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DESIGNING INDEX BASED LIVESTOCK INSURANCE FOR MANAGING ASSET 

RISK IN NORTHERN KENYA  

 

Abstract 

This paper describes a novel effort at developing index-based insurance for location-
averaged livestock mortality as a means to fill an important void in the risk management 
instruments available to protect the main asset of pastoralists in the arid and semi-arid 
lands of Kenya, where insurance markets are effectively absent and uninsured risk 
exposure is a main cause of the existence of poverty traps. We describe the detailed 
methodology in designing such insurance contract with the underlying index uniquely 
constructed off explicit statistical predictions established using longitudinal observations 
of household-level herd mortality, fit to high quality, objectively verifiable remotely 
sensed vegetation data not manipulable by either party to the contract and available at 
low cost and in near-real time. The resulting index performs very well out of sample, 
both when tested against other complementing household-level herd mortality data from 
the same region and period and when compared qualitatively with community level 
drought experiences over the past 27 years. We describe contract pricing and potential 
risk exposures of the underwriter using a rich time series of satellite-based vegetation 
data available from 1982-present. And finally, implementation opportunities and 
challenges are discussed to spur the product’s pilot potential.  
 

 

Keywords: Drought risk management, index insurance, Kenya, livestock insurance, 
livestock mortality, pastoralists, vegetation index, weather derivatives 

 
 
 
1. Introduction 
 
Uninsured risk has long been recognized as a serious obstacle to poverty reduction in 
poor agrarian nations. In order to limit risk exposure, risk averse poor households often 
select low-risk, low-return asset and activity portfolios that trade off growth potential and 
expected current income for a lower likelihood of catastrophic outcomes (Eswaran and 
Kotwal 1989, 1990; Rosenzweig and Binswanger 1993; Morduch 1995; Zimmerman and 
Carter 2003; Dercon 2005; Carter and Barrett 2006; Elbers et al. 2007). Furthermore, 
because risk exposure leaves lenders vulnerable to default by borrowers, uninsured risk 
commonly limits access to credit, especially for the poor who lack collateral to guarantee 
loan repayment. And if an asset used to secure the loan is itself at risk, lack of insurance 
can even compromise the opportunities afforded through collateral. The combination of 
conservative portfolio choice induced by risk aversion and credit market exclusion due to 
uninsured default and asset risk helps to perpetuate poverty.  
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 Rural populations in low-income countries commonly face much uninsured risk 
because covariate risk, asymmetric information, and high transaction costs preclude the 
emergence of formal insurance markets. Covariate risk is a major cause of insurance 
market failures in low-income countries as spatially-correlated catastrophic losses can 
easily exceed the reserves of an insurer, leaving policyholders unprotected (Besley 1995). 
Such covariate risk exposure explains why crop insurance policies are generally available 
only where governments take on much of the catastrophic risk exposure faced by insurers 
(Binswanger and Rosenzweig 1986; Miranda and Glauber 1997). Meanwhile, familiar 
asymmetric information problems – adverse selection and moral hazard – pose a serious 
challenge to commercial insurance provision. Finally, the transaction costs of contracting 
and claims verification are much higher in rural areas than in cities due to limited 
transportation, communications and legal infrastructure. While informal insurance 
through social networks can address many of the asymmetric information and 
transactions costs problems, these too are typically overwhelmed by covariate risk. The 
end result is widespread insurance market failure.  

Index insurance based on cumulative rainfall, cumulative temperature, area 
average yield, area livestock mortality, and related indices have recently been developed 
to try to address otherwise-uninsured losses caused by various natural perils in low-
income countries (Recently reviewed by Skees and Collier 2008; Barrett et al. 2008; 
Alderman and Haque 2007). Unlike traditional insurance, which makes indemnity 
payments to compensate for individual losses, index insurance makes payments based on 
realizations of an underlying – transparent and objectively measured – index (e.g. amount 
of rainfall or cumulative temperature over a season, or area-average livestock mortality) 
that is strongly associated with insurable loss.  

An index insurance contract has three main components. First, it requires a well-
defined index and an associated strike level that triggers an insurance payout.  The index 
must be highly correlated with the aggregate loss being insured, and based on data 
sources not easily manipulated by either the insured or the insurer, and with adequate, 
reliable historical data to estimate the probability distribution of the index for proper 
pricing and risk exposure analysis. Second, it requires well-defined spatiotemporal 
coverage with premium pricing specific to that place and period. Third, the contract 
requires a clear payout timing and structure to all covered clients conditional on the index 
reaching the contractually specified strike level.  

 The benefits to such a contract design are several and especially appropriate to 
rural areas of developing countries where covariate risk, asymmetric information and 
high transactions costs render conventional insurance commercially unviable. By 
construction, the index captures covariate risk since it reflects the average (e.g., yield, 
mortality) or shared (e.g., rainfall, temperature) experience of the insurable population. If 
this covariate risk can be reinsured or securitized, locally-covariate risk can be transferred 
into a broader (international) risk pool where it is weakly or uncorrelated with the returns 
to other financial assets (Hommel and Ritter 2005; Froot 1999). Furthermore, index 
insurance contracts avoid the twin asymmetric information problems of adverse selection 
(hidden information) and moral hazard (hidden behavior) because the indices are not 
individual-specific; they explicitly target – and transfer to insurers – covariate risk within 
the contract place and period. Finally, insurance companies and insured clients need only 
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monitor the index to know when a claim is due and indemnity payments must be made.  
They do not need to verify claims of individual losses, which can substantially reduce the 
transactions costs of monitoring and verification of the insurance contracts. 

 These gains come at the cost of basis risk, which refers to the imperfect 
correlation between an insured’s potential loss experience and the behavior of the 
underlying index on which the index insurance payout is based. A contract holder may 
experience the type of losses insured against but fail to receive a payout if the overall 
index is not triggered. Conversely, while the aggregate experience may result in a 
triggered contract, some insured individuals may not have experienced losses yet still 
receive payouts. The tradeoff between basis risk and reductions in incentive problems 
and costs is thus a critical determinant of the effectiveness of index insurance products.  

  Although the overwhelming majority of insurance worldwide covers asset risk, to 
date almost all retail-level IBRTPs in developing countries have been designed to insure 
stochastic income streams, primarily crop income plagued by weather risk. This paper 
demonstrates the potential of index-based insurance contracts to manage livestock asset 
risk among pastoral communities in northern Kenya, what we call Index-Based Livestock 
Insurance (IBLI). Mongolia has the only current example of an IBLI product. Offered 
commercially to individual herders by private insurance companies, the Mongolian IBLI 
product is based on area average mortality collected by a national census; the insurers are 
then reinsured through a contingent debt facility with the national government and the 
World Bank Group (Alderman and Haque 2007; Mahul and Skees 2005, 2006). Concerns 
exist, however, because of both the cost and timeliness of collecting accurate annual 
census data, and the capacity of government – an interested party to the contracts – to 
manipulate the livestock mortality data.  

