, China and Ethiopia. To 
be submitted 2019/20. 

Conference presentation: 
Oral presentation by Lindqvist-Kreuze, H. MPMI XVIII Congress, July 14–18, 2019, Glasgow, 
Scotland. “New potato germplasm for resistance breeding and variety release in China.” 

PhD thesis: Aneley, G. 

Other media:  
Submission of manual marker assessment method to public repository after acceptance of 
manuscript.  

Submission of original data to FAIR data repository. 
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Genome-Wide Association Mapping in a Tetraploid Potato Diversity Panel from the 
International Potato Center (CIP) 
 
Hannele Lindqvist-Kreuze and Bert de Boeck 
International Potato Center, CIP 
 
Introduction 
 
Although potato genetic resources comprise a polyploid series, most commercially cultivated 
potato varieties are tetraploid (2n=4x=48). The genome of modern potato varieties consists 
mostly of the Solanum tuberosum Group tuberosum with variable levels of introgressions 
from wild species and cultivated landrace groups. Tetraploid potato is a highly heterozygous, 
outcrossing autopolyploid, which complicates genetic analysis. Therefore, most early genetic 
mapping studies utilized bi-parental populations at the simpler, diploid level. (2n=2x=24) 
However, this approach did not permit the assessment of large gene pools or multi-allelic 
interactions that influence traits in polyploids.  Significant progress has recently been made 
in the development of algorithms and software for genotype calling, linkage and QTL 
analysis in polyploid species. SNP arrays have been developed for potato: SolCAP 
(Hamilton et al., 2011) and the 20K SolSTW array (Vos et al., 2015). These were developed 
using North American and European potato germplasm, respectively, and are not 
necessarily the best options for genotyping CIP germplasm that contains more 
introgressions from the native South American genepool. According to our previous 
experience, less than 50% of the SNP on the 8K SolCAP array were informative in a test 
sample of CIP germplasm (Lindqvist-Kreuze et al., 2014). Genotyping by sequencing (GBS) 
has been applied to tetraploid potato (Uitdewilligen et al., 2013, Sverrisdottir et al., 2017); 
and variant calling from short read sequencing data considering allele dosage is now 
possible using several different tools, such as GATK, Freebayes, SAMtools to name a few 
(Clevenger et al., 2015).  Together, these advances make genomic analysis of tetraploid 
potato more informative and applicable to evolutionary and breeding studies.  
 
The genes affecting many agronomic traits in potato remain unknown, and the accurate 
molecular dissection of these in CIP-held and CIP-bred potato germplasm is our goal. 
Previous studies have identified genetic markers for several traits in bi-parental populations, 
but these are rarely transferrable to different germplasm sources and populations. To 
discover markers that are robust across a wider germplasm pool, or in a specific one, it is 
advisable to use association mapping (GWAS) and there are numerous examples of 
successful identification of trait linked QTL in tetraploid potato using this method (Sharma et 
al., 2019, Rosyara et al., 2016, Lindqvist-Kreuze et al., 2014 among others). The 
identification of QTL in autopolyploids is facilitated by a new tool called GWASpoly that 
considers allele dosage effects (Rosyara et al., 2016).  
 
Here, we report the genotyping, estimation of linkage disequilibrium and population structure 
of a “diversity panel” comprised of 380 tetraploid genotypes from CIP’s breeding populations 
with GBS.  Our objective was to identify QTL for bulking based maturity, late blight 
resistance, drought tolerance and virus resistance via GWAS. 
 A large number of traits were evaluated in a coordinated series of international field trials, 
and here we focus on selected trials and traits as an example. The data recorded in each 
experiment is available in CIP Biomart; and future plans include inviting students from NARS 
organizations to work on the data to learn about data management and analysis toward full 
exploitation of the project’s phenotypic and genotypic data sets.   
 
Materials and methods 
 
Germplasm 
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The germplasm included in this study consisted of the advanced tetraploid clones from 
seven different breeding populations of CIP as well as a group of old varieties with variable 
origins (Table 1.). The population A for late blight resistance was developed between 1980 
and 1990. This population underwent three recombination cycles and approximately 300 
resistant clones contained in 10 family groups from overall cycles were selected. Sources of 
late blight resistance were improved materials with S. demissum-derived resistance from 
breeding programs around the world, native Andean cultivars S. tuberosum groups 
andigena, phureja and stenotomun, wild species S. acaule and S. bulbocastanum.  The 
population B3 genotypes were derived from the A population with emphasis on increasing 
frequencies and levels of horizontal resistance to late blight. The B1 population is derived 
from S. tuberosum group andigena. The LTVR population is characterized mainly for its 
resistance to the most important virus diseases (PVY, PVX and PLRV), earliness in short 
days, and adaptation to warm environments. B3-HT population combines late blight 
resistance from the B3 population and heat tolerance from North American and European 
bred varieties, and the LTVR population.  B3-LTVR population contains hybrid genotypes 
originating from crosses between B3 and LTVR populations.  Pre-Bred population has 
genotypes that have LB resistance introduced from wild Solanum species into the tetraploid 
background of B3 or LTVR. Varieties group consists of a group of potato varieties: Desiree, 
Atlantic, Spunta, Granola, Yungay, Tomasa Condemayta, DTO-33, Kufri Yoti. CIP numbers 
and the pedigrees of the 380 genotypes are given in the Supplementary Table S1.  
 
Table 1. Summary of the TON panel genotypes originating from CIP breeding populations.  
  
Breeding 
population 

Genotypes 
evaluated 

main traits 

A 13 late blight resistance 

B1 11 late blight resistance 

B3 100 late blight resistance 

B3-HT 37 late blight resistance, heat tolerance 

B3-LTVR 25 late blight resistance, heat tolerance, virus resistance 

LTVR 186 virus resistance, heat tolerance 

PREBRED 2 late blight resistance 

VARIETY 6 varied 

Grand 
Total 

380 
 

 
 
Field trials 
 
A trait observation diversity panel consisting of 380 tetraploid potato clones from the 
breeding populations of the International Potato Center (CIP) were evaluated for bulking/ 
crop duration- and drought tolerance related traits, virus resistance and late blight resistance 
in a series of field trials in Peru, China and Ethiopia following the standard CIP protocols 
(Bonierbale, 2007). The experiment sites were located in variable agroecological areas in 
the sub-tropics, tropics and the temperate areas of Ethiopia, China and Peru (Table 2). The 
number of genotypes evaluated varied across locations, and different experimental designs 
were used (Table 3.). The data was collected using the field book system of the CIP 
Datacollector, which during the project was upgraded to HiDAP 
(https://research.cip.cgiar.org/gtdms/hidap/). 
 
To evaluate bulking based maturity, the tubers were harvested sequentially with three 
harvest dates in each trial. As the trials took place in different environments with variable 
latitudes and temperature regimes, the harvesting dates varied in days after planting, but 
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were always three. At harvest, the tubers were divided into marketable and non-marketable 
classes, counted and weighed. From these number the variables WMT (weight of 
marketable tubers/plant (kg)), ATMW (Average marketable tuber weight (g)) and AYP 
(average yield/plant (kg)) were calculated for each harvest time and location.  
 
Late blight resistance was evaluated under endemic disease pressure. The disease level in 
the plots was recorded at 7-day intervals until the susceptible controls were fully infected 
and these values were used to calculate the area under the disease progress curve 
(AUDPC) and relative AUDPC (rAUDPC).  
 
Drought tolerance was evaluated under different treatments depending on the experiment. In 
Ica (Peru), the genotypes were first divided into early and late maturing groups. Three 
treatments were applied: normal irrigation, terminal drought and recovery. The drought trials 
in China only had the drought treatment, while in Ethiopia there were two treatments: normal 
irrigation and drought. 
 
Virus resistance was evaluated by exposing the test genotypes to viruliferous aphids 
carrying PLRV and PVY, and planting virus infected potatoes as infector rows among the 
test plants. The infected tubers from first year were used as seed to plant the second years 
experiment and tubers from the second year were used as seed to plant the third years 
experiment. Between 14-20 plants in Lima, and six plants in Kunming of each genotype 
were collected from the third year’s experiment for serological testing using ELISA test.  
 
Table 2. Location of the trial sites and their main agroecological zone. 

Table 3. Description of the field trials that were undertaken under the GIZ funded project. 
The corresponding field books are available in CIP Biomart database. 

 
Main trait location, country, year number of genotypes 

evaluated 
Trial design 

Bulking based 
maturity 

Holeta, Ethiopia 2016 159 Augmented 

Gansu, China, 2016 330 RCBD 

Kunming, China, 2016 317 RCBD 

Heilongjiang, China, 
2016 

256 RCBD 

La Molina, Peru, 2016 89 RCBD 

Country/Location Agro-ecologies 

P
er

u
 

Lima, La Molina 12.0820° S, 76.9282° W 
Lowland sub-tropics  

Ica, Ica 14.0755° S, 75.7342° W 

Pasco, Oxapampa 10.5853° S, 75.4053° W Highland tropics 

C
hi

n
a

 

Yunnan, Kunming 24.8801° N, 102.8329° E 
Yunnan, Dehong 24.4334° N, 98.5849° E 

Mixed agriculture systems, lowland & 
highland 

Heilongjian, Harbin 45.8038° N, 126.5350° E Temperate (long day) 

Gansu, Lanzhou 36.0611° N, 103.8343° E Dry land 
 

E
th

io
p

ia
 

Amhara, Koga 11.2643° N, 37.4921° E 
Oromia, Holeta 9.0633° N, 38.4902° E 

Mid, highland 
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Late blight resistance Kunming, China, 2016 336 RCBD 

Kunming, China, 2015 306 RCBD 

Holeta, Ethiopia 2016 60 RCBD 

Holeta, Ethiopia 2015 128 Augmented 

Drought tolerance Ica, Peru, 2016 269 Augmented 

Ica, Peru, 2017 258 Augmented 

Gansu, China, 2016 324 Augmented 

Heilongjian, China, 2016 316 Augmented 

Koga, Ethiopia, 2016 113 Augmented 

Virus resistance La Molina, Peru, 2016-
2018 

341 RCBD 

Dehong, China, 2016-
2018 

261 RCBD 

 
 
Statistical analysis of phenotypic data 
 
The best linear unbiased predictor (BLUP) and best linear unbiased estimator (BLUE) and 
values as well as ranked predictors for bulking based maturity and drought related traits 
were calculated using ASREML package. The earliness to tuberize was assessed from the 
average marketable tuber weight (ATMW (g)) variable from the mixed model for ranked 
BLUP predictions, averaging over the 3 harvest times as well as for each of the harvest 
times (t1, t2, t3) separately. Drought tolerance was only analysed from the Ica 2017 trial and 
considering the ranked BLUP prediction for the tuber yield/plot (kg). The earliness type and 
the different drought treatments were considered as factors. 
 
The late blight resistance BLUEs based on the rAUDPC values were estimated with R lm4 
package. The virus resistance levels were estimated based on the serological tests of the 
virus titres (PVY, PLRV and PVS) of 6-9 individual plants/genotype. The individual plants 
were considered infected with the virus when the virus titre was higher than that in the 
background (negative control). The proportion of infected plants per genotype three seasons 
after initial exposure was used as an estimate of the level of resistance.   
 
Genotyping and variant calling 
 
In total 380 potato clones were genotyped. Library construction and genotyping by GBS was 
outsourced to Cornell University. The DNA was digested with EcoT221 restriction enzyme 
and the libraries were 48x multiplexed for sequencing. The variants were called using GATK 
HaplotypeCaller option (Poplin et al., 2017), disabling the duplicate read filter (this is 
recommended for GBS data) and joint genotyping using the -ERC GVCF mode. From the 
vcf files different sets of SNP markers were filtered depending on the downstream analysis 
requirements. The filtering was done using bcftools for SNP sets for GWAS and LD 
estimation, while for population sub-structuring the filtering was done directly using 
SNPrelate package (Figure 1). 
 
For population sub-structuring analysis, the biallelic SNP from the GATK pipeline were LD 
pruned, using the threshold of 0.16 and missing rate of 0.1. The population sub-structuring 
was analysed using the SNPrelate package, thus not considering the allele dosage 
information.  



Annex 1. Donor report (GIZ-BMZ), March 2019. 
 

Page 5 of 42 
 

 
The measure of polymorphic information content (PIC) for each SNP was calculated 
according to Botstein et al. (1980).  
 

 
Figure 1. Workflow of the bioinformatics analysis starting from the raw sequencing reads 
(fastq files) and ending with the three SNP sets generated for the analysis of LD, GWAS and 
population sub-structuring.  
 
Linkage disequilibrium 
 
SNP markers (3262 high confidence SNP) were coded for the dosage of the alternative 
allele (0-4) and Pearson correlation coefficient (r2) was calculated between marker-pairs. LD 
was calculated based on marker pairs located within the whole chromosomal region for all 
12 chromosomes. Extent of LD decay was estimated by implementing Quantile regression 
(R package ’quantreg’; Koenker 2017) on the 90th percentile as recommended by Vos et al. 
(2017). From the fitted regression two estimators were obtained: 1) for LD 1/10, 90, where r2 
equals 0.1 on the 90th percentile and 2) for LD 1/2max, 90, where r2 equals 0.5 on the 90th 
percentile.  
 
GWAS 
 
Marker trait associations were modelled for all the traits separately and using four different 
marker-effect models (general, additive, 1-dom and 2-dom) available in the GWASpoly 
package (Rosyara et al., 2016). Two different statistical models were used depending on the 
composition of the genotypes included in the study: 1) including the information on individual 
relatedness (K) and population structure (Q); 2) using only K-matrix. The eigenvectors of the 
first four principal components from the SNP relate package analysis were used to define 
the population sub-structuring (Q). Bonferroni correction (with genome-wide α = 0.05) was 
used for establishing a p-value detection threshold for statistical significance. Missing 
genotypes were estimated with the population node. 
 
Results and discussion 
 
Population sub-structuring 
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There were in total 295,401 biallelic SNP after the GATK variant calling. After excluding 
monomorphic SNP and applying a 3% minor allele frequency and 10% missing rate there 
were 34,479 SNP. Filtering for LD threshold of 0.2 using the 500Kb sliding window, 5,764 
markers were selected (Figure 1). The majority of the markers have minor allele frequency 
below 10% (Figure 2A). Polymorphic information content of the markers ranged from 2 to 
50%, with the mean of 19% (Figure 2B). In the principal component analysis based on this 
set of markers, population B1 was clearly separated from the rest of the germplasm (Figure 
3). The genetic background of the B1 population is S. tuberosum group andigena, while the 
rest are mostly group tuberosum type. B3-HT shares alleles with the B3 population, as 
expected since these clones are hybrids with B3 clones in their pedigrees. B3 and LTVR 
population clones are also mostly separated with a few exceptions of clones that may have 
been incorrectly assigned to the population groups. B3-LTVR, which is a hybrid between the 
two populations and this can be clearly seen in the PCA plot as well. Not surprisingly, 
Population A is intermingled within population B3 since the ancestors of the B3 clones were 
bred from selected clones of the A population. 

 
 
Figure 2. Minor allele frequency (MAF) (A) and polymorphic information content (PIC) (B) 
distribution of 5,764 SNP in 380 tetraploid potato genotypes called without the information 
on heterozygous allele dosage. 
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Figure 3. Population sub-structuring based on 5,764 LD pruned polymorphic bi-allelic SNP 
with minor allele frequency >0.03 and missing rate <10%.  
 
 
SNP sets for LD estimation and GWAS 
 
To obtain a set of biallelic SNP markers with reasonably accurate allele dosage for tetraploid 
genotypes only the SNP with the minimum site depth of 16 reads in each sample was 
utilized. In addition, minor allele frequency cut-off was 3% and maximum number of missing 
genotypes was 9 for each marker. The stringent filtering reduced the SNP number to 3,262 
(Figure 1). The distribution of the minor allele frequencies of the SNP (Figure 3A) is similar 
to that of the SolSTW in the European germplasm described by Vos et al., (2015). 
Polymorphic information content (PIC) among the 3,262 markers ranged from 6% to 50% 
with the average of 22.4% (Figure 4B). This is somewhat lower than those reported by 
Sharma et al (2018) and Stitch et al., (2013) for the SNP from the SolCAP potato array. The 
SNP set of 3,262 markers was used to estimate the LD and in the GWAS analysis to identify 
trait linked QTL. 
 
To increase the number of markers for the GWAS, another biallelic marker set was 
generated using the same MAF and missingness filters, and the average genotype call 
quality (GQ) above 20 (Figure 1). This means that the average accuracy of all genotypes 
called for that SNP has to be above the threshold of 0.01(thus there is the chance of 1% that 
the genotype call is not correct).  
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Figure 4. Distribution of the 3,262 SNP markers with tetraploid allele dosage information 
based on minor allele frequency (A) and the polymorphic information content (PIC) (B). 
 
Linkage disequilibrium 
 
LD decay was estimated using the set of 3,262 SNP markers described above. Spline was 
fitted on the 90th percentile of the r2 and the distance between the pairs of the markers on 
the short distance (Figure 5A) and long distance (Figure 5B) over all chromosomes. From 
the fitted spline, the intersection of the significance threshold r2=0.1, different estimates are 
obtained for the short distance vs long distance LD decay. On the short distance the 
threshold is reached at 2Mb, while on the long distance it is reached at 5.5Mb. Considering 
the short distance LD-decay estimate of r2 1/2max, 90 that was suggested as the most 
consistent estimator for LD decay in potato by Vos et al (2017), we obtain the value of 0.55 
Mb. This value is like that in the Vos (2017) data for the recent European potato varieties 
(0.6 Mb) and a bit lower compared to the study of Sharma et al., (2018) where the value was 
0.91 Mb. The average r2 for the short distance in our dataset was 0.091, which is a bit lower 
than that (0.19-0.22) reported for the European varieties (Vos et al., 2017), indicating that 
there are probably more founder haplotypes in the CIP diversity panel as compared to the 
European pool of varieties.   
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Figure 5. Linkage disequilibrium (LD) estimated in the TON panel based on Pearson 
correlation coefficient (r2) plotted against the physical map distance (Mb) between pairs of 
SNPs in each of the 12 chromosomes. The red line depicts the trend line of the nonlinear 
quantile regression of r2 (90th percentile) on short distance (A) and on long distance (B). LD 
decay threshold (r2 = 0.1) is indicated by a dashed blue line. 
 
Phenotypes 
 
Bulking based maturity 
 
The most important factor determining the yield of the potato crop is the tuber bulking rate. 
Bulking rate is the slope of the linear curve described by the increase in tuber weight with 
time. Information on bulking rate is valuable for assessing performance and adaptation of 
genotypes particularly in areas with short growing seasons. In these experiments, TON 
panel clones were evaluated for yield components, such as number and weight of tubers in 
different size classes in yield trials with three harvest dates: early, intermediate, and late 
(Table 4). The histograms of the distribution of the ranked BLUB predictions of the average 
marketable tuber weight (ATMW) (g) of the genotypes in each environment are shown in 
Figure 6. Based on the ranked BLUP predictions averaging over the three harvest times, ten 
genotypes showing an early-bulking pattern in each of the four different locations were 
identified. The average tuber weight of these ten genotypes ranged from 126.79 to 208.65 g 
across the harvest times (Table 5). The marketable tubers of these outstanding genotypes 
were smaller at the first harvest in all experiments but still over 90 g, indicating that they had 
reached a marketable size at the early harvest stage, and can be considered early bulking 
genotypes in their respective environments.  
 
Genotypes shared among all four trials were analysed for the AMTW ranked BLUP variable 
in principal component analysis to identify trends among the different locations. Overall 
genotypes had more similar marketable tuber weight in Lima, Kunming and Heilongjiang as 
compared to Holeta. From this comparison four genotypes, CIP304369.22 (LTVR 
population), CIP392633.64 (B3 population), CIP395448.1 (LTVR population) and 
CIP398208.670 (B3-HT population) emerge as universally early bulking genotypes (Figure 
7).     
 
Table 4. The harvest dates expressed as days after planting in the different field trials.  
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location, country, year number of 

genotypes 
evaluated 

Harvest 
dates (days 
after 
planting) 

Holeta, Ethiopia 2016 159 80, 100, 120 
Kunming, China, 2016 317 100, 121, 

141 
Heilongjiang, China, 
2016 

256 80, 100, 120 

Lima, Peru, 2016 89 90, 120, 140 
 

 
 
Figure 6. Histogram of the distribution of the ranked BLUB predictions of the average 
marketable tuber weight (ATMW) (g) of the TON panel clones across the three harvest times 
in Lima (A), Kunming (B), Holeta (C) and Heilongjiang (D). 
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Table 5. The average weight of marketable tuber (ATMW) (g) averaged over the three 
harvest times and at the three different harvest times of ten early-bulking genotypes 
identified in each of the four trials. 
  
Trial site Genotype Ranked 

BLUP 
predictions 

pred.HT1 pred.HT2 pred.HT3 

Lima CIP309028.32 208.65 179.25 198.27 217.56 

CIP392633.64 187.47 162.22 178.68 194.84 

CIP309064.76 180.32 157.03 172.51 187.77 

CIP309024.1 179.74 153.72 168.65 182.78 

CIP393371.157 167.10 146.79 160.21 173.29 

CIP309074.123 162.53 143.27 156.24 168.52 

CIP398208.620 162.20 145.81 159.18 172.58 

CIP398180.612 160.16 136.51 148.91 159.56 

CIP389746.2 159.35 140.63 153.62 165.54 

CIP304351.109 158.09 142.57 155.93 168.95 

Kunming CIP393073.179 195.90 133.94 205.38 215.26 

CIP393371.58 178.98 105.47 191.17 218.79 

Yunshu_No.401 177.31 129.20 190.62 195.34 

CIP398098.231 174.33 129.29 185.18 187.21 

CIP398180.144 166.21 101.29 175.32 198.29 

CIP387164.4 164.89 130.85 172.74 166.73 

CIP398180.253 155.09 117.23 165.77 167.76 

CIP398180.289 154.06 113.06 161.06 165.10 

CIP397036.7 153.23 124.81 160.12 152.60 

CIP398208.670 150.98 103.00 159.44 171.63 

Holeta CIP396268.9 196.13 154.45 198.87 233.23 

CIP304351.5 168.45 131.30 171.48 201.11 

CIP396269.14 145.03 111.81 148.15 174.39 

CIP391046.14 144.96 111.74 148.04 174.14 

CIP396272.2 144.06 110.98 147.18 173.06 

CIP391065.81 140.59 108.11 143.82 169.35 

CIP302499.24 138.29 106.21 141.19 166.34 

CIP391207.2 136.41 104.61 139.61 164.41 

CIP391002.6 135.43 103.81 138.38 163.00 

CIP304383.41 126.79 96.56 129.91 153.01 

Heilongjiang Kexin_No.23 174.52 117.21 161.33 222.98 

CIP396180.22 154.89 110.45 143.07 201.63 

CIP397036.7 144.45 104.50 136.05 179.64 

CIP394223.19 142.88 102.34 132.17 187.82 

CIP394579.36 136.84 102.96 128.68 172.46 

CIP390478.9 135.74 98.83 129.93 162.43 

Zhongshu_No.18 130.28 96.48 119.94 169.70 

CIP398098.65 129.48 92.60 121.65 165.92 

Zaodabai 129.46 98.32 121.06 167.68 

CIP395186.6 128.18 92.90 119.93 166.47 
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Figure 7. Principal component bi-plot of the genotypes shared in the trials in Heilonjiang, 
Kunming, Lima and Holeta based on the predicted BLUB AMWT (g) averaged over the three 
harvest time’s.  
 
Late blight resistance 
 
Late blight resistance was evaluated in field trials with high endemic disease pressure. From 
the weekly observations of the disease incidence in the plots, the AUDPC was calculated 
and the estimated means (BLUEs) were transformed to the relative AUDPC (rAUDPC) to 
facilitate the comparisons among the different locations. There was a high frequency of 
genotypes with rAUDPC values comparable to the resistant control genotype which in Peru 
is released as a variety called Chucmarina and Ethiopia as Belete (Figure 8). Notably in 
China most of the genotypes tested were more resistant than the local variety C-88 that has 
been popular because of its good late blight resistance.  To visualize similarities among the 
environments, the 58 shared genotypes rAUDPC values were analysed by PCA, and 
genotypes with similar level of resistance were identified. Genotypes CIP393227.66, 
CIP396043.226, CIP395077.12, CIP392634.52, CIP396023.109, CIP392634.49 and 
CIP395169.17, all from the B3 population are among the most resistant in all four 
environments (Figure 9). 
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Figure 8. Histograms of rAUDPC values in Kunming, China in 2015(A) and in 2016 (B), 
Holeta, Ethiopia in 2016 (C) and 2017 (D), and Oxapampa, Peru at 2014 (E). The control 
genotypes are indicated in the plots based on their rAUDPC value in each trial. 
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Figure 9. Principal component analysis of the shared genotypes evaluated in the trials of 
Kunming 2015 and 2016, Oxapampa 2014 and Holeta 2016.  
 
 
Drought tolerance 
 
Drought tolerance was evaluated in a trial in Ica, Peru in 2016 and 2017 under three 
treatments: normal irrigation, recovery and terminal drought, and various traits were 
recorded. Here, we focus on the predicted BLUB of the fresh tuber yield/plant as a proxy to 
estimate the level of drought tolerance among the genotypes tested. As shown in Figure 10, 
the yield distributions under the three treatments look very different in the two experiments 
suggesting a significant genotype x environment interaction. This is confirmed by the PCA, 
where the treatments within each year are more similar to each other than the same 
treatments across the years (Figure 11). Although the highest yielding genotypes in both 
years are of the early maturing type, the maturity type does not seem to have a significant 
effect on the yield overall. Ten most tolerant genotypes identified based on the PCA belong 
to both maturity types (Table 6).   
 

 
 
Figure 10. Histograms illustrating the tuber yield/plant (kg) of the potato genotypes under 
normal irrigation, recovery and drought treatment in Ica in 2016 (A) and in 2017 (B). The 
yield of a reference genotype Unica is shown above the corresponding category at each 
treatment.  
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Figure 11. Principal component analysis (PCA) on the three different treatments: irrigated, 
recovery and drought, of the genotypes that were shared in Ica 2016 and 2017 trials. The 
genotypes have been coloured based on their maturity type (early <100 days, or late>100 
days). 
 
Table 6. Tuber yield/plant (kg) of the 10 genotypes least affected by drought treatments in 
the experiments in Ica, Peru 2016 and 2017 identified based on the principal component 
analysis. 
 
 2017 2016  
 

irrigated recovery drought irrigated recovery drought Maturity type 

CIP389746.2 0.658 0.352 0.216 0.791 0.515 0.340 Late 

CIP393371.159 0.541 0.303 0.244 0.773 0.507 0.350 Late 

CIP397014.2 0.574 0.290 0.275 0.812 0.518 0.289 Early 

CIP304371.58 0.566 0.300 0.257 0.794 0.511 0.304 Early 

CIP397079.6 0.586 0.324 0.217 0.776 0.503 0.317 Early 

CIP309024.1 0.585 0.281 0.240 0.740 0.491 0.365 Late 

CIP381379.12 0.606 0.297 0.248 0.762 0.496 0.323 Late 

CIP397029.21 0.573 0.313 0.229 0.781 0.504 0.307 Early 

CIP302499.30 0.526 0.289 0.226 0.766 0.502 0.346 Early 

CIP393371.157 0.531 0.250 0.219 0.757 0.500 0.360 Late 

 
 
Virus resistance 
 
A large proportion of the genotypes evaluated were resistant to PVY and PLRV in Lima 
(Figure 12A) as well as in Yunnan (Figure 12B). Most of the genotypes with high levels of 
PVY and PLRV resistance come from the LTVR population and there is a large number of 
genotypes that show high resistance to both viruses (Figure 13). The reactions of the 



Annex 1. Donor report (GIZ-BMZ), March 2019. 
 

Page 16 of 42 
 

genotypes to both viruses are highly correlated between the environments suggesting that 
the resistances are functional in both environments. The top 20 genotypes that are highly 
resistant to PVY and PLRV in both environments can be seen in figure 12 in the two squares 
at bottom left. Those genotypes are also listed in Table 7. As expected these are mostly 
from the LTVR population, but there are two genotypes from the B3 population and three 
from the LTVR-B3 population. The resistant check Costanera is among these most resistant 
genotypes. Interestingly, 75 clones were also reported as resistant to PVS in China although 
PVS is not among the breeding objectives of CIP. This is an interesting preliminary finding 
that merits more research.   

 
 
 
Figure 12. Histograms illustrating the infection levels of PLRV and PVY in the potato 
genotypes in Lima (A) and of PLRV, PVS and PVY in China (B). The infection level of the 
control genotype Costanera is indicated in each trial.  
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Figure 13. Principal component analysis (PCA) on the virus resistance of the genotypes that 
were shared in Lima and Yunnan trials. The genotypes are coded based on the breeding 
population that they belong to.  
 
Table 7. Twenty genotypes with the highest levels of PVY and PLRV resistance, expressed 
as % of infected plants in Lima and Yunnan. 
 
 Lima Yunnan  
 

PVY PLRV PVY PLRV PVS population 

CIP395432.51 0 0.2 0 0 0 LTVR 

CIP397100.9 0 0.1 0 0 0 LTVR 

CIP390478.9 0 0.05 0 0 0 LTVR 

CIP388615.22 0 0 0 0 0 LTVR 

CIP304387.92 0 0.05 0 0 0.17 LTVR 

CIP391046.14 0 0.12 0 0 0.25 B3 

CIP396009.240 0 0.1 0 0 0.33 B3 

CIP301023.15 0 0.05 0 0 0.33 B3-LTVR 

CIP390637.1 0 0.2 0 0 0.5 LTVR 

CIP304405.47 0 0.05 0.17 0.17 0.17 LTVR 

CIP300066.11 0.05 0 0 0 0.5 LTVR 

CIP391207.2 0 0.05 0 0 0.67 LTVR 
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CIP397029.21 0 0.05 0 0 0.67 LTVR 

CIP303381.30 0.1 0.1 0 0 0.5 LTVR 

CIP391533.1 0.05 0.05 0 0 0.67 LTVR 

CIP392740.4 0.05 0 0.17 0 0.33 LTVR 

CIP301044.36 0 0 0 0 0.83 B3-LTVR 

CIP304387.39 0 0 0.5 0 0 LTVR 

CIP379706.27 
(Costanera) 

0 0 0.17 0 0.67 LTVR 

CIP301041.26 0 0 0 0 1 B3-LTVR 

 
 
Genome-Wide Association Analysis 
 
QTL for bulking based maturity 
 
Marginally significant marker-trait associations were identified for the average yield/plant 
(AYP) in Lima and Kunming, for the average weight of marketable tuber (AWMT) in Lima 
and Holeta, and weight of marketable tubers (WMT) in Kunming and Lima (Table 8).  Some 
of these markers are in regions previously identified in potato as tuber traits related (tuber 
yield, number of tubers per plant) (Rak et al., 2017), while two of the chromosome 9 markers 
detected in the Kunming dataset are in the region linked to late blight resistance (Lindqvist-
Kreuze et al., 2014). The trait associated markers were unique among the different trials, 
which is not surprising, since the yield and tuber development are highly influenced by 
environmental conditions. Furthermore, these traits are known to be controlled by several 
genes with minor effects, and hence will require a larger set of markers to enable more 
reliable QTL identification. In the Kunming trial, late blight infection appeared at the end of 
the growing season and apparently had a significant effect on the tuber weight.  
 
Table 8. Significant marker trait associations for bulking based maturity related traits. 
 