 Mongolian-type IBLI is infeasible in our setting, as government does not 
routinely and reliably collect livestock mortality data. But advances in remote sensing 
make it possible to design index insurance based on increasingly precise, inexpensive, 
objectively verifiable, real-time estimates of key observable geographic variables.  
Because grazing systems ultimately revolve around forage availability, we use the 
increasingly popular remotely sensed Normalized Differential Vegetation Index (NDVI), 
an indicator of vegetative cover widely used in drought monitoring programs and early 
warning systems in Africa (Sung and Weng, 2008), to predict livestock mortality. NDVI-
based index insurance contracts have recently emerged. The United States Department of 
Agriculture’s Risk Management Agency now issues pasture insurance based on both 
rainfall and NDVI indices. The Millennium Villages Project (Earth Institute at Columbia 
University and UNDP) in partnership with Swiss Re has just developed a drought index 
insurance program in a number of rural African villages. Preliminary results show that 
NDVI reliably signals most major drought years in regions with high seasonal NDVI 
variance, such as the semi-arid Sahel region of Africa (Ward et al. 2008).  

 We make three important innovations in this paper. First, we explain the design of 
the first index insurance contract for developing countries designed based on household-
level panel data measuring asset loss experiences. Second, we demonstrate how one can 
build index insurance contracts off explicit statistical predictions of the variable of 
intrinsic insurable interest – in our case, livestock mortality – rather than relying only on 
implicit relationships between that variable and measurable proxies (e.g., NDVI, rainfall, 
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temperature). Third, our data permit unprecedented out-of-sample performance testing of 
these contracts. The resulting contract has attracted significant financial sector interest in 
the region and will launch commercially in early 2010.    

The remainder of the paper is organized as follows. Section 2 describes the 
northern Kenya context. Section 3 explains the livestock mortality and remote sensing 
vegetation data available. Section 4 details the IBLI contract design, the construction of 
key variables and the estimation methods employed. Section 5 reports and evaluates the 
performance of the estimated livestock mortality models that underpin the IBLI contract.   
Section 6 discusses contract pricing and risk exposure. Section 7 concludes with a 
discussion of implementation challenges for this and similar index insurance products.  

 

2. The Northern Kenya Context 
 

The more than three million people who occupy northern Kenya’s arid and semi arid 
lands (ASALs) depend overwhelmingly on livestock, which represent the vast majority of 
household wealth and account for more than two-thirds of average income.  Livestock 
mortality is therefore perhaps the most serious economic risk these pastoralist households 
face. The importance of livestock mortality risk management for pastoralists is amplified 
by the apparent presence of poverty traps in east African pastoral systems, characterized 
by multiple herd size equilibria such that losses beyond a critical threshold – typically 8-
16 tropical livestock units (TLUs)1 – tend to tip a household into collapse into destitution 
(Barrett et al., 2006; Lybbert et al., 2004; McPeak and Barrett, 2001).  Indeed, uninsured 
risk appears a primary cause of the existence of poverty traps among east African 
pastoralists (Santos and Barrett 2008).  

Most livestock mortality is associated with severe drought. In the past 100 years, 
northern Kenya recorded 28 major droughts, 4 of which occurred in the last 10 years 
(Adow 2008). The climate is generally characterized by bimodal rainfall with short rains 
falling in October – December, followed by a short dry period from January-February. 
The long rain – long dry spell runs March-May and June-September, respectively. 
Pastoralists commonly pair rainy and dry seasons, for example observing that failure of 
the long rains results in large herd losses at the end of the following dry season. 

Pastoralist households commonly manage livestock mortality risk ex ante, 
primarily through animal husbandry practices, in particular nomadic or transhumant 
migration in response to spatiotemporal variability in forage and water availability.  
When pastoralists suffer herd losses, there exist social insurance arrangements that 
provide informal interhousehold transfers of a breeding cow; but these schemes cover 
less than ten percent of household losses, on average, do not include everyone and are 
generally perceived as in decline (Lybbert et al. 2004, Santos and Barrett 2008, 
Huysentruyt et al. 2009). Some households can draw on cash savings and/or informal 
credit from family or friends to purchase animals to restock a herd after losses. But the 
vast majority of intertemporal variability in herd sizes is biologically regulated, due to 

                                                 
1 TLU is a standard measure that permits aggregation across species based on similar average metabolic 
weight. 1 TLU = 1 cattle = 0.7 camels= 10 goats or sheep. 
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births and deaths (McPeak and Barrett 2001, Lybbert et al. 2004). Thus most livestock 
mortality risk remains uninsured at household level. 

Meanwhile, most herd losses occur in droughts as covariate shocks affecting 
many households at once, sparking a humanitarian emergency. The resulting large-scale 
catastrophe induces emergency response by the government, donors and international 
agencies, commonly in the form of food aid. As the cost and frequency of emergency 
response in the region has grown, however, mounting dissatisfaction with food aid-based 
risk transfer has prompted exploration for more comprehensive and effective means of 
livestock mortality and drought risk management, including the development of viable 
financial risk transfer products. The most recent parliamentary campaign in Kenya 
included widespread, highly publicized promises by prominent politicians to develop 
livestock insurance for the northern Kenyan ASAL.  

 
3. Data description 
 
The northern Kenya IBLI contract is designed using combination of household-level 
livestock mortality data collected monthly since 1996 in various locations by the 
Government of Kenya’s Arid Land Resource Management Project (ALRMP, 
http://www.aridland.go.ke/) and dekadal (every 10 days) NDVI data computed reliable at 
high spatial resolution (8 km2 grids) and consistent quality from satellite-based Advanced 
Very High Resolution Radiometer (AVHRR) measurement since 1981.2 We also employ 
household-level panel data collected quarterly by the USAID Global Livestock 
Collaborative Research Support Program Pastoral Risk Management (PARIMA) project 
(Barrett et al. 2008) to analyze the IBLI contract’s performance out of sample. The use of 
NDVI data is uncommon in index insurance design, especially in the developing world; 
the use of household-level panel data in contract design is, to the best of our knowledge, 
unique.  