Marker Ref Alt Trait Model Score Effect 

ST4.03ch00_36073482 A G AYP_BLUPpred_KUN_H3 additive 11.32 -0.21 

general 11.32 NA 

1-dom 11.32 -0.21 

WMT_BLUPpred_HT_KUN_H3 additive 9.37 -0.19 

general 9.37 NA 

1-dom 9.37 -0.19 

ST4.03ch01_44934786 A G ATMW_BLUPpred_HT_LIM17_H1 additive 5.64 -11.18 

2-dom 5.31 -28.35 

ATMW_BLUPpred_HT_LIM17_H2 additive 5.69 -13.17 

2-dom 5.32 -33.3 

ATMW_BLUPpred_HT_LIM17_H3 additive 5.72 -15.27 

2-dom 5.37 -38.67 

ATMW_BLUPpred_ranked_LIM17 additive 5.69 -13.21 

2-dom 5.33 -33.44 

ST4.03ch01_71274982 C T ATMW_BLUE_HT_HOLE_H1 general 5.38 NA 
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ST4.03ch03_5413372 A T AYP_BLUPpred_KUN_H3 1-dom 5.22 -0.14 

WMT_BLUPpred_HT_KUN_H3 1-dom 5.53 -0.15 

ST4.03ch03_61269153 C T AYP_BLUPpred_HT_LIM17_H1, 2-dom 5.29 -0.18 

AYP_BLUPpred_HT_LIM17_H2 2-dom 5.29 -0.18 

AYP_BLUPpred_HT_LIM17_H3 2-dom 5.29 -0.18 

ST4.03ch05_29452181 G T ATMW_BLUE_HT_LIM17_H1 1-dom 5.54 46.83 
   

ATMW_BLUE_HT_LIM17_H2 1-dom 5.54 46.83 

ATMW_BLUE_HT_LIM17_H3 1-dom 5.54 46.83 

ST4.03ch09_48586503 A C WMT_BLUPpred_HT_LIM17_H1 2-dom 5.36 -0.15 

ST4.03ch09_59967523 A T AYP_BLUPpred_KUN_H3 additive 5.51 0.11 

1-dom 6.21 0.14 

ST4.03ch09_60067335 A G AYP_BLUPpred_KUN_H3 additive 9.6 0.18 

general 8.84 NA 

1-dom 9.69 0.19 

WMT_BLUPpred_HT_KUN_H3 additive 7.39 0.16 

general 7 NA 

1-dom 7.87 0.17 

ST4.03ch11_42597235 C T AYP_BLUPpred_HT_LIM17_H1 general 5.47 NA 

AYP_BLUPpred_HT_LIM17_H2 general 5.47 NA 

AYP_BLUPpred_HT_LIM17_H3 general 5.47 NA 

ST4.03ch12_44213394 C T AYP_BLUPpred_HT_LIM17_H1 general 5.5 NA 

AYP_BLUPpred_HT_LIM17_H2 general 5.5 NA 

AYP_BLUPpred_HT_LIM17_H3 general 5.5 NA 

WMT_BLUPpred_HT_LIM17_H1 general 5.81 NA 

 
 
QTL for late blight resistance 
 
Significant marker-trait associations for late blight resistance were identified in all field trials 
and using different models (Table 9, Figure 14). Three of the markers map in chromosome 9 
in the same region previously found associated with late blight resistance in Peru (Lindqvist-
Kreuze et al., 2014, Li et al., 2010). The results here confirm that the same genomic region 
is effective regardless of the environment. This result suggests that the late blight resistance 
breeding strategy at CIP has been successful in selecting for alleles that confer broad 
spectrum late blight resistance, since the Phytophthora infestans populations found in Peru, 
China and Ethiopia are different. We have recently shown that the R8 gene originating from 
Solanum demissum co-locates in this QTL (Jiang Rui et al., 2018).  
 
Table 9. Markers tagging QTL for late blight resistance.  
 
Marker Ref Alt Trait Model Threshold Score Eff

ect 
ST4.03ch00_36073482 A G Oxa2014 additive 5.47 10.33 0.1

9 
general 5.39 10.33 NA 

Yun2015 additive 5.47 26.75 0.3
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2 

general 5.43 26.75 NA 

Yun2016 additive 5.47 25.81 0.2
7 

general 5.44 25.81 NA 

ST4.03ch05_9022783 C T Yun2015 general 5.43 5.84 NA 

ST4.03ch09_58779951 A G Oxa2014 additive 5.47 5.88 0.1
1 

general 5.39 6.21 NA 

Yun2015 general 5.43 6.07 NA 

ST4.03ch09_59299540 A C Oxa2014 additive 5.47 6.02 0.0
9 

Oxa2014 general 5.39 5.89 NA 

ST4.03ch09_59967523 A T Oxa2014 additive 5.47 6.24 -
0.11 

general 5.39 5.89 NA 

Yun2015 additive 5.47 11.38 -
0.16 

general 5.43 12.24 NA 

Yun2016 additive 5.47 14.17 -
0.16 

general 5.44 13.98 NA 

ST4.03ch09_60067335 A G Oxa2014 additive 5.47 12.09 -
0.19 

general 5.39 12.97 NA 

Yun2015 additive 5.47 24.2 -
0.29 

general 5.43 25.92 NA 

Yun2016 additive 5.47 24.4 -
0.25 

general 5.44 24.85 NA 

ST4.03ch09_61106174 C T Yun2015 general 5.43 7.82 NA 

Yun2016 general 5.44 7.77 NA 
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Figure 14. Example of a quantile plot (left) indicating deviation from normality and 
Manhattan plot (right) depicting the significant QTL for LB resistance after GWASpoly 
analysis using additive model. 
 
 
QTL for drought tolerance 
 
Several morpho- physiological processes are influencing the tuber yield under drought, and 
these are controlled by many genes with relatively small effects (Anithakumari et al., 2012). 
In this study 81 markers tagging all chromosomes were found significant either in the 
drought treatment 2017 or recovery treatment in the same experiment. Most of these 
associations are marginally significant, therefore only those with the highest significance 
level in chromosomes 5, 7 and 12 are listed in Table 10. The general GWAS model 
identified most of the significant associations (Figure 15). The shape of the quantile plot 
indicates that more markers are needed to cover the genome for more precise QTL 
identification for the drought traits. These associations are preliminary and require further 
validation steps. 
 
Table 10. Markers associated with drought tolerance using 18,558 SNP and the general 
model with the threshold of 5.42. 
   
Marker Ref Alt Trait Score 

ST4.03ch05_13265796 A G drought.2017 20.15 

ST4.03ch05_18425413 A T drought.2017 20.42 

ST4.03ch05_33095381 C T drought.2017 19.38 

ST4.03ch05_33848950 G T drought.2017 19.55 

ST4.03ch05_33860722 A C drought.2017 18.93 

ST4.03ch05_33979154 G T drought.2017 19.53 

ST4.03ch05_37422939 A G drought.2017 8.28 

ST4.03ch07_32240570 C T drought.2017 6.64 
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ST4.03ch07_32240574 C T drought.2017 6.64 

ST4.03ch07_45308907 C T drought.2017 19.01 

ST4.03ch12_15539343 A G drought.2017 19.39 

ST4.03ch12_19070339 C T drought.2017 9.47 

ST4.03ch12_35967269 C T drought.2017 19.52 

ST4.03ch12_42901527 A G drought.2017 18.75 

ST4.03ch12_49456205 C T drought.2017 6.32 

ST4.03ch12_50342965 C T drought.2017 20.76 

 
 

 
Figure 15. Example of a quantile plot (left) indicating deviation from normality and 
Manhattan plot (right) depicting the significant QTL for drought tolerance after GWASpoly 
analysis using the general model. 
 
QTL for virus resistance 
 
A QTL for PVY resistance, in both Lima and Yunnan trials was found in chromosome 11 in 
the same region where the resistance gene Ryadg has previously been mapped (Hamalainen 
et al., 1997) (Table 11, Figure 16). Ryadg confers extreme resistance to all PVY strains, and 
this is clearly demonstrated by the histogram of the infection severity (Figure 11) as a large 
proportion of genotypes tested were resistant to PVY. The strength and predominance of 
this QTL (Figure 17) as well as the type of data collected (qualitative) most likely contributed 
to the lack of identification of minor factors or QTL that may contribute to partial or field 
resistance to PVY. 
 
The PLRV resistance in the CIP LTVR population is understood to have come from 
European and North American germplasm. PLRV resistance in these sources is generally 
attributed to a major QTL in chromosome 11 and two minor QTL in chromosomes 6 and 5 
(Marczewski et al., 2001). Here the QTL in chromosome 6 was identified, while the QTL in 
Chromosome 11 stays below the statistical significance level (Figure 18).  Another source of 
PLRV resistance has been identified from the andigena germplasm which has been heavily 
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used in breeding at CIP. The corresponding Rladg gene confers high levels of PLRV 
resistance and has been mapped in chromosome 5 (Velasquez et al., 2007), but GWAS did 
not identify QTL for PLRV in this region.  The lack of QTL for this resistance in the TON 
panel confirms   a previous survey that found Rladg to be rare in CIP-bred as well as 
andigena landrace germplasm.  Nevertheless, the relatively low number of SNP used in the 
GWAS assay does not favour the detection of small effect QTL or rare haplotypes that 
contribute to them. According to the recent estimate by Vos et al (2017) up to 40,000 
markers are needed for the GWAS to cover the entire tetraploid genome if 10 founder 
haplotypes are assumed. To test this, we ran the GWAS with the entire unfiltered biallelic 
SNP set containing 24,1478 markers for the Lima PLRV data. From this data QTL were 
identified in chromosomes 4, 6 and 11 (Table 12). The markers in chromosome 11 are 
located close to the resistance gene hotspot that was reported for the PLRV resistance QTL 
by Marczewski et al (2001).    
 
 
Table 11. Markers associated with PVY resistance using the 18K SNP set. The significance 
thresholds for the additive model 5.47 and 5.45 for the general model.  
 
Marker Ref Alt Trait Model Score Effect 

ST4.03ch03_30142264 C T PVY.Yunnan additive 6.17 -0.15 

ST4.03ch06_683421 A G PVY.Lima additive 12.85 0.21 

PVY.Lima general 15.01 NA 

PVY.Yunnan additive 13.63 0.31 

ST4.03ch06_55496024 G T PLRV.Lima additive 15.56 -0.23 

general 15.44 NA 

ST4.03ch06_55496153 A G PLRV.Lima additive 13.57 0.24 

general 12.8 NA 

ST4.03ch07_7941692 G T PLRV.Lima additive 5.71 0.14 

ST4.03ch07_21073029 C T PVY.Lima additive 11.64 -0.26 

PVY.Yunnan additive 11.66 -0.4 

ST4.03ch11_149549 A T PVY.Yunnan additive 6.03 -0.15 

ST4.03ch11_1310453  A T PVY.Lima additive 22.05 0.27 

general 28.13 NA 

PVY.Yunnan additive 27.87 0.45 

PVY.Lima additive 22.05 0.27 

general 28.13 NA 

PVY.Yunnan additive 27.87 0.45 

ST4.03ch11_2116439 A G PVY.Lima additive 17.79 -0.34 

general 18.32 NA 

PVY.Yunnan additive 24.44 -0.56 

ST4.03ch11_2116475 A T PVY.Lima additive 17.79 0.34 

general 18.32 NA 

PVY.Yunnan additive 24.44 0.56 

ST4.03ch11_2635239 A G PVY.Lima additive 9.76 0.17 

general 12.99 NA 

PVY.Yunnan additive 14.86 0.33 
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ST4.03ch11_2943577 A G PVY.Lima additive 13.74 0.2 

general 14 NA 

PVY.Yunnan additive 17.06 0.31 

ST4.03ch11_2943595 C T PVY.Lima additive 12.86 -0.2 

general 13.64 NA 

ST4.03ch11_3249012 C T PVY.Lima additive 10.83 -0.26 

general 10.66 NA 

ST4.03ch11_3268566 C T PVY.Lima additive 12.02 -0.26 

ST4.03ch11_3268579 A G PVY.Lima additive 11.99 0.25 

ST4.03ch11_3268590 A C PVY.Lima additive 12.02 -0.26 

ST4.03ch11_3270456 A G PVY.Lima additive 8.35 -0.13 

general 11.58 NA 

ST4.03ch11_3281377 A T PVY.Lima general 5.54 NA 

ST4.03ch11_3281404 A G PVY.Lima additive 12.27 0.26 

general 12.65 NA 

ST4.03ch11_3306950 A G PVY.Lima additive 11.07 0.25 

general 11.97 NA 

ST4.03ch11_3306991 G T PVY.Lima additive 11.07 -0.25 

general 11.97 NA 

ST4.03ch11_3756922 A G PVY.Lima additive 8.57 -0.19 

general 10.44 NA 

ST4.03ch11_3807202 C T PVY.Lima additive 11.34 0.24 

general 12.66 NA 

ST4.03ch11_3954286 A T PVY.Lima additive 9.97 0.2 

general 12.77 NA 

ST4.03ch11_4561679 A T PVY.Lima additive 7.41 -0.18 

general 7.31 NA 

ST4.03ch11_4667044 A G PVY.Lima additive 11.52 0.26 

general 12.67 NA 

ST4.03ch11_5208548 A G PVY.Lima additive 9.37 0.21 

general 9.48 NA 

ST4.03ch11_5208601 A C PVY.Lima additive 9.65 -0.21 

general 10.42 NA 

ST4.03ch11_5208610 C G PVY.Lima additive 10.95 -0.23 

general 11.23 NA 

ST4.03ch11_5294929 G T PVY.Lima additive 11.14 0.28 

general 10.57 NA 

ST4.03ch11_5294940 A C PVY.Lima additive 10.56 0.27 

general 9.97 NA 

ST4.03ch11_5294964 A G PVY.Lima additive 10.56 -0.27 

general 9.97 NA 

ST4.03ch11_5376333 A T PVY.Lima additive 8.76 0.17 
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general 8.55 NA 

ST4.03ch11_5468329 A T PVY.Lima additive 11.34 -0.28 

general 10.57 NA 

ST4.03ch11_5535999 C G PVY.Lima additive 6.2 -0.2 

general 5.58 NA 

 
 
 
 
Table 12. Markers tagging QTL for PLRV resistance in Lima using the additive model and 
unfiltered 24,1478 markers. The significance threshold was 6.17. 
 
Marker Ref Alt Score Effect 

ch04_8429456 C T 7.46 -0.14 

ch04_8429555 C T 15.39 -0.11 

ch06_55496024 G T 14.75 -0.23 

ch06_55496153 A G 13.69 0.24 

ch11_5344490 A G 8.1 -0.1 

ch11_5407524 A C 9.55 -0.07 

ch11_5407540 A G 8.19 -0.08 

ch11_5707246 G T 19.24 0.08 

ch12_3278804 G T 6.96 -0.08 

ch12_3278859 A G 6.41 0.06 
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Figure 16. Quantile plot (left) indicating deviation from normality and Manhattan plot (right) 
depicting the significant QTL for PVY resistance after GWASpoly analysis using the additive 
model. 
 

 
 
Figure 17. Quantile plot (left) indicating deviation from normality and Manhattan plot (right) 
depicting the significant QTL for PLRV resistance after GWASpoly analysis using the 
additive model. 
 
 
 
Conclusions 
 
This report describes the identification of SNP markers using genotyping by sequencing 
(GBS) in a set of diverse germplasm from the breeding populations of the International 
Potato Center (CIP) and their use in describing the population structure, the extend of LD 
and identification of QTL for various important traits. In total 380 advanced clones, pre-
breeding lines and varieties were genotyped. Significant population sub-structuring was 
identified, particularly due to the population B1 that was derived from S. tuberosum group 
andigena germplasm. The remaining populations partially overlapped with each other, but 
the structure was still visible along the four principal components.  
 
The LD decay discovered was modest, and comparable to that found in the European potato 
germplasm. Estimates based on the average r2 of the markers along the short distance 
suggest that high diversity is retained in the germplasm and that tens of thousands of 
markers would be needed for sufficient coverage of the entire tetraploid genome. The 48x 
plex multiplexing of the samples during the sequencing enabled the identification of 
approximately 14K SNP with reasonable quality that effectively tagged several important 
traits. More stringent filtering for minimum read depth in all samples yielded few SNP 
(3,462), but even with this reduced set several marker-trait associations were found.  
 