We focus specifically on what was until recently Marsabit District, where the 
ALRMP data are most complete and reliable, offering monthly household survey data 
from January 2000 to January 2008 in 7 locations in Marsabit3 It is thus possible to 
construct location-specific seasonal herd mortality rate for each location for long rain-
long dry seasons (the period from March-September) and short rain-short dry seasons 
(from October-February), providing a minimally adequate sample size of 112 location-
and-season specific observations.   

                                                 
2 The United States National Oceanic and Atmospheric Administration satellite-based Advanced Very High 
Resolution Radiometer (AVHRR) collects the data that are then processed by the Global Inventory 
Monitoring and Modeling Studies group at the National Aeronautical and Space Administration 
(http://gimms.gsfc.nasa.gov/) to produce NDVI data series. The scanning radiometer (comprised of five 
channels) is used primarily for weather forecasting. However, there are an increasing number of other 
applications, including drought monitoring. NDVI is calculated from two channels of the AVHRR sensor, 
the near-infrared (NIR) and visible (VIS) wavelengths, using the following algorithm: NDVI = (NIR - 
VIS)/(NIR + VIS). NDVI is a nonlinear function that varies between -1 and +1 (undefined when NIR and 
VIS are zero). Values of NDVI for vegetated land generally range from about 0.1 to 0.7, with values 
greater than 0.5 indicating dense vegetation. Further details about NDVI are available at 
http://earlywarning.usgs.gov/adds/readme.php?symbol=nd. 
3 In 2008 the District was broken into three new Districts: Chalbi, Laisaimis and Marsabit. 
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 As sample households vary by survey round, we rely on monthly location average 

herd mortality, mmortH , , to construct seasonal location average mortality rate, lsM , as 

according to  

(1)   lsM  ≡  mbeg
sm

sm

mmort

HMax

H

,

,






 

where mbegH ,  is monthly location average beginning herd size and season s represents 
either the LRLD (March-September) or SRSD (October-February) paired season. 
Because the livestock mortality data do not distinguish between mature and immature 
animals, mortality rates are inflated for any months in which newborn calves died in large 
number; hence our use of the maximum monthly beginning herd size in computing the 
seasonal average. Note that area average mortality rates are, by definition, measures of 
covariate livestock asset shocks within those locations. By insuring area average 
(predicted) mortality rates, IBLI addresses the covariate risk problem but leaves 
household-specific, idiosyncratic basis risk uninsured.  

There is considerable heterogeneity within the Marsabit region, as reflected in 
Table 1. We therefore performed statistical cluster analysis to identify locations with 
similar characteristics, generating two distinct clusters of three to four locations each 
(Figure 1). The Chalbi cluster is characterized by more arid climate, camel- and 
smallstock (i.e., goats and sheep) based pastoralism by the Gabra and Borana ethnic 
groups. The Laisamis cluster enjoys slightly higher (and more variable rainfall) and 
forage, hence its greater reliance on cattle and smallstock by the Samburu and Rendille 
peoples.  

 Table 2 reports mortality rates by location.4 Locations in Chalbi (Laisamis) cluster 
experienced relatively higher and more variable mortality rate during the SRSD (LRLD) 
season. The differences are statistically significant between seasons within each cluster 
and between clusters within each season. Mortality rates are highly correlated within the 
same cluster (0.80-0.95), while correlations between clusters are less. As Figure 2 shows, 
the 2000 and 2005-06 years exhibited the highest mortality losses during this period.  
Mortality rates are low – uniformly less than 20%, typically less than 10% – outside of 
these severe drought periods. The frequency of area average mortality rates exceeding 
10% is approximately 33% (a 1-in-3 year event) for both Chalbi and Laisamis. However, 
the probability of herd mortality exceeding 20% (30%) is approximately 15% (9%) for 
Chalbi in contrast to 19% (14%) for Laisamis, while the proportion of extreme herd 
mortality exceeding 50% is approximately 6% for Chalbi in contrast to only 2% for 
Laisamis. 

During the same period as the ALRMP data collection, the PARIMA project 
undertook an intensive household panel survey in northern Kenya and southern Ethiopia. 
Two locations – Logologo and North Horr – exist in both household data sets. Although 
the shorter duration (2000-2 only) of the PARIMA survey provides insufficient 
observations to estimate the IBLI contract model (described below), we can use the 
                                                 
4 For the 7% of missing observations we interpolated monthly average livestock mortality rates using the 
other locations within the same cluster. 



 
 

7

higher quality PARIMA data to verify the aggregate reliability of the ALRMP data and to 
evaluate the performance of the IBLI contract out-of-sample. 

Although there are very slight differences in herd data measurement, we can use 
the PARIMA data as a check on the ALRMP data by regressing season-and-location-
specific PARIMA herd mortality rates data (n=8) on ALRMP rates in a simple univariate 
linear model. We cannot reject the joint null hypothesis that the intercept equals zero and 
the slope equals one in that relation (F(2,6) = 0.01 and p-value = 0.99). Thus the ALRMP 
data seem to capture area-average seasonal mortality reasonably well and the PARIMA 
data appear suitable for out-of-sample evaluation of IBLI contracts based on the ALRMP 
herd mortality data and NDVI measures. 

We rely on NDVI data for two reasons. The first is conceptual. Catastrophic herd 
loss is a complex, unknown function of rainfall – which affects water and forage 
availability, as well as disease and predator pressure – and rangeland stocking rates – 
which affect competition for forage and water as well as disease transmission. Rangeland 
conditions manifest in vegetative cover reflect the joint state of these key drivers of herd 
dynamics. When forage is plentiful, disease and predator pressures are typically low and 
water and nutrients are adequate to prevent significant premature herd mortality.  By 
contrast, when forage is scarce, whether due to overstocking, poor rainfall, excessive 
competition from wildlife, or other pressures, die-offs become frequent. Thus a 
vegetation index makes sense conceptually.   

The second reason is practical. Kenya does not have longstanding seasonal or 
annual livestock surveys of the sort used for computing area average mortality, the index 
used in the developing world’s other IBLI contract, in Mongolia. The ALRMP data we 
use in contract design are collected for the Government of Kenya, which might have a 
material interest in IBLI contract payouts, thereby rendering those data unsuitable as the 
basis for the index itself. Consistent weather data series at sufficiently high spatial 
resolution are likewise not available. The Kenya Meteorological Department station 
rainfall data for northern Kenya exhibit considerable discontinuities and inconsistent and 
unverifiable observations. Rainfall estimates based on satellite-based remote sensing 
remain controversial within climate science.5   

NDVI is a satellite-derived indicator of the amount and vigor of vegetation, based 
on the observed level of photosynthetic activity (Tucker 2005). Images of NDVI are 
therefore sometimes referred to as “greenness maps.” Because pastoralists routinely graze 
animals beyond the 8 km2 resolution of the data, we average observations for each period 
within a grazing range defined as the rectangle that encompasses the residential locations 
and water points used by herders in each community, plus 0.02 degrees (about 10 
kilometers) in each direction.6 In unobserved bad years, pastoralists may travel further 

                                                 
5 Remotely sensed data capture precipitation emergent from cloud cover, not rain that lands on Earth.  As a 
result, the validity of those measures remains subject to much dispute within the climate science 
community (de Goncalves et al. 2006, Kamarianakis et al. 2007).   
6 To define location boundary for the three locations with available GPS for water points, we first identified 
GPS bound on each side of the rectangular among all the available GPS points and extended 0.02 degree 
(around 10 km.) to each side of the GPS bound. And thus, eastbound of the rectangular = max (the 
available GPS Y-coordinate) +0.02, westbound = min (the available GPS Y-coordinate) - 0.02, northbound 
of the rectangular = max (the available GPS X-coordinate) +0.02 and southbound = min (the available GPS 
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still, but their need to do so should be reflected in pasture conditions within their normal 
grazing range. NDVI data are commonly used to compare the current state of vegetation 
with previous time periods in order to detect anomalous conditions and to anticipate 
drought (Bayarjargal et al. 2006; Peters et al. 2002) and have now been used by many 
studies that apply remote sensing data to drought management (Benedetti and Rossini 
1993; Hayes and Decker 1996; Kogan 1990, 1995; Rasmussen 1997).  

 
4. Designing Vegetation Index Based Livestock Insurance for Northern Kenya 
 
Recent research finds that humanitarian emergencies in this region – indicated by 
widespread severe child malnutrition – can be predicted reasonably accurately several 
months in advance. Furthermore, the recent droughts with dire consequences – in 1997, 
2000 and 2005-06 – were all characterized not only by low rainfall, but also by the spatial 
extent and duration of the low rainfall event and its effects on rangeland conditions 
(Chantarat et al. 2007; Mude et al. forthcoming). The apparent predictability of these 
episodes motivates our approach to IBLI design based on predicted livestock mortality. 

In order to confirm the appropriateness of our approach to IBLI contract design, 
from May-August 2008 we undertook extensive community discussions in five locations 
in Marsabit District, surveyed and performed field experiments with 210 households in 
those same locations. Chantarat et al. (2009c) and Lybbert et al. (2009) describe those 
studies, which confirmed (i) pastoralists’ keen interest in an IBLI product, (ii) their 
comprehension of the basic features of the IBLI product we explain below, and (iii) 
significant willingness to pay for the product at commercially viable premium rates. 
Pastoralists in these communities worry about livestock loss, clearly associated this with 
pasture conditions, and readily accept the idea that greenness measures gathered from 
satellites (“the stars that move at night” in local dialectics) can reliably signal drought and 
significant livestock mortality. With demand for an IBLI product established, we proceed 
now with the specifics of contract design. 

 
4.1 Contract design  
 
We design a seasonal contract covering the LRLD or SRSD season, each encompassing a 
rainy and dry season pair. Insurance contracts are sold (for approximately two months) 
just before the start of the rainy season and are assessed at the end of the dry period to 
determine whether indemnity payments are to be made. Contracts are specified per 
tropical livestock unit (TLU) at a pre-agreed value per TLU. Pastoralist clients choose the 
total livestock value to insure, pay the associated premium to the insurance broker and 
receive indemnity payments proportionate to their IBLI coverage in the event of a payout. 
The contract is specific at the location level, based on the predicted mortality rate as a 
function of the vegetation index specific to the grazing range of that location. It is also 
possible to design a one-year contract covering two consecutive seasonal contracts, 
consisting of two potential trigger payments per year (at the end of each dry season), 

                                                                                                                                                 
X-coordinate) - 0.02. The result for each location is a rectangle boundary containing all the common water 
points, GPS of representative households in the ALRMP survey and the current household-level survey in 
each location. 
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although we focus here on the seasonal contracts. Figure 3 depicts the temporal structure 
of the IBLI contract.   

The index on which the insurance contract is written is the predicted area average 
mortality rate, defined as a function of the NDVI-based vegetation index. Because NDVI 
data are available in real time, the predicted mortality index can be updated continuously 
over the course of the contract period. We express the index in terms of percentage 
predicted mortality instead of NDVI in order to expressly link the index to the insurable 
interest of contract holders.   

 The livestock mortality index that underpins IBLI is designed as follows. Write 
the realized aggregate TLU mortality rate of pastoralist household i in location l over 
season s as  
 

(2)   ilsllsiilils MMMM    

 

where ilM  reflects household i’s long-term average mortality rate, lsM is the area 

average mortality rate at location l over season s, lM  is the long-term mean rate in 
location l and ils  reflects the idiosyncratic component of household i’s herd losses (e.g., 

from conflict, accident, etc.) experienced during season s, i.e., the household-specific 
basis risk. The parameter i  determines how closely household i’s livestock mortality 

losses track the area average. If 1i  then household i’s livestock losses closely track 

the area average, while 0i means i’s mortality losses are statistically independent of 

the area average. Over the whole location, the expected value of i  is necessary one.   

 IBLI insures only the covariate component of ilsM that is associated with the 

observable vegetation index. The area average livestock mortality rate, lsM , can be 

orthogonally decomposed into the systematic risk associated with the vegetation index 
and the risk driven by other factors: 
 
(3)   lslsls ndviXMM  )(  

 
where )( lsndviX  represents a transformation of the average NDVI observed over season s 

in location l, lsndvi  – which we discuss below –  M  represents the statistically predicted 

relationship between )( lsndviX and lsM , and ls  is the idiosyncratic components of area 

average mortality that is not explained by )( lsndviX  – i.e., location-specific basis risk. 

We predict area average mortality from observations of lsndvi , specific to each location l 

and season s, as: 
 

(4)   )(ˆ
lsls ndviXMM  ,  

 
which serves as the underlying index for insurance contract. There are thus two sources 
of basis risk: (i) the household’s idiosyncratic losses that are uncorrelated with area 



 
 

10

average losses according to (2) and (ii) area average mortality losses that are not 
correlated with the vegetation index, according to (3).  