Phenotyping of a large set of germplasm in variable locations is challenging and the data 
collection and storage, as well as statistical analysis bring along further challenges. We have 
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successfully collected and stored the field data of most of the experiments and this will serve 
as an excellent platform for future trait-marker identification in many more traits. Improved 
statistical analysis were applied in the datasets incorporating mixed models and row-column 
design when applicable. This is likely to improve the precision of phenotypic estimates and 
facilitate the QTL identification.  
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Table S1. Population denominations, accession names and pedigrees of the potato 
genotypes evaluated in this study. 
 
populati
on 

Name accession_name parent_female parent_male 

A CIP384866.
5 

Amarilis-INIA 376724.1=(85LB70.5) BULK PRECOZ 

A CIP381379.
12 

A LB Group III 378356.895 PRECOZ BULK 

A CIP381381.
9 

Rukinzo 378493.915 PRECOZ BULK 

A CIP381381.
13 

IDIAP 92 378493.915 PRECOZ BULK 

A CIP381403.
16 

A LB Group IV 378507.833 BULK 

A CIP381178.
14 

A LB Group I 378943.565 PHY BULK 

A CIP384321.
3 

A LB Group V 380479.15 BULK 3 

A CIP391691.
96 

INIA 309, 
SERRANITA 

381381.9 LB-CUZ.1 

A CIP387224.
11 

A LB Group IX 382121.25 676008=(I-1039) 

A CIP374080.
5 

Perricholi 801013=(MEX 72 =I-
1058) 

700764=(Casa Blanca EE-
2010) 

A CIP380011.
12 

A LB Group VI GRETA SEEDLINGS 79 BULK 

A CIP380496.
6 

Chagllina-INIA INDIA-1058 B XY BULK 

A CIP377744.
1 

Kori-INIA M-1266-14 MEX 374035.1 

B1 CIP399053.
15 

 
395230.1 395322.11 

B1 CIP399067.
22 

 
395257.2 395271.6 

B1 CIP399075.
32 

 
395266.2=(B1C4046.2) 395282.3=(B1C4062.3) 

B1 CIP399075.
7 

INIA 312, Puca 
Lliclla 

395266.2=(B1C4046.2) 395282.3=(B1C4062.3) 

B1 CIP399078.
11 

 
395266.3=(B1C4046.3) 395260.8=(B1C4040.8) 

B1 CIP399048.
24 

B1C5 395272.2 395257.6 

B1 CIP399079.
22 

 
395274.1 395257.6 

B1 CIP399085.
17 

 
395296.2=(B1C4076.2) 395256.1=(B1C4036.1) 

B1 CIP399085.
30 

INIA 317, Altiplano 395296.2=(B1C4076.2) 395256.1=(B1C4036.1) 

B1 CIP399083.
4 

 
395296.2=(B1C4076.2) 395247.1=(B1C4027.1) 

B1 CIP399085.
23 

INIA 311, Pallay 
Poncho 

395296.2=(B1C4076.2) 395256.1=(B1C4036.1) 

B3 CIP389746.
2 

 
381379.9 386614.16=(XY.16) 

B3 CIP393220.
54 

 
381400.22 387170.9 

B3 CIP387164.
4 

LBr-40 382171.1 575049=(CEW-69-1) 
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B3 CIP391046.
14 

 
386209.1 387338.3 

B3 CIP391047.
34 

 
386209.1 387338.3 

B3 CIP393228.
67 

 
386209.1 387170.9 

B3 CIP391002.
6 

 
386209.1 386206.4 

B3 CIP393227.
66 

 
386209.1 381400.22 

B3 CIP391583.
25 

 
386209.15 387170.9 

B3 CIP392617.
54 

 
387002.11 387170.9 

B3 CIP393248.
55 

 
387002.11 386614.16=(XY.16) 

B3 CIP393242.
50 

 
387002.11 381400.22 

B3 CIP391580.
30 

 
387002.2 387214.9 

B3 CIP393079.
4 

 
387004.13 390357.4 

B3 CIP393079.
24 

 
387004.13 390357.4 

B3 CIP391004.
18 

 
387004.4 386206.4 

B3 CIP393284.
39 

 
387015.12 387170.9 

B3 CIP393073.
179 

 
387015.13 389746.2 

B3 CIP393073.
197 

 
387015.13 389746.2 

B3 CIP393280.
82 

 
387015.3 386316.14=(XY.14) 

B3 CIP393280.
64 

 
387015.3 386316.14=(XY.14) 

B3 CIP393280.
57 

 
387015.3 386316.14=(XY.14) 

B3 CIP391011.
17 

 
387041.12 386206.4 

B3 CIP391585.
179 

 
387132.2 387170.9 

B3 CIP391585.
5 

 
387132.2 387170.9 

B3 CIP392633.
64 

 
387132.2 387334.5 

B3 CIP392634.
49 

 
387136.14 387170.9 

B3 CIP392634.
52 

 
387136.14 387170.9 

B3 CIP392637.
10 

 
387143.22 387170.9 

B3 CIP392637.
27 

B3C1 387143.22 387170.9 

B3 CIP392639.
34 

 
387143.22 387334.5 

B3 CIP393339.
242 

 
387164.4 SANI IMILLA 

B3 CIP393371.
 

387170.16 389746.2 
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157 

B3 CIP393371.
58 

INIA 
310;Chucmarina 

387170.16 389746.2 

B3 CIP393371.
164 

 
387170.16 389746.2 

B3 CIP393371.
159 

 
387170.16 389746.2 

B3 CIP391058.
175 

 
387170.16 387338.3 

B3 CIP393349.
68 

 
387170.6 387338.3 

B3 CIP392650.
12 

B3C1 387181.7 387170.9 

B3 CIP393382.
44 

 
387205.5 387338.3 

B3 CIP393385.
47 

 
387231.7 387170.9 

B3 CIP393385.
39 

 
387231.7 387170.9 

B3 CIP393399.
7 

Nova 387303.71 387338.3 

B3 CIP393075.
54 

 
387315.27 389746.2 

B3 CIP393083.
2 

 
387315.27 390357.4 

B3 CIP393084.
31 

 
387326.27 390357.4 

B3 CIP392657.
171 

 
387341.1 387170.9 

B3 CIP392657.
8 

 
387341.1 387170.9 

B3 CIP393077.
159 

 
387348.2 389746.2 

B3 CIP391065.
81 

 
387348.2 387338.3 

B3 CIP393077.
54 

 
387348.2 389746.2 

B3 CIP393085.
5 

 
387348.2 390357.4 

B3 CIP391065.
69 

 
387348.2 387338.3 

B3 CIP396008.
104 

 
391002.15 393382.64 

B3 CIP396004.
263 

 
391002.6 393382.64 

B3 CIP396004.
225 

 
391002.6 393382.64 

B3 CIP396004.
337 

 
391002.6 393382.64 

B3 CIP396012.
266 

 
391004.1 393280.58 

B3 CIP396009.
240 

 
391004.4 393280.58 

B3 CIP396009.
258 

 
391004.4 393280.58 

B3 CIP395037.
107 

 
391004.4 391679.12 

B3 CIP396018.
241 

 
391046.14 393280.58 
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B3 CIP396023.
109 

 
391047.34 393280.57 

B3 CIP396244.
12 

 
391580.3 392633.1 

B3 CIP395077.
12 

 
391586.109 393053.6 

B3 CIP395109.
29 

 
391589.26 393079.4 

B3 CIP395109.
34 

 
391589.26 393079.4 

B3 CIP395112.
19 

 
391686.15 393079.4 

B3 CIP395112.
32 

 
391686.15 393079.4 

B3 CIP395112.
6 

 
391686.15 393079.4 

B3 CIP395112.
36 

 
391686.15 393079.4 

B3 CIP395111.
13 

 
391686.5 393079.4 

B3 CIP396027.
205 

 
392633.23 393382.64 

B3 CIP396026.
101 

 
392633.4 393280.64 

B3 CIP396026.
103 

 
392633.4 393280.64 

B3 CIP395084.
9 

 
392633.6 393053.6 

B3 CIP396031.
119 

 
392633.64 393382.64 

B3 CIP396031.
108 

 
392633.64 393382.64 

B3 CIP396241.
4 

 
392634.52 392626.9 

B3 CIP396033.
102 

 
392639.53 393382.64 

B3 CIP395169.
17 

 
392652.8 391679.12 

B3 CIP396034.
268 

 
393042.5 393280.64 

B3 CIP396034.
103 

 
393042.5 393280.64 

B3 CIP395123.
6 

 
393046.7 393079.4 

B3 CIP396036.
201 

 
393077.51 393382.64 

B3 CIP396038.
101 

 
393077.54 393280.64 

B3 CIP396037.
215 

 
393077.54 393382.64 

B3 CIP396038.
107 

 
393077.54 393280.64 

B3 CIP396038.
105 

 
393077.54 393280.64 

B3 CIP395015.
6 

 
393083.2 391679.12 

B3 CIP395017.
14 

 
393085.13 392639.8 

B3 CIP395017.
 

393085.13 392639.8 
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229 

B3 CIP395017.
242 

 
393085.13 392639.8 

B3 CIP395017.
227 

 
393085.13 392639.8 

B3 CIP395011.
2 

 
393085.5 392639.8 

B3 CIP395096.
2 

 
393085.5 393053.6 

B3 CIP396240.
2 

 
393371.58 391679.12 

B3 CIP396240.
23 

 
393371.58 391679.12 

B3 CIP396043.
226 

 
393401.55 393280.57 

B3 CIP396046.
105 

 
TXY.4 393280.64 

B3-HT CIP398180.
612 

 
392657.171 392633.64 

B3-HT CIP398180.
289 

 
392657.171 392633.64 

B3-HT CIP398180.
292 

 
392657.171 392633.64 

B3-HT CIP398180.
253 

 
392657.171 392633.64 

B3-HT CIP398180.
144 

 
392657.171 392633.64 

B3-HT CIP398193.
650 

 
393077.54 392633.64 

B3-HT CIP398192.
213 

 
393077.54 392633.54 

B3-HT CIP398190.
735 

 
393077.54 392639.2 

B3-HT CIP398190.
112 

 
393077.54 392639.2 

B3-HT CIP398192.
41 

 
393077.54 392633.54 

B3-HT CIP398192.
592 

 
393077.54 392633.54 

B3-HT CIP398190.
571 

 
393077.54 392639.2 

B3-HT CIP398190.
615 

 
393077.54 392639.2 

B3-HT CIP398190.
404 

 
393077.54 392639.2 

B3-HT CIP398190.
530 

 
393077.54 392639.2 

B3-HT CIP398193.
553 

 
393077.54 392633.64 

B3-HT CIP398193.
158 

 
393077.54 392633.64 

B3-HT CIP398190.
605 

 
393077.54 392639.2 

B3-HT CIP398192.
553 

 
393077.54 392633.54 

B3-HT CIP398190.
200 

 
393077.54 392639.2 

B3-HT CIP398190.
523 

 
393077.54 392639.2 
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B3-HT CIP398201.
510 

 
393242.5 392633.64 

B3-HT CIP398203.
509 

 
393280.82 392633.64 

B3-HT CIP398098.
65 

 
393371.58 392639.31 

B3-HT CIP398208.
58 

 
393371.58 392633.64 

B3-HT CIP398208.
33 

 
393371.58 392633.64 

B3-HT CIP398098.
205 

 
393371.58 392639.31 

B3-HT CIP398208.
219 

 
393371.58 392633.64 

B3-HT CIP398208.
670 

 
393371.58 392633.64 

B3-HT CIP398098.
231 

 
393371.58 392639.31 

B3-HT CIP398098.
203 

 
393371.58 392639.31 

B3-HT CIP398098.
570 

 
393371.58 392639.31 

B3-HT CIP398208.
704 

 
393371.58 392633.64 

B3-HT CIP398098.
119 

 
393371.58 392639.31 

B3-HT CIP398208.
29 

 
393371.58 392633.64 

B3-HT CIP398208.
505 

 
393371.58 392633.64 

B3-HT CIP398208.
620 

 
393371.58 392633.64 

B3-
LTVR 

CIP301056.
54 

 
385205.5 393613.2=(TXY.2) 

B3-
LTVR 

CIP301037.
85 

 
387205.5 702853=(LOP-868) 

B3-
LTVR 

CIP301045.
74 

 
387205.5 391207.2=(LR93.050) 

B3-
LTVR 

CIP301024.
14 

 
388615.22=(C91.640) 387170.9 

B3-
LTVR 

CIP301024.
95 

 
388615.22=(C91.640) 387170.9 

B3-
LTVR 

CIP301026.
23 

 
389746.2 BOGNA 

B3-
LTVR 

CIP301041.
26 

 
389746.2 LOP-886 

B3-
LTVR 

CIP301055.
53 

 
389746.2 393617.1=(TXY.11) 

B3-
LTVR 

CIP301023.
15 

 
391180.6=(C90.266) 387170.9 

B3-
LTVR 

CIP301044.
36 

 
392025.7=(LR93.221) LOP-886 

B3-
LTVR 

CIP396063.
1 

 
392633.1 TXY.12 

B3-
LTVR 

CIP396063.
16 

 
392633.1 TXY.12 

B3-
LTVR 

CIP396180.
22 

 
392633.6 393615.6=(TXY.6) 

B3- CIP396268.
 

392639.34 393613.2=(TXY.2) 
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LTVR 9 

B3-
LTVR 

CIP396272.
18 

 
392639.34 TXY.12 

B3-
LTVR 

CIP396268.
1 

 
392639.34 393613.2=(TXY.2) 

B3-
LTVR 

CIP396272.
21 

 
392639.34 TXY.12 

B3-
LTVR 

CIP396272.
12 

 
392639.34 TXY.12 

B3-
LTVR 

CIP396272.
2 

 
392639.34 TXY.12 

B3-
LTVR 

CIP396272.
37 

 
392639.34 TXY.12 

B3-
LTVR 

CIP396273.
48 

 
393220.54 TXY.12 

B3-
LTVR 

CIP396269.
16 

 
393371.58 393613.2=(TXY.2) 

B3-
LTVR 

CIP396269.
14 

 
393371.58 393613.2=(TXY.2) 

B3-
LTVR 

CIP301029.
18 

 
C97.255 C95.397 

B3-
LTVR 

CIP301040.
63 

 
UNICA 702853=(LOP-868) 

LTVR CIP394899.
5 

 
28.68 C90.205 

LTVR CIP394898.
13 

 
28.68 BWH-87.344R 

LTVR CIP385558.
2 

 
32) 2 NT 91.002 

LTVR CIP394901.
2 

 
34.73 393617.1=(TXY.11) 

LTVR CIP394900.
1 

 
34.73 BWH-87.344R 

LTVR CIP392285.
72 

 
36.14 382157.3 

LTVR CIP379706.
27 

Costanera 377257.1=(LT-1) PVX + PVY BULK 

LTVR CIP388676.
1 

Maria Bonita-INIA 378015.18 PVY-BK 

LTVR CIP385561.
124 

 
38) 8 ML 91.007 

LTVR CIP391180.
6 

 
385305.1=(XY.9) 378017.2=(LT-7) 

LTVR CIP388972.
22 

 
386316.1=(XY.20) 377964.5 

LTVR CIP397079.
6 

 
386768.10=(MARIA 
TAMBEÃ‘A) 

392820.1=(C93.154) 

LTVR CIP397079.
26 

 
386768.10=(MARIA 
TAMBEÃ‘A) 

392820.1=(C93.154) 

LTVR CIP392797.
22 

UNICA 387521.3 APHRODITE 

LTVR CIP303381.
30 

 
388611.22=(C91.612) 676008=(I-1039) 

LTVR CIP395434.
1 

 
388611.22=(C91.612) N93.067 

LTVR CIP394600.
52 

 
388611.22=(C91.612) 388972.22=(C89.315) 

LTVR CIP395192.
1 

 
388611.22=(C91.612) C92.044 
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LTVR CIP395195.
7 