 IBLI then functions like a put option on predicted area average mortality rate. The 
seasonal contract pays an indemnity beyond the contractually-specified strike mortality 

level, *
lM , conditional on the realization of lsM̂ according to: 

 

(5)      TLUllsTLUllsls PTLUMMMaxPTLUMM  0,ˆ,,|ˆ **  

 
where TLU is the TLU insured and TLUP  is the pre-agreed value of 1 TLU, so their 

product reflecting the insured value. The expected insurance payout and hence the 
actuarially fair premium for this contract insuring TLUPTLU   of totally livestock value 

can be written as  
 

(6)       TLUllsTLUllsls PTLUMMMaxEPTLUMMP  0,ˆ,,|ˆ **  

 
where  E  is the expectation operator taken over the distribution of the vegetation index 

and so we can write     0,ˆ|ˆ **
llsllsls MMMaxEMMp   as the actuarially fair 

premium rate quoted as percentage of total value of livestock insured.   

 Similarly, total insurance payout at the end of year t for a one-year (two season) 
contract can be written as: 
 

(7)      TLU
ts

llsTLUltlslt PTLUMMMaxPTLUMM  


 0,ˆ,,|ˆ ** . 

 
We favor the seasonal contract payout – in contrast to a yearly payout – because 
pastoralists’ financial illiquidity typically means that catastrophic herd losses threaten 
human nutrition and health in the absence of prompt response. The rapid response 
capacity of seasonal insurance contracts is one of the great appeals of this approach to 
drought risk management as compared to reliance on food aid shipments, which typically 
involve lags of five months or more after the emergence of a disaster (Chantarat et al. 
2007).  
  
4.2 Variable construction and estimation of the predictive models 
 
In order to specify the contract, we need to estimate the )(X and  M  functions.  In 
estimating )(X  we first must control for differences in geography (e.g., elevation, 
hydrology, soil types) across our locations. We therefore use standardized NDVI, zndvi : 

 

(9)    
 

 idtd

idtdidt
idt ndvi

ndviEndvi
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where idtndvi  is the NDVI for pixel i for dekad d of year t,  idtd ndviE  is the long-term 

mean of NDVI values for dekad d of pixel i taken over 1982-2008 and  idtd ndvi  is the 

long-term standard deviation of NDVI values for dekad d of pixel i taken over 1982-
2008. Positive (negative) idtzndvi  represents relatively better (worse) vegetation 

conditions relative to the long-term mean. Figure 4 depicts the NDVI and zndvi  series 
for the Marsabit locations.  

 We are now in the position to estimate the predictive relationship  M  that maps  
area-average seasonal livestock mortality onto zndvi. But unlike crop yields that respond 
only to current season climate variables, livestock mortality can be the result of several 
seasons’ cumulative effects (Chantarat et al. 2008). The lagged effects of exogenous 
variables raise a difficult tradeoff, however.  Price stability is appealing from a product 
marketing perspective. Yet seasonal variation in premium rates in response to changing 
initial conditions, enables insurers to guard against intertemporal adverse selection 
problems that may arise if prospective contract purchasers understand the state-
dependence of livestock mortality probabilities.   

 So as to minimize the tradeoff between price instability and intertemporal adverse 
selection, we model the predictive relationship using the shortest lag structure possible – 
including of only result from the preceding season – that still allows us to control for 
path-dependence. We estimate a regime-switching regression model with multiple 
regressors based on different functions of cumulative zndvi beginning during the paired 
season before the contract period begins.  We now explain each of these variables in turn.  

 The cumulative variables we use are constructed as follows. All are depicted in 
Figure 5, which matches the seasonal IBLI contract structure with these cumulative 
vegetation index regressors. The first we discuss is the regime switching variable, which 
allows for there to exist different relationships between idtzndvi  and area average 

livestock mortality depending on whether it is a good or bad season. Because we want 
this variable to be unobserved by all parties when the contract is struck, we use the year-
long cumulative dekadal zndvi from the beginning of the last rainy season until the end of 
the contract season. Thus, for the LRLD (SRSD) contract season, stposCzndvi _  runs 

from the first dekad of October (March), until the end of the contract period season, i.e., 
the last dekad of September (February):  
 

(10)    



s
posTd

dss zndviposCzndvi _       

where  s
posT   = October – September (March – February) if s = LRLD (SRSD). When 

stposCzndvi _  is negative, this implies a worse than normal year, so we loosely term the 

regime 0_ stposCzndvi  a “bad climate year,” although this could be due to stocking 

rate or other drivers, not just precipitation.  We observe that all past major droughts fell 
into this regime.  

 Thus, we estimate the relationship in (3) for each cluster as: 
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(11)     lslsls ndviXMM 1111 )(             if lsposCzndvi _     (good climate regime) 

    lslsls ndviXMM 2222 )(           if lsposCzndvi _      (bad climate regime) 

 

where lsposCzndvi _ determines the climate regime into which each season belong: a 

good-climate regime ( 0_ lsposCzndvi ) or a bad one ( 0_ lsposCzndvi ).   is the 

critical threshold to be determined endogenously.7 Appendix Table 1 displays descriptive 
statistics of the regressors and mortality data by regime.  

 The second cumulative vegetation index variable captures the state of the 
rangeland at the commencement of the contract period. This variable, spreCzndvi _ , 

captures cumulative zndvi from the start of the preceding rainy season until the start of 
the contract season, i.e., for LRLD (SRSD) contracts based on cumulative zndvi from the 
first dekad of October (March) – the start of the preceding short (long) rains – until the 
first dekad of March (October), as follows: 
 

(12)  



s
preTd

dss zndvipreCzndvi _                                    

where s
preT  = October – March (March – October) if s = LRLD (SRSD). Since more 

degraded initial conditions drive up the likelihood of livestock mortality, this variable 
should negatively affect predicted area average seasonal mortality. Because the insurer 
must set the price before prospective IBLI purchasers make their insurance decisions, the 
latter may have superior information, leading to some level of intertemporal adverse 
selection. Because most of the observations are known ex ante to both parties, however, 
that effect should be minimal. 

 The third and fourth variables build on the concept of cooling or heating degree 
days used in weather derivatives contracts. These capture the accumulation of negative 
(positive) zndvi over the period of the current season, e.g., March-September (October- 
February) for LRLD (SRSD) season, respectively. The negative cumulative measures 
variable is 
 
(13)   




sTd

dss zndviMinCNzndvi )0,(  

 
while the positive cumulative effects analog variable is 
 
(14)  




sTd

dss zndviMaxCPzndvi )0,(         

 
where   sT  = March – September (October – February) if s = LRLD (SRSD). These 
capture the cumulative intensity of adverse (favorable) dekads within the contract period. 