 
388611.22=(C91.612) C92.167 

LTVR CIP397044.
25 

 
388611.22=(C91.612) 391180.6=(C90.266) 

LTVR CIP395193.
6 

 
388611.22=(C91.612) C92.030 

LTVR CIP303381.
106 

 
388611.22=(C91.612) 676008=(I-1039) 

LTVR CIP397197.
9 

 
388615.22=(C91.640) 388972.22 

LTVR CIP304345.
102 

 
388615.22=(C91.640) 676008=(I-1039) 

LTVR CIP395432.
51 

 
388615.22=(C91.640) C92.030 

LTVR CIP397039.
53 

 
388615.22=(C91.640) 388972.22=(C89.315) 

LTVR CIP395436.
8 

 
388615.22=(C91.640) 388615.22=(C91.640) 

LTVR CIP397039.
51 

 
388615.22=(C91.640) 388972.22=(C89.315) 

LTVR CIP392759.
1 

 
388676.1=(Y84.027) PENTLAND CROWN 

LTVR CIP397006.
18 

 
389468.3=(92.119) 88.052 

LTVR CIP397067.
2 

 
390663.8=(C91.628) 392820.1=(C93.154) 

LTVR CIP300101.
11 

 
390674.33=(95.303) 387170.9 

LTVR CIP397065.
2 

 
391180.6=(C90.266) 392820.1=(C93.154) 

LTVR CIP397065.
28 

 
391180.6=(C90.266) 392820.1=(C93.154) 

LTVR CIP399101.
1 

 
391213. 1 388972.22 

LTVR CIP300066.
11 

 
391382.18=(95.108) 392820.1=(C93.154) 

LTVR CIP300065.
4 

 
391382.18=(95.108) 387170.9 

LTVR CIP397098.
12 

 
391533.1=(LR93.060) 391207.2=(LR93.050) 

LTVR CIP397012.
20 

 
391846.5=(LR93.309) 88.052 

LTVR CIP397012.
22 

 
391846.5=(LR93.309) 88.052 

LTVR CIP397078.
12 

 
391846.5=(LR93.309) 392820.1=(C93.154) 

LTVR CIP393617.
1 

 
391896.15=(DXY.15) DXY.33 

LTVR CIP393613.
2 

 
391896.15=(DXY.15) 391894.7=(DXY.7) 

LTVR CIP396311.
1 

 
391925.2 C92.030 

LTVR CIP397036.
7 

 
392011.1=(LR93.160) 392745.7=(92.187) 

LTVR CIP397077.
16 

 
392025.7=(LR93.221) 392820.1=(C93.154) 

LTVR CIP397014.
2 

 
392739.4=(92.062) 88.108 

LTVR CIP397060.
 

392739.4=(92.062) 392820.1=(C93.154) 
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19 

LTVR CIP397196.
8 

 
392797.22 388611.22=(C91.612) 

LTVR CIP397196.
3 

 
392797.22 388611.22=(C91.612) 

LTVR CIP397069.
11 

 
392797.22=(C92.140) 392820.1=(C93.154) 

LTVR CIP397069.
5 

 
392797.22=(C92.140) 392820.1=(C93.154) 

LTVR CIP304347.
6 

 
392820.1=(C93.154) 676008=(I-1039) 

LTVR CIP397099.
4 

 
392822.3=(LR93.073) 391207.2=(LR93.050) 

LTVR CIP397099.
6 

 
392822.3=(LR93.073) 391207.2=(LR93.050) 

LTVR CIP397073.
15 

 
392823.4=(LR93.120) 392820.1=(C93.154) 

LTVR CIP397073.
7 

 
392823.4=(LR93.120) 392820.1=(C93.154) 

LTVR CIP397100.
9 

 
392823.4=(LR93.120) 391207.2=(LR93.050) 

LTVR CIP397073.
16 

 
392823.4=(LR93.120) 392820.1=(C93.154) 

LTVR CIP304366.
46 

 
392823.4=(LR93.120) 676008=(I-1039) 

LTVR CIP397035.
26 

 
392823.4=(LR93.120) 92.187 

LTVR CIP300048.
12 

 
392973.48=(95.048) 392820.1=(C93.154) 

LTVR CIP300046.
22 

 
392973.48=(95.048) 393613.2=(TXY.2) 

LTVR CIP300099.
22 

 
393533.2=(95.302) 392820.1=(C93.154) 

LTVR CIP300063.
9 

 
393536.13=(95.103) 392820.1=(C93.154) 

LTVR CIP300063.
4 

 
393536.13=(95.103) 392820.1=(C93.154) 

LTVR CIP396285.
1 

 
393617.1=(TXY.11) 104.12 LB 

LTVR CIP395448.
1 

 
393617.1=(TXY.11) BWH-87.344R 

LTVR CIP385499.
11 

E86.011 65-ZA-5 377964.5 

LTVR CIP391919.
3 

 
69.4 (1043) BW - 

LTVR CIP392780.
1 

BASADRE 703364=(SEDAFIN) YY.3 

LTVR CIP389468.
3 

 
720087=(SERRANA) 388216.1=(YY.5) 

LTVR CIP390478.
9 

Tacna 720087=(SERRANA) 386287.1=(XY.4) 

LTVR CIP390663.
8 

 
720087=(SERRANA) 386316.14=(XY.14) 

LTVR CIP388611.
22 

REICHE 720091=(MEX-32) 385305.1=(XY.9) 

LTVR CIP394904.
20 

 
720118.1=(37-35A) C90.205 

LTVR CIP302498.
70 

 
720139=(YAGANA-INIA) 391180.6=(C90.266) 
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LTVR CIP302499.
30 

 
720139=(YAGANA-INIA) 392820.1=(C93.154) 

LTVR CIP394611.
112 

 
780280=(PW-88-6203) 676008=(I-1039) 

LTVR CIP304383.
41 

 
800824=(RED 
PONTIAC) 

92.187 

LTVR CIP304383.
80 

 
800824=(RED 
PONTIAC) 

92.187 

LTVR CIP391724.
1 

 
800959=(GRANOLA) 386316.1=(XY.20) 

LTVR CIP391207.
2 

 
800959=(GRANOLA) 385305.1=(XY.9) 

LTVR CIP392739.
4 

 
86001 386614.16=(XY.16) 

LTVR CIP392740.
4 

 
87055 386614.16=(XY.16) 

LTVR CIP397054.
3 

 
87059 392820.1=(C93.154) 

LTVR CIP397055.
2 

 
88052 392820.1=(C93.154) 

LTVR CIP392745.
7 

 
88078 386316.1=(XY.20) 

LTVR CIP397029.
21 

 
92.118 92.187 

LTVR CIP397016.
7 

 
92.119 88.108 

LTVR CIP397030.
31 

 
93.003 92.187 

LTVR CIP300054.
29 

 
95.059 392820.1=(C93.154) 

LTVR CIP300056.
33 

 
95.071 387170.9 

LTVR CIP300055.
32 

 
95.071 393613.2=(TXY.2) 

LTVR CIP300072.
1 

 
95.139 392820.1=(C93.154) 

LTVR CIP300137.
31 

 
95.187 387170.9 

LTVR CIP300093.
14 

 
95.206 392820.1=(C93.154) 

LTVR CIP388615.
22 

 
B-71-240.2 386614.16=(XY.16) 

LTVR CIP392781.
1 

Primavera B71-74-49.12 385280.1=(XY.13) 

LTVR CIP394034.
65 

 
B79.638.1 676008=(I-1039) 

LTVR CIP394034.
7 

 
B79.638.1 676008=(I-1039) 

LTVR CIP394881.
8 

 
B84-606.5 386287.1=(XY.4) 

LTVR CIP393536.
13 

 
BEROLINA 386287.1=(XY.4) 

LTVR CIP394895.
7 

 
BWH-87.230R C90.205 

LTVR CIP391930.
1 

 
BWH-87.338 SELF 

LTVR CIP395438.
1 

 
BWH-87.344R 393617.1=(TXY.11) 

LTVR CIP395445.
 

BWH-87.415 391894.7=(DXY.7) 
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16 

LTVR CIP394906.
6 

 
BWH-87.420 C90.205 

LTVR CIP395446.
1 

 
BWH-87.446R 393613.2=(TXY.2) 

LTVR CIP395186.
6 

 
C91.902 C92.032 

LTVR CIP395197.
5 

 
C91.921 BK-RKN-3 

LTVR CIP398014.
2 

 
C91.923 N93.107 

LTVR CIP395194.
9 

 
C93.059 C93.030 

LTVR CIP304350.
78 

 
CHIEFTAIN 392820.1=(C93.154) 

LTVR CIP304350.
95 

 
CHIEFTAIN 392820.1=(C93.154) 

LTVR CIP304350.
100 

 
CHIEFTAIN 392820.1=(C93.154) 

LTVR CIP304349.
8 

 
CHIEFTAIN 92.187 

LTVR CIP304350.
18 

 
CHIEFTAIN 392820.1=(C93.154) 

LTVR CIP304351.
109 

 
CHIEFTAIN 676008=(I-1039) 

LTVR CIP304351.
31 

 
CHIEFTAIN 676008=(I-1039) 

LTVR CIP304350.
118 

 
CHIEFTAIN 392820.1=(C93.154) 

LTVR CIP393615.
6 

 
DXY.33 391896.15=(DXY.15) 

LTVR CIP395196.
4 

 
ES-92.005 BK-RKN-1 

LTVR CIP391533.
1 

 
G-7445 385280.1=(XY.13) 

LTVR CIP394579.
36 

 
KONDOR 393615.6=(TXY.6) 

LTVR CIP392973.
48 

 
KRASA 385280.1=(XY.13) 

LTVR CIP392025.
7 

 
LINEA 21 386614.16=(XY.16) 

LTVR CIP392032.
2 

 
LOTOS 385280.1=(XY.13) 

LTVR CIP392822.
3 

 
MARIELA YY.1 

LTVR CIP302428.
20 

 
MARIELA 392745.7=(92.187) 

LTVR CIP391382.
18 

 
MARIELA 386287.1=(XY.4) 

LTVR CIP304369.
22 

 
MARIELA 676008=(I-1039) 

LTVR CIP300135.
14 

 
MARIVA 392820.1=(C93.154) 

LTVR CIP300135.
3 

 
MARIVA 392820.1=(C93.154) 

LTVR CIP304371.
67 

 
MONALISA 92.187 

LTVR CIP392820.
1 

 
MONALISA 388216.1=(YY.5) 
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LTVR CIP304371.
20 

 
MONALISA 92.187 

LTVR CIP304371.
58 

 
MONALISA 92.187 

LTVR CIP392821.
1 

 
PW-31 385280.1=(XY.13) 

LTVR CIP390637.
1 

 
PW-31 385305.1=(XY.9) 

LTVR CIP393708.
31 

 
PW-31 391895.10=(DXY.10) 

LTVR CIP304387.
39 

 
REINHORT 92.187 

LTVR CIP304387.
92 

 
REINHORT 92.187 

LTVR CIP304387.
17 

 
REINHORT 92.187 

LTVR CIP304394.
56 

 
SHEPODY 391207.2=(LR93.050) 

LTVR CIP304399.
5 

 
SNOWDEN 92.187 

LTVR CIP304399.
15 

 
SNOWDEN 92.187 

LTVR CIP391931.
1 

 
SR-17.50 SELF 

LTVR CIP302476.
108 

 
TITIA 392745.7=(92.187) 

LTVR CIP394613.
139 

 
TXY.4 676008=(I-1039) 

LTVR CIP394613.
32 

 
TXY.4 676008=(I-1039) 

LTVR CIP394614.
117 

 
TXY.8 676008=(I-1039) 

LTVR CIP394638.
3 

 
TXY.8 TITIA 

LTVR CIP396287.
5 

 
TXY.8 387170.9 

LTVR CIP304405.
47 

 
WA.018 676008=(I-1039) 

LTVR CIP304405.
42 

 
WA.018 676008=(I-1039) 

LTVR CIP304406.
31 

 
WA.077 676008=(I-1039) 

LTVR CIP394223.
9 

 
XY.13 C-282LM87B 

LTVR CIP394223.
19 

 
XY.13 C-282LM87B 

LTVR CIP302476.
19 

0 TITIA 392745.7=(92.187) 

LTVR CIP304330.
34 

0 391382.18=(95.108) 676008=(I-1039) 

LTVR CIP304345.
47 

0 388615.22=(C91.640) 676008=(I-1039) 

LTVR CIP304349.
110 

0 CHIEFTAIN 92.187 

LTVR CIP304349.
4 

0 CHIEFTAIN 92.187 

LTVR CIP304351.
15 

0 CHIEFTAIN 676008=(I-1039) 

LTVR CIP304351. 0 CHIEFTAIN 676008=(I-1039) 
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9 

LTVR CIP309003.
11 

0 388611.22 304387.17 

LTVR CIP309017.
101 

0 395438.1 801088 

LTVR CIP309024.
1 

0 397036.7 392820.1 

LTVR CIP309026.
72 

0 397036.7 801088 

LTVR CIP309028.
32 

0 397036.7 801152 

LTVR CIP309062.
106 

0 303381.106 302499.24 

LTVR CIP309064.
42 

0 303381.30 392797.22 

LTVR CIP309064.
76 

0 303381.30 392797.22 

LTVR CIP309074.
123 

0 304330.34 392745.7 

LTVR CIP309078.
56 

0 304330.34 304356.32 

LTVR CIP309088.
120 

0 304347.6 302499.24 

LTVR CIP309093.
50 

0 304349.25 392820.1 

LTVR CIP309103.
85 

0 304349.8 801152 

LTVR CIP309128.
87 

0 304368.46 304356.32 

LTVR CIP309129.
11 

0 304368.46 304371.19 

LTVR CIP309131.
16 

0 304387.31 392820.1 

LTVR CIP309137.
95 

0 800258 396311.1 

LTVR CIP380389.
1 

Canchan-INIA BL-1.2 MURILLO III-80 

LTVR CIP720043 Revolucion NARANJA (KATAHDIN x MANTARO) 

LTVR CIP720088 Achirana-INTA MPI 61.375/23 B 25.65=(Atleet x Huinkul 
MAG) 

PREBR
ED 

CIP694474.
16 

 
4x-84.1 2x-5.26 

PREBR
ED 

CIP694474.
33 

 
4x-84.1 2x-5.26 

VARIET
Y 

CIP720072 Tomasa 
Condemayta 

(B 606.37 X KATAHDIN) (RENACIMIENTO x YANA 
IMILLA) 

VARIET
Y 

CIP800258 KUFRI JYOTI 3069D (4) 2814A (1) 

VARIET
Y 

CIP800827 Atlantic 800823=(WAUSEON) B-5141.6 

VARIET
Y 

CIP800923 Spunta BEA USDA X 96.56 

VARIET
Y 

CIP800048 Desiree URGENTA DEPESCHE 

VARIET
Y 

CIP800174 DTO-33 WISC 639 W5295.7 
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Development of genomic selection in a panel of advanced clones of tetraploid 
potato: Models and estimated progress. 

 

Dorcus Gemenet 

International Potato Center 

 

3.3. Establish and compare predictive models for genome estimated breeding values for their 
predictive accuracy in potato based on output  

3.4. Apply multi trait selection index using data generated in WP1 

Phenotyping under recurrent selection has been the main approach for variety development in plant 
breeding, with substantial success. However, in potato this process takes a long time, for example, it 
takes a year to develop tubers from botanical seed obtained from crossing nurseries. This is followed by 
at least two years of field evaluation for qualitative traits, with evaluation for most quantitative traits in 
replicated multi-environment trials beginning in around year four (Endelman et al 2018). The estimation 
of parental value based on genetic designs can add years to the selection cycle.  