                                                 
7 We verified the intuition that  =0 by solving for the threshold value  that maximizes goodness of fit in 

estimating equation (11) and confirmed that it is indeed  =0. 
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Catastrophic drought seasons routinely exhibit a continuous downward trend in 
cumulative zndvi , leading to a large value for CNzndvi, which should have a significantly 
positive impact on mortality.  Similarly, CPzndvi permits us to control for post-drought 
recovery, when stocking rates have fallen and thus rangelands recover quickly, a 
phenomenon typically reflected in upward trending cumulative zndvi . This was the 
pattern observed, for example, in the SRSD seasons of 2001 and 2006 following 
catastrophic droughts the preceding LRLD seasons. Since these two variables capture 
only observations after the contract is struck, there is no information asymmetry with 
respect to these variables. Based on the Czndvi  path, it thus captures not only the adverse 
climate impact resulted from the preceding and current rain season, but also the intensity 
of adverse climate.  

These cumulative vegetation indices effectively capture the myriad, complex 
interactions between climate and stocking rates, reflected in rangeland conditions, and 
livestock mortality rates. We estimate simple linear regressions within each of the two 
regimes using the most parsimonious specification that fits the data well. With only eight 
years’ data available for each location, limited degrees of freedom preclude estimating 
location-specific predictive models. Insurance companies would be unlikely to implement 
contracts at such high spatial resolution anyway, so this is not a serious problem. We 
therefore pool locations within the same cluster – treating each location’s data as an iid 
draw from the same cluster-specific distribution – to estimate a cluster-specific predictive 
relationship, which we term a “response function”. We also pool data for both LRLD and 
SRSD seasons but include a seasonal dummy to control for the potential differences 
across the two seasons. 

 

5. Estimation results and out-of-sample performance evaluation 
 
The estimation results for equation (11) are reported in Table 3. These models explain 
area average mortality reasonably well, with an adjusted r2 of 52% and 61% for Chalbi 
and Laisamis clusters, respectively. Livestock mortality patterns in the good climate 
regime are very difficult to explain, with no statistically significant relationship between 
any regressor and livestock mortality.  Of course, this makes intuitive sense as variation 
in good range conditions should not have a systematic effect on livestock survival.   

In the bad climate regime, however, we see precisely the patterns anticipated.  
The initial state of the system, as reflected in preCzndvi _ , has a very strong, statistically 
significant negative effect on mortality rates; the “less bad” the recent rangeland 
conditions when the insurance contract period falls into the bad climate regime, the lower 
is observed herd mortality. Similarly, the greater the intensity of positive (negative) spells 
during the season, as reflected in CPzndvi (CNzndvi ), the lower (higher) herd mortality 
rates, although those coefficient estimates are statistically significant only in Laisamis 
cluster, where pastoralists are less migratory and thus brief spells of favorable conditions 
are less likely to attract transhumant herd movements to take advantage of transiently 
available forage and water.    

The regression coefficient estimates are themselves of limited interest, however.  
The real question is whether the predictions of livestock mortality prove sufficiently 
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accurate to serve as a reasonable foundation for livestock insurance for the region. In 
addition to the basis risk portion of livestock mortality in the region that the model 
inherently cannot explain, there is also the possibility of specification error if the model 
specification and parameters chosen based on the ALRMP sample imperfectly reflect the 
true state of the system in explaining area average livestock mortality. One, therefore, 
wants to test how significant those errors are when new data are taken to the predictive 
model that generates the index on which IBLI is based.  

The limited size of the ALRMP sample precludes setting aside some of those data 
for out of sample performance evaluation. But we can use the PARIMA survey data, 
which cover four seasons (2000-2002) in four locations (Kargi and North Horr in Chalbi 
cluster, and Logologo and Dirib Gumbo in Laisamis cluster) in the same region, but were 
not used to estimate the predictive model,8 to test out of sample forecast accuracy. 
Predicted area average mortality rates for these locations were then constructed based on 
the established cluster-specific response functions and location-specific NDVI data.  

Define forecast error as the difference between actual area average mortality rate 
less the predicted mortality rate. A positive forecast error thus implies underprediction of 
the mortality rate, which would favor insurers; a negative error indicates overprediction 
of mortality, which could benefit insurance holders. Table 4 reports the distributions of 
out of sample forecast errors by cluster. In each case, 7/8 (88%) of errors were less than 
10% in absolute magnitude, with one single observation off by more than 25%, an under-
(over-)prediction in Dirib Gumbo (North Horr) in the 2000 SRSD season.  

We also tested the performance of the IBLI contract in correctly triggering 
decision for insurance payouts at different strike levels. The errors of greatest concern are 
when the insured are paid when they should not be (type 1 error) or not paid when they 
should have been (type 2 error). Table 5 reports those results. The minimum frequency of 
correct decisions out of sample is 75%, with 94% overall accuracy (averaging Chalbi and 
Laisamis clusters) at a strike level of 15% mortality on the IBLI contract.  

As another diagnostic over a longer period, we compare well-known severe 
drought events reported by communities with the predicted area average mortality 
constructed using their available dekadal NDVI data from 1982-2008. We find the 
predicted mortality index time series quite accurately capture the regional drought events 
of 1984, 1991-92, 1994, 1996, 2000 and 2005-06, predicting average herd mortality rates 
of 20-40% during those seasons and never generating predictions beyond 10% in seasons 
when communities indicate no severe drought occurred.9 This is a more statistically 
casual approach to forecast evaluation, but encompasses a longer time period and we find 
it effective for communicating to local stakeholders the potential to use statistical models 
to accurately capture average livestock mortality experience for the purposes of writing 
IBLI contracts. 
 

                                                 
8 Kargi and Dirib Gombo are also not the locations we studied in the forecasting model, though their 
common characteristics fit them in their respective cluster. 

9 Figures depicting the time series of predicted mortality, by location, are available from the authors by 
request, so as related statistics of other locations considered in this paper. 
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6. IBLI pricing and risk exposure analysis 
 
The predicted mortality profiles just describe are a key input for determining the 
distribution of predicted area average herd mortality rates – a vegetation-based livestock 
index for IBLI – and thus the actuarially fair price of IBLI based on historical data. 
Summary statistics of the main locations are shown in Table 6. On average, predicted 
mortality is lower in Laisamis than in Chalbi, with higher predicted mortality and larger 
variability during the SRSD (LRLD) season in Chalbi (Laisamis) cluster and higher 
probability of indemnity payout for any strike level in Chalbi than in Laisamis.  

 We can now price IBLI. There are two comparable approaches to pricing an 
insurance contract, based on different underlying distributions. The first is a simple 
historical burn rate approach, in which the contract is priced based purely on the available 
historical distribution of vegetation data. The second is the simulation approach, which 
involves first estimation parametrically or semi-parametrically the distributions of the 
underlying vegetation index ( zndvi ) and then pricing the contracts based on those 
estimated distributions. The second approach has the advantage of assigning non-zero 
probabilities to events that may not appear in the available historical data, but the 
disadvantage of assigning probabilities based on estimating probabilities without 
knowing the true data generating process.  

 In this paper, we report the historical burn rate pricing based on 27 years of 
available NDVI data because (i) those data seem adequate to capture most of the relevant 
risk experience in the system, (ii) the insurance companies in the region primarily use the 
burn rate approach to pricing, and (iii) our preliminary attempts at estimating the 
underlying density function generate the observed NDVI data – which exhibit seemingly 
complex autoregressive and nonstationary properties – were unconvincing to us; so we 
leave parametric pricing of IBLI contracts for future research.   
  
6.1 Unconditional pricing 
 
We consider first a seasonal contract that makes indemnity payouts in either season 
(SRSD or LRLD). The actuarially fair premium rate per season quoted as percentage of 
insured herd value for location l in season s covering the difference between the 

(predicted area average herd mortality) index, lsM̂ , and the contractual strike level 
*
lM can be written as: 

 

(15)     

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where we average results over S = 54 seasons of available NDVI data. If one assumes 
that a proportional premium load 0  is applied to the actuarially fair premium to 
cover other risk and transaction costs, then the loaded premium simply becomes 

 *|ˆ)1( llsls MMp .  
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Table 7 reports the fair insurance premium rates (%), their standard deviations 
and US dollar equivalent premia per TLU insured10 for seasonal contracts with various 
strikes for locations. Because episodes of high die-offs are more frequent in Chalbi than 
in Laisamis (Table 6), fair premium rates are likewise higher there. But the rates are 
reasonable, only 2-5% of the insured livestock value for the coverage beyond 10% 
mortality per season and 1-2% of the insured livestock value for coverage beyond 20% 
mortality per season.  

 We next consider a one-year contract comprised of two seasonal contracts (and 
thus two possible payouts per year). The actuarially fair premium rate (%) is:  
 

(16)     
 


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t ts
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where T covers the available 27 years of data. The fair premium rates (%), standard 
deviations and US dollar equivalent premia per TLU are reported in the top panel of 
Table 8. Intuitively, the annual premium is roughly twice as much as the seasonal 
premium. Fair annual premium rates decline as the strike mortality increases, e.g., from 
5-9% at a strike of 15%, to 3-5% for strike mortality of 20%, to just 1-3% at a strike of 
20%. By having pastoralists retain the layer of small risks, index insurance appears 
affordable even in the face of recurring severe droughts. Depending on the pastoralist’s 
location and chosen strike rate, a herder needs to sell one goat or sheep to pay for annual 
insurance on 1-10 camels or cattle, an expense they appear willing to incur (Chantarat et 
al. 2009b and 2009c).  

 

6.2 Conditional pricing 
 
Because expected mortality depends on the state of the system, the probability of 
catastrophic herd loss increases with rangeland vegetation conditions observable prior to 
the contract purchase. In order to guard against intertemporal adverse selection, insurers 
might adjust insurance premia accordingly. The simplest way is to price the contract 
conditional on the observed cumulative zndvi  from the beginning of the last rainy season 
until the beginning of the sale period, lsbegCzndvi _ , covering the preceding October-

December (March – July) for LRLD (SRSD) contracts, assuming a two month sales 
period in January-February (August-September). 

 Using the regime threshold 0_ lsbegCzndvi  analogous to that found in our 

earlier estimation, the two conditional annual premia based are simply: 
 

(17)      







 



0_|0,ˆ0_,|ˆ **
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ts
llslsllslt begCzndviMMMaxEbegCzndviMMp  

                                                 
10 The dollar premium values are computed according to   TLUllsls PMMp *|ˆ  at November 2008 

exchange rates  (79.2KSh/US$) assuming an average value per TLU of KSh12,000, which is approximately 
US$150, per data we collected in these locations in summer 2008. 
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As Table 8 shows, the two conditional premia vary markedly. When the ex ante 
rangeland state is favorable, premia are only 2-5% for contracts with a 10% strike. But 
when the state of nature is bad, those rates jump to 9-11%. Given marketing and political 
considerations, it is unclear whether insurers will be willing to vary IBLI premia in 
response to changing ex ante range conditions, leaving open a real possibility of 
intertemporal adverse selection issues.  

  
6.3 Risk exposure of the underwriter 
 
As we discussed in the introduction to this paper, covariate risk exposure is a major 
reason why private insurance fails to emerge in areas like northern Kenya, where climatic 
shocks like droughts lead to widespread catastrophic losses. IBLI to provide covariate 
asset risk insurance can effectively address the uninsured risk problem faced by 
pastoralists only if underwriters can manage the covariate risk effectively, perhaps 
through reinsurance markets or securitization of risk exposure (e.g., in catastrophe 
bonds). We now explore the potential underwriter risk exposure of the proposed IBLI 
contract.  

 We estimate underwriter risk exposure under the following assumptions. First, we 
assume equal insurance participation covering 500 TLU in each of ten locations11 in 
Marsabit district for a total liability of $75,000/location. A standard insurance loss ratio 
 tL  for a portfolio in year t that consists of L locations’ coverage is 

 

(18) 
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where lt represents the total indemnity payments in year t for the total liability in 

location l and lt  is the total pure premium collected. The loss ratio thus provides a good 

estimate of the covariate risk that remains after pooling risk across locations. When 
1tL  the pure premiums would not have covered total indemnity payments that year.  

 Appendix Table 2 reports yearly loss ratios for various strike levels and under 
conditional and unconditional pricing. Over the full period, loss ratio exceeds one 
roughly one year in three, and sometimes for several years in a row (e.g., 2004-7 in 
Chalbi contracts) or by a very large margin (e.g., 2.5-6.4 in 2005). Pooling risk between 
the two clusters reduces variation in the loss ratio and thus underwriter risk exposure.   