The use of markers for selection offers potential to reduce the breeding cycle as selection can be done 
at an early stage. However, identifying quantitative trait loci (QTL) via QTL mapping and genome-wide 
association studies (GWAS) has had little practical application in plant breeding since identifying the 
causal genes underlying QTL which may be needed to make their application practical is costly (Xu and 
McCouch 2008). Genomic selection which offers the ability to select parents within a shorter interval 
and increase selection intensity by predicting untested genotypes is emerging as the approach of choice 
to circumvent the limitations associated with phenotypic selection and QTL mapping for marker-assisted 
selection (Meuwissen et al 2001). This approach uses genome-wide marker data to predict the 
performance of untested genotypes and estimate their breeding values (genomic estimated breeding 
values, GEBV), based on a genotyped and phenotyped training population. The Predictive ability of 
genomic selection, i.e., the correlation between phenotypic best linear unbiased estimators (BLUPs) and 
GEBV, is influenced by several factors. These include trait architecture, the size of the training 
population, the relationship between the training and validation populations, heritability of the trait, the 
level of linkage disequilibrium (LD), marker density, environmental variances and covariance among 
traits (Covarrubias-Pazaran et al 2018). 

This study used the phenotypic and genotypic (genotyping-by-sequencing (GBS) single nucleotide 
polymorphism (SNP) data reported for the panel of 380 potato clones in Output 1.  We used the 
univariate genomic best linear unbiased predictor (G-BLUP) method to estimate predictive ability of 
models that partition genetic effects into additive and non-additive types. 

Activity 3.3. Establish and compare models for genome estimated breeding values for their predictive 
accuracy in potato based on Output 1.: 

Methods 
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The AGHmatrix package (Amadeu et al. 2016) was used to develop kinship G-matrices partitioning 
genetic variation based on three models: (i) Only additive effects, according to VanRaden (2008; 
Add_4x), (ii) additive plus non-additive effects, according to Slater et al (2016; Add+Non_4x) and (iii) 
pseudo-diploidized additive effects according to VanRaden (2008; Add_2x). During kinship matrix 
development, the full model (Add+Non_4x) could only differentiate genotypes when minor allelic 
frequency (MAF) was set to 40%. Adjusting the data set for MAF of 40% reduced the number of markers 
to 176 SNPs. We first used this marker set to develop all three matrices. We used G-BLUP to compare 
the predictive ability of the three models using the kinship matrices as variance-covariance matrices to 
fit the compressed linear mixed model (Zhang et al 2010) and estimate genomic best linear unbiased 
predictors (G-BLUPs). The package GAPIT (Lipka et al 2012) was used in the G-BLUP prediction. Cross-
validation was done by setting 25% of the population to missing phenotypes to be used as a validation 
set. We used 1000 iterations to estimate the predictive ability of the three models for bulking traits 
(ATMW, AYP and WMT), late blight resistance (LB), virus resistance (PVY, PLRV and PVS), and total tuber 
weight per plant (TTWPL). Since not all genotypes were evaluated in all locations, we selected the 
locations with the lowest missing data per trait for model training.  

Results 

The summary of predictive ability based on the iterations is shown in Figure 1. In most cases, the 
pseudo-diploidized model (Add_2x) performed better than the other two models, Add_4x and 
Add+Non_4x, that considered dosage. We attributed this to the genotyping platform. Read depth is 
important in determining genotyping quality. Most commercially available service providers aim for low 
depth and many genotypes, and since most of these methods have originally been developed for 
diploids, calling dosage data for polyploids reduces genotype quality. Gemenet et al (unpublished) 
compared hexaploid sweetpotato data from DArTseq, which is the same platform as the one used in the 
current study, and data from a genotyping platform specifically optimized for hexaploid sweetpotato 
named GBSpoly (Wadl et al. 2018) using the same models. They obtained similar results in that a 
pseudo-diploidized additive model using data from DArTseq performed as well as using additive effects 
with dosage (Add_6x) from a high read depth genotyping platform, especially for traits with a simpler 
genetic architecture. However, they found that this was only true if using a low read depth platform. 
With a high read depth platform like GBSpoly, pseudo-diploidization significantly reduced predictive 
ability.   

The full model (Add+Non_4x) and the additive model with dosage (Add_4x) performed equally in this 
study with lower predictive ability than the pseudo-diploidized model (Add-2x). In the sweetpotato 
study, however, while this was true for simple traits, non-additive effects were important for more 
complex traits like yield. Endelman et al (2018) showed that not considering nonadditive effects in 
potato reduced prediction accuracy by about 0.13 on average. They registered predictive ability ranging 
from 0.06 to 0.63 for specific gravity, yield and fry color, and using data from the SolCAP potato SNP 
array. We attribute the contrast in the current result to the lower genotype quality data based on our 
genotyping platform.  

Given our data, we considered the pseudo-diploidized (Add_2x) model as the best model to carry out 
genomic prediction. While in the first step we could use only 176 markers to be able to partition the 
genetic effects into additive and non-additive types, this partitioning was not necessary once we 
decided to use the pseudo-diploidized model for our prediction. The reduction of MAF to 10% enabled 
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the increase of marker number in the relationship matrix to 1710 SNPs. Upon comparing with the initial 
matrix results, this matrix with more markers increased predictive ability for one of the tuber weight 
traits from 0.32 to 0.40, i.e. a 0.08 increase in predictive ability. This minimal increase in predictive 
ability was not surprising given that other studies have reported a plateau in the maximum number of 
markers required to achieve the best predictive ability, and addition of more markers after this number 
did not result in significant increase in predictive ability. For instance, Covarrubias-Pazaran et al (2018) 
using three biparental populations of the American cranberry showed that addition of markers after 500 
markers only resulted in a 0.01 increase in predictive ability. We used this matrix of 1710 SNP markers 
for the predictions for all traits in the following objectives.  

 

Figure 1. Model comparison showing predictive ability distribution from cross-validation iterations 
comparing pseudo-diploidized (Add_2x), tetraploid dosage additive (Add_4x) and tetraploid full model 
(Add+Non_4x). Traits include bulking (Bulk), late blight in Kunming(Yunnan) 2015 and 2016, potato leaf 
roll virus (PLRV), potato virus Y (PVY) and total tuber weight per plant (TTWPL). 

Activity 3.4. Apply multi-trait selection index using data generated in WP1.  

Breeders normally have to select for more than one trait in a given population or clone. The amount of 
progress made in the breeding program depends on the number of traits to be selected for and the 
genetic correlations among the traits (Thompson and Meyer 1986). Multi-trait analysis can also be 
applied in genomic selection, with the predictive ability of the multivariate models depending on the 
genetic and residual correlations among the traits considered (Covarrubias-Pazaran et al 2018).  
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Phenotypic data was collected on the TON panel for several traits in multiple locations. However, not all 
genotypes and not all traits could be evaluated in all the locations/seasons. For this objective, we used 
data from Peru where a maximum number of genotypes were evaluated for several traits per location. 
Late blight resistance was measured in Oxapampa in 2014, PVY and PLRV were measured in Lima during 
2018 and total tuber weight was measured in a drought resistance trial in Ica during 2016 and 2017. We 
used the total tuber weight trait data averaged across all drought treatments per season. We used 144 
genotypes for which data was available for all five traits as the training population. 

We used a two-step multi-trait analysis since the phenotypic data was collected in different locations 
and seasons. First, mixed models were applied to each experiment in each location and season 
separately assuming heterogeneity of variances and covariances among the environments as described 
in Objective 1. The BLUPs resulting from this were then used in multi-trait analysis. We used an index 
based on sum of ranks according to Mulamba and Mock (1978). To rank the genotypes, we first 
analyzed the correlations among BLUPs of individual traits as shown in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Genotypic correlations among trait BLUPs measured in 144 genotypes of a 380-genotype panel 
of advanced clones of potato. Traits: LB=late blight, PVY=potato virus Y, PLRV=potato leaf roll virus, 
TTW_.16 and .17= total tuber weight per plant in 2016 and 2017. ***=p<0.001, **=p<0.01, *=p<0.05. 

We observed that LB scores were positively associated with tuber weight traits, whereas PVY and PLRV 
were negatively associated with tuber traits. Ranking for LB and TTW was therefore done in a 
descending order while that for PVY and PLRV was done in an ascending order. The sum of ranks was 
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obtained from these rankings and used in genomic prediction using the selected pseudo-diploidized 
model. We then compared the predictive ability from the sum of ranks index to that of the individual 
traits. Results are summarized in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Box plots for predictive ability of a multi-trait index based on sum of ranks for five traits and 
those of individual traits. Trait abbreviations: LB_O_’14=late blight in Oxapampa in 2014, PLRV_L=potato 
leaf roll virus in Lima, PVY_L=potato virus Y in Lima, TTW_’16 and ‘17= total tuber weight per plant in Ica 
2016 and 2017. 

Our results show that the index based on sum of ranks (left-most boxplot) had the least predictive ability 
with an average of 0.15. We attribute our results to the low genetic correlation among traits measured 
as indicated by genotypic correlations. Multivariate analyses with mixed models to estimate the actual 
genetic correlations between pairs of traits will support this premise further. In our data, except for the 
tuber weight traits which were measured in one location for two seasons, all the other traits were 
measured in separate locations. The low genotypic correlations observed can therefore also be 
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attributed to the lack of positive genetic correlation among environments where different traits were 
expressed and measured. Covarrubias-Pazaran et al (2018) also reported no advantage of a multivariate 
prediction model when the genetic correlation of traits across environments was not significant. The 
results of this study illustrate the importance of the definition of target populations of environments for 
the success of multivariate predictive models.  

Predictive abilities based on individual traits were higher for late blight and PVY resistance than for PLRV 
or tuber weight. This is not surprising, given the genetic architecture and heritability known for each. 
The lower predictivity of TTW in 2016 versus 2017 is likely a factor of heterogeneity of the former years’ 
trial when conditions for field assessment of drought tolerance were just being established. 

 

Activity 3.5. Develop and apply performance prediction tools to support variety recommendation. 
Status: ongoing. 

We used a univariate (within-experiment) approach to carry out prediction for 29 traits grouped into 
bulking rate traits (Figure 4), disease traits (Figure 5) and tuber weigh traits (Figure 6), using the pseudo-
diploidized model developed in Activity 3.3. The 29 traits included similar traits measured in the TON 
panel across locations and/or seasons as described in Output 1. Training sets were composed of the 
genotypes with phenotypic data in each respective trial. The predictive abilities reported are from cross-
validation and prediction of the trait values for missing genotypes within each respective trial.    

Bulking traits 
We found predictive abilities ranging from 0.25 to 0.53 for the bulking traits. The predictive ability was 
the highest for the traits in Yunnan (Kunming) mainly because this location had a training set of 318 
genotypes while Lima and Holeta had 90 and 160 genotypes in the training sets, respectively. It is shown 
from genomic selection studies that the size of a training population contributes significantly to 
prediction accuracy (Nakaya and Isobe 2012). Although we see the effect of training population size, the 
effect of the environments can also be seen to affect predictive ability. Even though Holeta had almost 
twice the number of genotypes in the training set as Lima, Lima still had 0.07 better prediction ability 
than Holeta. The data shows that given a large enough training population, genomic prediction can be 
applied to select for early bulking traits. However, genetic correlations across environments need to be 
assessed in order to plan such a breeding scheme if targeting multiple environments. 
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Figure 4. Prediction ability for bulking traits using the pseudo-diploidized model based on the 
distribution of cross-validation iterations. Traits: ATMW=average tuber marketable weight AYP = 
average yield per plant. _H=Holeta, _L=Lima, _K=Yunnan(Kunming).  

 

 

Figu
re 
5. 
Pre
dicti
on 
abili
ty 
for 
dise
ase 
trait
s 
usin
g 
the 
pseudo-diploidized model based on the distribution of cross-validation iterations. Traits: LB=late blight, 
PLRV = potato leaf roll virus, PVS=potato virus S, PVY=potato virus Y. _H = Holeta, _O=Oxapampa, 
_Y=Yunnan(Kunming), _L=Lima. _’14=2014, _’15=2015, _’16=2016 and _’17=2017. 
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Disease traits 
Disease traits had the highest predictive ability ranging from 0.57 to 0.73, indicating the effect of genetic 
architecture and heritability of the traits on prediction accuracy. Late blight resistance had similar 
predictive ability in Oxapampa 2014, Yunnan (Kunming) 2015 and 2016, with the lowest predictive 
ability being registered in Holeta. The training population in Holeta for late blight was 58 in 2016 and 
125 in 2017 while those in Oxapampa and Yunnan (Kunming) were 214 and 309 respectively. PVY, PLRV 
and PVS had similar predictive abilities indicating that good success is expected to be made for these 
traits using genomic selection.  
 

Total tuber weight 
This category of traits had the lowest predictive ability across several locations. Predictive ability ranged 
from 0.12 to 0.56. We did not observe a variation in prediction accuracy due to drought tolerance 
treatments normal irrigation (NI), recovery (REC) and terminal drought (TD) in either location where this 
was measured i.e. Koga (ARA), Ethiopia and Ica (ICA), Peru, although we examined variations in 
prediction due to environment (locations or seasons). Predictive ability in Koga for NI and TD was 0.12, 
Lima 2016 was 0.23 for NI, REC and TD, whereas in Lima 2017, the accuracy was 0.56 for NI, REC, and TD. 
Predictive ability of Gansu (GNZ) and Heilongjiang (HLJ) was comparable to that of Lima 2016, at 0.22. 
Although Lima 2017 had the highest predictive ability at 0.56 for NI, REC and TD, using the adjustment 
across all three treatments resulted in a prediction accuracy of 0.38. Yield is a more complex trait and 
environment is expected to play a more important role in affecting prediction accuracy. Therefore, 
proper definition of target environments in terms of genetic correlations and multivariate prediction 
across environment is expected to improve prediction accuracy for this type of trait. 
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Figure 6. Prediction ability for total tuber weight per plant (TTWPL) using the pseudo-diploidized model 
based on the distribution of cross-validation iterations. ARA=Koga, GNZ=Gansu, HLJ=Heilongjiang, 
ICA=Ica. Avg=Average, NI=normal irrigation, REC=recovery, TD=terminal drought. _’16=2016, _’17=2017. 

Selection differential between BLUPs and GEBV 
In the current study, not all 380 genotypes could be evaluated in all locations or seasons, although all 
were genotyped. Genomic prediction came in handy in this case as we could predict the performance of 
the untested genotypes per location using the number of tested genotypes per trait as listed in Table 1. 
We used bulking traits in the current study to demonstrate the selection differentiation i.e. the 
difference between the mean of the base population (the training set in this case) and the mean of the 
selected fraction based on genomic estimated breeding value (GEBV) at 5% fraction as shown in Table 2. 
ATMW increased in the selected fraction by about 19.4 and 21.0g in Holeta and Lima respectively. AYP 
by 0.26 and 0.07 kg respectively, in Yunnan (Kunming) and Lima while WMT increased by 0.28 and 1.2 kg 
in Yunnan (Kunming) and Lima respectively. There was no negative selection differential indicating that 
progress can be made using GEBV as long as the factors affecting prediction accuracy are taken into 
account. Future multivariate analysis may further improve predictive ability and selection using genomic 
selection models combined with breeders’ definitions of target populations of environments.  
 

 



Annex 2. Donor report (GIZ-BMZ), March 2019. 
 
 

Page 10 of 11 
 

Table 1. Best Linear Unbiased Predictor means, training population size (TP) and mean predictive ability 
(PA) for the traits measured in the TON population across several locations and seasons. 

Group Trait Mean TP PA 
Bu

lk
in

g 
tr

ai
ts

 ATMW_H 65.8 159 0.25 
ATMW_L 124.1 89 0.41 
AYP_K 0.72 317 0.53 
AYP_L 0.42 89 0.32 
WMT_K 0.66 317 0.53 
WMT_L 0.32 89 0.33 

D
is

ea
se

 tr
ai

ts
 

LB_O2014 0.21 214 0.72 
LB_Y2015 0.43 293 0.73 
LB_Y2016 0.32 309 0.73 
LB_H2016 0.29 125 0.62 
LB_H2017 0.27 58 0.79 
PVY_L 0.35 334 0.6 
PLRV_L 0.35 334 0.6 
PVY_Y 0.57 253 0.57 
PLRV_Y 0.16 253 0.57 
PVS_Y 0.58 253 0.57 

To
ta

l t
ub

er
 w

ei
gh

t 

ICA_Avg_2016 0.46 269 0.15 
ICA_NI_2016 0.69 269 0.23 
ICA_REC_2016 0.45 269 0.23 
ICA_TD_2016 0.24 269 0.23 
ICA_NI_2017 0.42 256 0.56 
ICA_REC_2017 0.19 256 0.56 
ICA_TD_2017 0.16 256 0.56 
ICA_Avg_2017 0.26 256 0.38 
GNZ_TD 0.20 307 0.22 
HLJ_2016 0.5 300 0.22 
ARA_NI 0.24 96 0.12 
ARA_TD 0.55 96 0.12 
ARA_Avg 0.40 96 0.22 

H=Holeta, L=Lima, Y=Yunnan(Dehong), K=Yunnan(Kunming), ICA=Ica, GNZ=Gansu, ARA=Koga 
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Accelerating the Development of Early-Maturing-Agile Potato for 

Food Security through a Trait Observation and Discovery Network 

Final Technical Report: Max Planck Institute of Molecular Plant Physiology (MPI-MP) 

PI Karin Köhl 

3. Major Research Findings 

Highlight important achievements: technologies and products developed and new or improved research 

methodologies. What has been done to overcome limitations or unexpected problems? Detailed research 

reports should be added in the form of annexes. 

 

Output 1 Activity 1.1. Extend and adapt phenotyping protocols for key adaptive traits 

WP 7 Development of low-tech methods for marker quantification (ongoing) 

Characterization of yield and drought tolerance in potato populations 

The basis for the identification and validation of phenotypic markers for drought tolerance in 

potato were two potato populations, which were characterized for yield potential and drought 

tolerance in container (pot, bigbag) and field trials (Design see supplemental material Table 1 

and Table 2). The first population (A) contained 60 lines from a cross between one sensitive 

and two tolerant potato cultivars, the three parent cultivars and a check cultivar. Their drought 

tolerance was determined in 13 trials in 2014 to 2016 by the VALDIS TROST consortium (Haas 

et al. submitted 2018). The second population (B) contained 14 genotypes from population A 

and seven German cultivars, for which drought tolerance had been characterized previously 

(http://dx.doi.org/10.1071/FP15013). This population was subjected to three different drought 

stress patterns (early, late, and repeated) in container and field trials at the MPI-MP in 2017 and 

2018 (see supplemental material Figure 1). The response variable for the drought stress 

experiments was starch yield, which was calculated from the mass and the starch content of 

harvested tubers. Analysis of variance (ANOVA) showed a significant effect of the drought 
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stress treatment on starch yield in all experiment. Significant effects of genotype and genotype 

× treatment on starch yield in both populations and both test systems (container, field) indicated 

that both populations contained genetic variance for drought tolerance and were thus suitable 

for marker identification. The drought tolerance index DRYM (see Figure 1) was calculated as 

the deviation of the relative starch yield from the experimental median of the relative starch yield 

of all genotypes (DRYM) (http://dx.doi.org/10.1071/FP15013),  or of the parent genotypes 

(DRYMp) (Haas et al submitted 2018). 

Identification of marker candidates by laser-scanner measurements 

Analysis of laser-scanner data 

Two PlantEye infrared laser-scanner systems (Phenospex; NL) mounted on an automobile 

Fieldscan platform were used to phenotype shoot development in four bigbag trials that were 

performed in the screenhouse of the MPI-MP between 2015 and 2018 (see supplemental 

material Figure 2). The laser-scanner system and the infrared-thermometry system (see 

‘Identification of marker candidates by infrared thermometry’) yielded large data volumes in the 

range of several Terabyte. The handling of these vast amounts required the setup of a script-

based data analysis workflow that handled the exchange of the data between the storage 

database, the joining with metadata and environmental data, quality control and data analysis 

(see Figure 3). This workflow was programmed in SAS. 

For each plant, the laser scanner yielded eight surface images per day (see supplemental 

material Figure 4 A), which were used to calculate the features plant height (PH, Figure 4 B, C) 

3d surface area (A3D), projected surface area (A2D, Figure 4 D), leaf angle (LA), leaf 

inclination (LI) and plant volume (PV). These features were significantly affected by genotype, 

treatment and time (ANCOVA Analysis). The time effect resulted from the processes leaf 

movement, shoot growth and shoot lodging. Leaf movement results in a diurnal oscillation of 

plant height (Figure 4 B), surface area (not shown) and leaf angle (Figure 5 C). Growth results 

in a saturation curve, when the daily median of height or surface area were plotted against the 

time after planting (Figure 4 C, D). At a genotype- and treatment-dependent age, plant height 

decreased because of shoot lodging and intermingling of neighboring plants (see Figure 2). We 

included quality control and filtering algorithms in the evaluation workflow (see Figure 3) to 

identify valid observations. Subsequently, growth curves for plant height and leaf area were 

parameterized by calculating mean and maximum parameter values, initial linear growth rate by 

linear regression and polynomial regression, and the parameters maximum (max), growth rate k 
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and time of half-maximum (tm)  from logistic regression curves (Figure 4 E). Those parameters 

associated with maximum height and leaf area were most significantly affected by genotype, 

treatment and their interaction in both populations A (2015, 2016) and B (2017). Growth rate k 

and tm were less consistently affected by treatment and genotype × treatment interaction. 

The diurnal leaf movement was studied by analyzing the effect of treatment, genotype, plant 

age and time of the day on leaf angle. The leaf angle is defined as the angle between the leaf 

plane and the horizontal (see Figure 5 A). Low values indicate almost horizontal leaves, high 

values erect leaves. A general analysis of variance based on the daily median of the leaf angle 

and its daily variance yielded weak treatment effects, which were inconsistent between years. 

The correlation between mean or standard deviation of a genotype’s leaf angle and its drought 

tolerance index was not significant. The leaf angle changed significantly with the diurnal cycle 

(see Figure 5 B, C). A closer analysis of effect of the time of day on the leaf angle showed a 

significant treatment effect on the location of minimum and maximum values of the leaf angle in 

the diurnal cycle. In both, 2015 and 2016, optimally watered plant changed from an erect leaf 

position during the night to a low angle during the day (Figure 5 D, F). Stressed plants 

maintained an erect leaf position throughout the diurnal cycle, with the highest percentage of 

plants with leaves in the maximum position at the end of the day. The largest treatment effect on 

leaf angle was therefore found in the afternoon (interval 4PM and 5DK in Figure 5 D, F). 

Additionally, plant age affects the effect of the diurnal cycle on leaf angle ((Figure 5 E). Water 

supply, time of day and plant age thus have to be taken into account when determining the 

optimal conditions for leaf angle measurements. 

Relationship between laser-scanner derived parameters and drought tolerance 

After quality control and descriptive data analysis, we studied the relationship between 

descriptive statistics of features (e.g. maximum plant height) or derived growth curve 

parameters (e.g. growth rate of leaf area) observed on optimally watered and drought-stressed 

plants and drought tolerance to elucidate, which features may yield phenotypic markers. We 

started by using the drought tolerance index DRYM calculated from the starch yield data of the 

same experiment, in which the phenotypic measurements were done. To find out, whether 

these results can be generalized, we analyzed the relationship between of phenotypic data from 

a single experiment and the DRYMp values based on yield data from several experiments in the 

same test environment (bigbag in screenhouse) or different test system (pot in screenhouse, 

soil on field).  
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We tested the relationship between features or derived parameters and drought tolerance 

measured in the same experiment by ridge regression on single values of features (e.g. plant 

height) and by Pearson and Spearman (rank) correlation analysis and multiple regression 

analysis on descriptive statistics (mean, range, maximum) and regression parameters from 

linear and polynomial regression of features on plant age. The ridge-regression based approach 

was abandoned as it did not yield reproducible or interpretable results. Pearson correlation 

analysis (see Table 3) revealed a negative correlation between the maximum, the initial slope 

and the linear term of the polynomial regression of plant height on plant age in both populations 

and under optimal as well as reduced water supply. Slow initial internode growth and reduced 

final plant height thus seem to be associated with increased drought tolerance. In contrast, there 

was a positive relationship between the initial slope of the linear regression of leaf area on age, 

suggesting that drought tolerant genotypes develop a closed leaf canopy more rapidly than 

sensitive genotypes. 

Subsequently, we tested the relationship between the parameters from the logistic regression of 

plant height and area 2d on plant age (see above) and drought tolerance estimated from 

multiple experiments by Spearman regression analysis (see Table 4). For population A, drought 

tolerance was estimated from bigbag, pot and field experiments. The most significant and 

reproducible correlations with drought tolerance were found for the estimated maximum of plant 

height under stress and control conditions, which correlated negatively with drought tolerance, 

and the maximum leaf area under stress conditions, which correlated significantly positively. 

Likewise, we found a positive correlation between half-maximum time (tm) and initial slope of 

leaf area development under stress and drought tolerance in bigbag experiments, suggesting an 

association between rapid canopy development under stress and drought tolerance. Comparing 

the correlations for DRYMp values from different test systems revealed that the closest 

correlations were obtained when phenotyping and tolerance determination were performed in 

the same test system. This means that the system has to be validated in the target environment. 

The analysis of the leaf angle data in population A had shown a strong diurnal effect, an 

interaction between diurnal effect and treatment as well as an age effect. Spearman correlation 

analysis of mean leaf angles in different time intervals revealed a significant positive correlation 

between leaf angle during the early night and drought tolerance index DRYMp from bigbag trials 

(Table 5). However, a more detailed analysis (Table 6) revealed a strong effect of age and 

water supply on this correlation. In contrast, the negative correlation between leaf angle in the 
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intervals 1LN and 2DW were less affected by plant age. Leaf angles measured pre-dawn may 

thus yield a suitable marker for drought tolerance. 

The ongoing analysis of the data for population B will show whether the results can be used in 

genetically different population. 

Identification of marker candidates by infrared thermometry 

In 2017 and 2018, canopy surface temperature was monitored continuously by 16 infrared 

thermosensors ((IR120, Campbell) that were mounted on the Fieldscan platform. The 

temperature data were linked to the plant metadata from the PlantEye dataset based on the 

time stamp (see Figure 3). In addition, the data were joined with the micrometeorological 

parameter (air and soil temperature, soil and air humidity, light intensity, wind speed) from the 

screenhouse weather station. From these data, we calculated the canopy temperature 

depression (CTD) as the difference between canopy surface temperature and the air 

temperature. CTD has been suggested as a marker for drought tolerance in various crops 

(10.3389/fphys.2012.00429), as it is linked to transpiration rate and thus photosynthesis. CTD is 

known to be affected by water status, but also by micrometeorological conditions, the diurnal 

cycle and the developmental stage of the plant.  

The analysis of the 2017 data had revealed a significant correlation between CTD measured in 

drought-stressed plants and the drought tolerance determined in the 2017 bigbag experiment. 

During the analysis of the 2018 data, we detected an error in the analysis workflow that failed to 

take the different time systems of the two phenotyping systems (UTC and CEST) into account. 

A reanalysis of the 2017 thermography data is thus paramount before any further statements 

can be made. 

Practicable methods for marker assessment in the target environment 

There are two general approaches to employ phenotypic markers for drought tolerance 

breeding in the target environment: development of simple markers from automatic phenotyping 

and introduction of automatic phenotyping to the target environment. This project initially 

followed the first approach and aimed to use automatic phenotyping to identify markers that 

could be quantified with simple techniques. One example could be leaf temperature 

measurements by cheap handheld infra-red thermometers, used by breeders or farmers in 

participatory breeding programs. The fast readout allows on-site tagging of plants with low leaf 

temperatures as potentially drought tolerant genotypes, thus removing the need for extensive 
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data management. The critical aspect is the method validation with respect to the diurnal cycle, 

plant development and meteorological conditions, which still needs to be done in the target 

environment. 

The second approach, introduction of automatic phenotyping to the target environment, became 

more feasible in the last years, as the prices for both drones as carrier devices and sensors 

decreased substantially. Presently, the bottleneck is the data evaluation, as it requires 

sophisticated image analysis and data management technologies and high performance 

computers. The growing number of publications on analysis techniques 

(https://doi.org/10.1186/s13007-015-0072-8) will alleviate the first obstacle. The second problem 

could be addressed by making high performance computers accessible to scientists in the 

target environments through international collaborations or funding schemes. 

 WP 8 Dissemination of methods in Ethiopia (cancelled) 

The testing of marker assessment by simple methods in field trials in Ethiopia and their 

dissemination among Ethiopian breeders had to be cancelled as a consequence of severe 

delays in the PhD work of  G. Mulugeta Aneley’s PhD (see below; 6.2 Capacity building).  

WP9 Final data evaluation and manuscript writing  

The final data evaluation will most likely not be finished at the end of the PhD work. Karin Köhl 

has started do additional data analysis. She will continue this work to write a manuscript for a 

peer-reviewed journal in 2019. 

4. Assessment of Research Findings 

The use of phenotypic markers by breeders in the target environment requires validation in field trials in 

Ethiopia. 

5. Knowledge Sharing 

Describe what has been done and what still needs to be done to ensure that the research findings 

(products and research methodologies) will be used and/or further developed by the various users 

groups.  

Name (and, if possible, quantify by gender-differentiated figures) recipients to whom the research 

findings have already been transferred. Specify which partnership arrangements were created for 

participatory research and achieving impact on the ground. 
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1.1. Research institutes (IARC, NARS) 
1.2. Development partners like extension and training institutions, farmers, agribusiness, 

policy makers.  
 

6. Training  

6.1. Training on the technical level 

Training of breeders and field staff in the target environment was to be done as part of the field 

experiment in Ethiopia, which had to be cancelled (see 6.2. Problems). 

6.2 Capacity development on the academic level  

Workshop at the Max Planck-Institute of Molecular Plant Physiology 

A ‘Workshop on modern genomics for crop improvement and phenotyping’ was organized by Hannele 

Lindqvist-Kreuze and Karin Köhl in December 2015. Five female and nine male participants from China 

and Ethiopia registered for the event. Teaching was done by five female and four male researchers. 

Achievements by PhD student Gedif Mulugeta Aneley 

 Participation in two drought tolerance trials with potato breeding lines and cultivars 

(population A) in 2016. Conduction of four drought tolerance trials with potato breeding 

lines and cultivars in the screenhouse and field in 2017 and 2018, assisted by the plant 

cultivation staff and Manuela Haas (2017).  

 Assisted setup and operation of the laser scanner phenotyping system in the 

screenhouse trial 2017. Independent setup and operation of laser scanner system in 

screenhouse trial 2018. 

 Evaluation of yield and drought tolerance data from trials 2017 and 2018 trials. 

 Setup of an infrared thermometry system in the screenhouse trial in 2017, monitoring of 

measurements in 2017 and 2018. 

 Establishment of a data evaluation workflow for laser scanner and thermometry data: 

data retrieval from database system, quality control, join with metadata (genotype and 

treatment data, meteorological information). 



GIZ Project No. 14.1432.5-001 .00 / CIP PROJECT ID 1240-GIZ0 status report Jan 2019 

 

8 
 

 Data analysis to identify markers for the prediction of drought tolerance: analysis of 

variance, correlation analysis, multiple regression analysis 

 Preparation and presentation of two progress seminars (institute-wide seminar for PhD 

students and postdocs) 2017 and 2018. Tuition on presentation techniques. 

 Preparation of two reports for the PhD advisory committee (PAC). (see 10.1). Meeting 

with the PAC on 4.8.17, 5.10.18 and 30.11.2018.  

 Tuition on scientific writing. Attendance on scientific writing course in December 2018. 

 Preparation of contribution (abstract, poster) to Integrated Plant and Algal Phenomics 

Meeting (Prag, 26 – 29th August). Tuition on abstract writing and poster presentation 

techniques. 

 Attendance on conferences and workshops: Phenotyping summer school Wageningen 

(July 2016), Plant Phenotyping Workshop (November 2017), Integrated Plant and Algal 

Phenomics Meeting (Prag, August 2018) 

 Attendance to weekly progress seminar and institute’s seminar (external speakers) 

obligatory for the third year of the PhD. 

 G. Mulugeta Aneley will have to fulfill his teaching obligations as a PhD student at the 

University of Potsdam by working as a teaching assistant in a practical course in 2019 

before submitting his thesis. 

Problems 

The preparation of the progress report and thus the decision of the PAC regarding the extension 

of the time allowed for the PhD was delayed by four months to the 30.11.2018. In consequence, 

the field trial in Ethiopia was cancelled, as there are reasons to belief that G. Mulugeta Aneley 

will not manage to do both, conduct the trial in Ethiopia and write his thesis. As he has 

considerable difficulties to summarize his results in writing and to link his results to published 

work, he will have to concentrate on writing the thesis in the last months of his PhD. The PAC 

advised a four months extension of the PhD period to 31.05.2019. These five months will be 

funded by the Karin Köhl’s institute funds. If he submits during this time, he will receive 

additional three months extension to write a manuscript for a peer-reviewed journal and prepare 

a method description for breeders. If he does not submit, the grant will end on 31.05.2019 and 
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he would have to finish the writing of the thesis in Ethiopia. He will get supervision during writing 

until 31.05.2020. 

Gender-aspect 

The PhD student is male. 50 % of the PhD students at the MPI-MP are female. The PhD 

student was part of a scientific team of two women and one man. His university supervisor is 

male, his group leader female. The PAC consisted of two men and one women. The supervisor 

of the IMPRS PhD school is female.  

7. Lessons Learned 

The main problem of the project resulted from the delayed start of the PhD project, which began 

13 months after the start of the main project. This was due to the delays in signing the contracts, 

long waiting times for VISA and the cancellation of the first PhD student shortly before she was 

to start in Golm. The situation was aggravated by a serious illness of the second PhD student. 

Thus, half of the project was over before the main work of the PhD student started. The PhD 

project was therefore under constant time pressure. The situation was made worse by the 

student’s lower degree of training with respect to self-organization, project presentation and 

reporting compared to a typical PhD student at the institute. This required more time for the 

training. The main conclusion for the future is that a PhD project with an extensive training 

aspect must not begin later than six months after the start of a project. 

As the student’s professional and personal life depends on the successful submission and 

defense of the thesis, the final months of the project now had to concentrate on this goal at the 

expense of producing outputs for the technical aims and the dissemination of the results. He will 

receive funds for additional five months from the MPI to cover the expense for the final months 

of his official PhD time.  

8. Outlook Future Research and Development Pathway 

It is highly likely that the data evaluation will be incomplete by the end of the PhD period. If the 

student manages to increase his efficiency and submit his thesis within the time allowed by the 

MPI, the Karin Köhl will invest additional money from her institute budget to grant the student 

money for additional time to finalize the evaluation, produce a manuscript and engage in 

dissemination activities. Otherwise, Karin Köhl will continue the data evaluation and write a 

manuscript on the results. The phenotyping method should be validated in the target 
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environments in Africa. This requires a new project in collaboration with the CIP and its partners 

in Africa. 

9. Summary 

Aim of the project was the development of phenotypic markers for drought-tolerance selection in 

breeding. The basis for the identification and validation of phenotypic markers were two potato 

populations, which were characterized for yield potential and drought tolerance in container (pot, 

bigbag) and field trials. Laser-scanners and infrared sensors mounted on an automobile 

scanning device were used to phenotype shoots continuously. A script-based evaluation 

workflow was established to analyze the vast amount of data. As a result of severe delays due 

to late start, illness and technical problems, data analysis is still ongoing. Preliminary results 

indicate that maximum plant height and leaf area, pre-dawn leaf angle and potentially canopy 

temperature depression may be suitable drought tolerance markers in potato. Marker validation 

in the target environment has to be done in a subsequent project. 

10.  Publication, papers, reports and other Media 

10.1  Peer-reviewed articles in periodicals (give DOI number) 

none 

10.2 Conference presentations and other documents:  

Talk by Karin Köhl and coauthors: Integrated Plant and Algal Phenomics Meeting (Prag, August 

2018, ~100 attendance); EAPR/EUCARPIA Joint Meeting (Rostock, December 2018, ~ 100 

attendance) 

Poster by Gedif Mulugeta Aneley (Integrated Plant and Algal Phenomics Meeting (Prag, August 

2018, ~100 attendance) 

10.3 Thesis  

none 

10.4 (Hand-) Books (hardcover/paperbacks) 

none 

10.5 Other media (like websites, video-clips etc.)  
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PhD advisory committee 1st report (submitted 6.7.2017) 

PhD advisory committee 2nd report (final version submitted 5.11 2018) 

List and categorize here all relevant documents, which are still under review or are planned to be 

published later on: 

10.1 Articles / journals  

Aneley, G; Haas, M; Köhl,K; Prediction of drought tolerance in potato from shoot phenotyping. 

To be submitted 2019/20 to Functional Plant Biology 

10.2 Conference presentations and other documents 

Talk by Karin Köhl and coauthors: GRC – Applied Bioinformatics for Crops (Gatersleben, March 

2019); 

Presentation Keystone meeting on Climate Change and Plant Resilience (Hannover; may 2019) 

Presentation Botanikertag 2019 (Rostock, September 2019) 

10.3 Thesis  

Gedif Mulugeta Aneley, Identification and validation of phenotypic markers for the prediction of 

drought tolerance in Solanum tuberosum. To be submitted in May 2019 

10.4 (Hand-) Books (hardcover/paperbacks) 

none 

10.5 Other media (like websites, video-clips etc.)  

Submission of manual marker assessment method to public repository after acceptance of manuscript. 

Submission of original data to FAIR data repository. 
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Supplemental material 

Table 1. Design of VALDIS TROST experiments on population A. Experiments, in which automatic phenotyping was performed, 
are highlighted in blue. Culture  = experiment reference Id in the MPI database limsdb2( http://dx.doi.org/10.1186/1746-4811-4-
11). T= number of treatment levels: 1 optimal, 2 optimal and drought stress treatment, 3 optimal (50% field capacity), reduced 
irrigation (30% field capacity) and drought stress. n = number of replicate plots or pots per treatment. pl = number of plants per 
replicate. Number of lines without parent lines (3 lines). Start date = date of planting into final pot size or field.  End date = date 
of shoot destruction. Further information on the locations see http://dx.doi.org/10.1071/FP15013. 

1  

Table 2. Design of experiments on population B. Experiments, in which automatic phenotyping was performed, are highlighted 
in blue. Culture  = experiment reference Id in the MPI database limsdb2( http://dx.doi.org/10.1186/1746-4811-4-11). T= number 
of treatment levels. n = number of replicate plots or pots per treatment. pl = number of plants per replicate. Number of lines 
without parent lines (3 lines). Start date = date of planting into final pot size or field.  End date = date of shoot destruction.  

Trialtype 
Trial-
Id Culture Location T repl pl 

Number 
of lines 

Start 
date End date 

bigbag P2017 81251 Golm FGH 4 7  1  21 11.4.2017 21.7.2017 

bigbag P2018 85178 Golm FGH 4  7 1  20 17.4.2018 09.7.2018 

field F2017 81256 Golm Field 4  2 5  21 24.4.2017 14.8.2017 

field F2018 85442 Golm Field 4  2 5  21 02.5.2018 02.8.2018 
 

  

Trialtype Trial-Id Culture Location T repl pl
Number 
of lines Start date End date

bigbag P2 67199 Golm FGH 2 3 1 227 16.04.2014 17.07.2014
pot P3 68015 JKI Shelter 2 1 2 195 15.05.2014 01.08.2014
bigbag P4 72247 Golm FGH 2 2 3 60 09.04.2015 19.07.2015
pot P5 72292 JKI Shelter 2 4 2 60 12.05.2015 10.08.2015
bigbag P6 76240 Golm FGH 2 5 1 60 14.04.2016 17.07.2016
pot P7 76354 JKI Shelter 2 4 2 60 09.05.2016 11.08.2016
field F1 67516 Golm Field 2 1 5 197 22.04.2014 28.08.2014
field F2 67518 Groß Lüsewitz 2 1 2 191 28.04.2014 27.08.2014
field F3 72275 Golm Field 2 3 5 60 22.04.2015 17.08.2015
field F4 72396 Groß Lüsewitz 2 2 6 60 28.04.2015 04.09.2015
field F5 72482 Dethlingen 3 2 16 60 20.04.2015 31.08.2015
field F6 76219 Golm Field 2 3 8 60 21.04.2016 09.08.2016
field F7 76529 Groß Lüsewitz 2 2 6 60 02.05.2016 10.08.2016
field F8 76528 Dethlingen 3 2 16 60 19.04.2016 01.09.2016
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Table 3. Correlation between phenotypic features and drought tolerance. Pearson correlation coefficient between estimated 
parameters for the laser-scanner derived features plant height, leaf area 2d and leaf angle measured on control (c) and stress (s) 
plants in bigbag experiments 2017 (population B) or 2016 and 2015 (population A) and the drought tolerance index DRYM 
estimated from the same experiment. Range = difference between minimum and maximum, slope = average slope of a linear 
regression of the daily mean against plant age for the initial growth period, maximum = average maximum of the genotype, 
poly linear = linear regression coefficient of a polynomial regression of the parameter on plant age, poly quad = quadratic 
regression coefficient of the polynomial regression. Values printed in bold are significant (α = 0,05) 

 

  

2017
c

2017
s

2016
c

2016
s

2015
c

2015
s

Range
Plant height 0,04 -0,03 -0,09 0,04 0,09 -0,12

Leaf area 2D 0,07 0,03 0,09 -0,14 0,25 0,11

Leaf angle 0,05 -0,12 -0,15 -0,14 -0,16 -0,04

Slope
Plant height -0,46 -0,41 -0,16 0,16 -0,12 0,07

Leaf area 2D 0,14 0,03 0,16 0,21 0,38 0,49

Leaf angle -0,32 -0,09 -0,05 -0,03 -0,22 -0,27

Maximum
Plant height -0,45 -0,52 0,08 -0,26 -0,23 -0,21

Leaf area 2D -0,48 -0,6 -0,08 -0,06 0,22 0,19

Leaf angle 0,52 0,25 -0,15 -0,05 0,08 -0,08

Poly linear
Plant height -0,46 -0,45 -0,08 -0,24 -0,23 -0,18

Leaf area 2D 0,22 0,2 -0,23 -0,36 0,24 0,16

Poly quad
Plant height 0,44 0,42 -0,02 0,2 0,22 0,17

Leaf area 2D -0,16 -0,06 0,21 0,32 -0,2 -0,11
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Table 4. Correlation between parameter estimates and drought tolerance in test systems bigbag, field and pot. Spearman 
correlation coefficient for correlation between parameters estimated from logistic regression of features area 2d and plant 
height estimated in experiment 2015 or 2016 under stress or control conditions in bigbag experiments and drought tolerance 
index DRYMp estimated from bigbag, field and pot experiments of project VALDIS Trost (see table 1). 

 

  

Phenotype stress Phenotype control

Feature
Para-
meter bigbag field pot bigbag field pot

Area 2d, 2015 tm 0,28 -0,03 0,25 -0,01 -0,13 -0,06
Area 2d, 2016 tm 0,54 0,02 0,34 0,20 -0,04 0,13
Height, 2015 tm 0,09 0,08 0,14 0,19 0,09 0,21
Height, 2016 tm 0,02 -0,19 -0,08 -0,21 -0,31 -0,13
Area 2d, 2015 max 0,24 0,25 0,09 0,02 0,10 0,00
Area 2d, 2016 max 0,34 0,20 0,10 -0,16 -0,04 -0,06
Height, 2015 max -0,24 -0,06 0,03 -0,07 -0,03 0,17
Height, 2016 max -0,32 -0,14 -0,02 -0,39 -0,12 -0,21
Area 2d, 2015 k -0,37 -0,02 -0,08 -0,08 0,15 0,20
Area 2d, 2016 k -0,02 -0,02 0,09 -0,08 -0,07 0,13
Height, 2015 k 0,27 0,09 -0,02 -0,20 0,18 -0,13
Height, 2016 k 0,34 -0,01 0,19 0,28 0,19 0,25
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Table 5.  Correlation between leaf angle and drought tolerance of genotypes of population A. Spearman correlation 
coefficient for the correlation between the drought tolerance index DRYMp (measured in bigbag experiments) and the mean leaf 
angle in different time intervals of the day in the screenhouse experiments 2015 and 2016. Time intervals 1LN (0:30 – 4:30 
CEST), 2DW (4:30 – 8:30), 3AM (8:30 – 12:30), 4PM (12:30 – 16:30), 5DK (16:30 – 20:30), 6EN (20:30 – 0:30). Sunrise approx. 
5:15 CEST, Sunset 21:00 (CEST). 

Class 
(time) 

Treatment 2015 2016 

1LN C -0,198 0,058 
1LN S -0,061 0,188 
2DW C -0,218 -0,016 
2DW S 0,022 0,044 
3AM C -0,122 -0,200 
3AM S 0,174 -0,286 
4PM C -0,150 -0,139 
4PM S 0,226 -0,069 
5DK C 0,157 0,053 
5DK S 0,492 -0,031 
6EN C 0,152 0,297 
6EN S 0,364 0,259 
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Table 6 Spearman correlation coefficient for correlation between mean leaf angle in time interval (class(time) and age interval 
(class(age)) in experiment 2015 and 2016 and drought tolerance (mdrymp), starch yield under stress (msy_norm_str) and 
control (msy_norm_ctrl) conditions in bigbag trials. Definition of time intervals see Table 5, age intervals see Figure 5. 
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Figure 1 Drought stress experiments and drought tolerance of population B. Upper panel: soil moisture content in % of field 
capacity against date for the treatments control (cc), early stress (sc), late stress (cs) and repeated stress (ss) in 2017 (left) and 
2018 (right). Middle panel: Mean drought tolerance index for genotypes from population B, calculated from starch yield data 
obtained in treatments cs, sc and ss relative to treatment cc in screenhouse experiment 2017 (left) and 2018 (right). Lower 
panel: Mean drought tolerance index for genotypes from population B, calculated from starch yield data obtained in treatments 
cs, sc and ss relative to treatment cc in field experiments 2017 (left) and 2018 (right). 
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Figure 2. Automatic phenotyping on potato genotypes subjected to drought stress in a screenhouse experiment at the MPI-
MP, Potsdam-Golm. A and B: optimally watered (left) and drought stressed plants (right) of population A before (A) and after (B) 
onset of shoot lodging. C: optimally watered (left) and drought stressed (right) plants of population B with phenotyping device 
(2017). D Fieldscan with thermosensors (bracket) and PlantEye laserscanner (2018). 
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Figure 3. Data analysis workflow for laser-scanner and infrared-thermometry data. 
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Figure 4 . Illustration of raw data and data evaluation of PlantEye laser scanner data. A Scanner image of plant A-1:4 2017 B 
Plant height of 6 independent control and stress plants of genotype 22497 against measurement time, C, D daily median of plant 
height (C) and  leaf area 2d (D)against plant age, 2016. Notice decrease of values in control plants when age > 46 days. E  
Example of logistic regression on daily median of plant height with confidence interval and estimated regression parameters 
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Figure 5. Effect of treatment, diurnal cycle and age on leaf angle. A Illustration of low (10 °C) and high (30 °C) leaf angle. Leaf 
light green, stem dark green, horizontal blue line. B Leaf angle of cultivar 22497 depicted against plant age for control (blue) and 
stressed (red) plants; experiment 2016. C Zoom in on day 30 to 35 of B. D Effect of treatment and 4 h time intervals of the 
diurnal cycle on mean leaf angle of all cultivars under control (blue) and stress treatment in 2016. Different letters indicate 
significant differences between treatment means (REGWQ-Test, alpha = 0.05). 1LN = late night, 2DW dawn, 3AM morning, 4PM 
afternoon, 5DK dusk, 6EN early night. E Effect of plant age class (days after planting) on mean leaf angle in different time 
intervals of the day in stress treated plants in experiment 2016. F Same as figure D for experiment 2015 

 