                                                 
11 These ten locations are the seven used for index construction plus three others in which we have gathered 
household and NDVI data; Kargi in Chalbi cluster and Dirib Gumbo in Laisamis cluster with PARIMA 
(also used in out-of-sample tests) and Balesa in Chalbi cluster with ALRMP’s phase II data available from 
January 2005. Value per TLU in each location is again assumed at $150.  
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 Table 9 reports the probability distribution of the yearly loss ratios associated with 
underwriting contracts with different strikes and (conditional or unconditional) pricing 
for the full set of ten locations. The loss ratio over a  - year time period of the insurance 
portfolio that covers L locations is calculated as12 
 

(19) 
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 As Table 9 indicates, for the most exposed case of 10% strike contracts with 
unconditional premium pricing, the single year risk of a loss ratio greater than 2 is 26%, 
but this falls to just 8% with two year pooling and to zero when risk is pooled over a five-
year period. Of course, the reduced loss exposure risk necessarily comes at the cost of 
lower probability of large profits from the contract. Figure 6 presents a sample 
cumulative distribution of the loss ratios reported in Table 9, clearly showing how a state-
conditional pricing and longer-term commitment each reduce extreme outcomes sharply. 
Of course, with premium loadings, underwriter risk exposure would further be reduced 
further relative to these estimates based on pure premia.  

 We now consider a simple reinsurance strategy where the loss beyond 100% of 
the pure premium is transferred to a reinsurer. For contracts with unconditional 
(conditional) premia, actuarially fair stoploss reinsurance rates quoted as percentage of 
IBLI premium would range from 49% (32%) for a 10% strike contract to 68% (49%) for 
a 30% strike contract (Table 10). Appendix Table 3 shows the detail. These high 
estimated pure reinsurance rates only take into consideration the local drought risk 
profile, however, and should fall markedly as international reinsurers are better able to 
diversify these risks in international financial markets. Indeed, this diversification 
opportunity through international risk transfer is one of the key benefits of developing 
IBLI products. 

 
7. Conclusions and some implementation challenges 
 
This paper has laid out why index based livestock insurance (IBLI) is attractive as a 
means to fill an important void in the risk management instruments available to 
pastoralists in the arid and semi-arid lands of east Africa, where insurance markets are 
effectively absent and uninsured risk exposure is a main cause of the existence of poverty 
traps.  It has gone on to explain the design of an IBLI product to insure against livestock 
mortality in order to protect the main asset households in this region hold. We 
parameterize the index using longitudinal observations of household-level herd mortality, 
fit to high quality, objectively verifiable remotely sensed vegetation data not manipulable 
by either party to the contract and available at low cost and in near-real time. The 
resulting index performs very well out of sample, both when tested against other 

                                                 
12 We abstract away from the need to discount the financial variables over time. 
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household-level herd mortality data from the same region and period and when compared 
qualitatively with community level drought experiences over the past 27 years. Finally, 
we established that IBLI should be readily reinsurable on international markets.  

The development of the IBLI contract is promising because of the opportunity it 
opens up to bring insurance to many places where uninsured risk remains a main driver 
of poverty.  Extended time series of remotely sensed data are available worldwide at high 
quality and low cost. Wherever there also exist longitudinal household-level data on an 
insurable interest (livestock, health status, crop yields, etc.), similar types of index 
insurance can be designed using the basic techniques outlined here.  

A range of implementation challenges nonetheless remain and are the subject of 
future research. First, the existence of household-level data permit direct exploration of 
basis risk, looking in particular for any systematic patterns so that prospective insurance 
purchasers can be fully informed as to how well suited (or not) the index-based contract 
might be for their individual case. Chantarat et al. (2009b) explores this issue for this 
IBLI product.  

Second, and relatedly, experience with other index-insurance pilots has shown 
that a carefully designed program of extension to appropriately educate potential clients 
is necessary for both initial uptake and continued engagement with insurance (Gine et al., 
2007; Sarris et al., 2006). Complex index insurance products can be difficult to 
understand, especially for populations with low levels of literacy and minimal previous 
experience with formal insurance products. Preliminary experiments with using 
simulation games in the field with prospective insurance purchasers shows significant 
promise as a means of both explaining how index insurance products work and 
generating demand for the product (Lybbert et al. 2009).  

Third, the infrastructure deficiencies that lead to high transactions costs in 
verifying individual claims in remote rural areas still feed high costs of product 
marketing and claims settlement. Development of cost-effective agent networks for 
reliable, low-cost product marketing and service is a challenge. In the northern Kenya 
IBLI case, our commercial partners are tapping into a network of local agents equipped 
with electronic, rechargeable point-of-sale (POS) devices being extended throughout 
northern Kenya by a commercial bank working with the central government and donors 
on a new cash transfer program. These POS devices can be easily configured to accept 
premium payments and to register indemnity payments for certain insurance contracts. 
Financial sector interests are attracted by the potential economies of scope involved in 
introducing another range of products for devices otherwise used purely for government 
payments and debit payments.  

Fourth, as already mentioned, IBLI underwriters and their commercial partners 
must make difficult choices in balancing the administrative simplicity and marketing 
appeal of offering IBLI contracts priced uniformly over space and time (which we termed 
“unconditional” pricing in the preceding analysis) versus more complex (“conditional”) 
pricing to guard against the possibility of spatial or intertemporal adverse selection. 
Harmonized pricing is a common practice of Kenyan insurance companies that have 
ventured into the agricultural sector, using the less risky areas to subsidize premiums for 
the more risky areas.  As indicated in our analysis, the potential intertemporal or spatial 
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adverse selection issues could be greater with index-based products and thus merit 
attention as this market develops.  

These implementation challenges notwithstanding, IBLI shows considerable 
promise as effective drought risk management strategies and widely acknowledged as 
essential components to effective poverty alleviation in the pastoral areas of east Africa. 
By addressing serious problems of covariate risk, asymmetric information and high 
transactions costs that have precluded the emergence of commercial insurance in these 
areas to date, IBLI offers a novel opportunity to use financial risk transfer mechanisms to 
address a key driver of persistent poverty. Hence the widespread interest shown in IBLI 
by government, donors and the commercial financial sector. The design detailed in this 
paper overcomes the significant challenges of a lack of reliable ground climate data (e.g., 
from location rainfall station) or seasonal or annual livestock census data, as well as the 
need to control for the path dependence of the effects of rangeland vegetation on 
livestock mortality. As the product goes into the field in the coming months, the true test 
of IBLI viability and impact will come from monitoring households in the test pilot areas 
and the financial performance of the institutions involved in offering these new index-
based livestock insurance contracts.   
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Cluster Location
Mean S.D. Mean S.D. Mean S.D. Mean S.D. % Camel % Cattle %Smallstock

Chalbi North Horr 237 105 131 72 75 73 0.11 0.03 0.10 0.03 0.86
Kalacha 236 105 132 85 80 72 0.12 0.03 0.14 0.00 0.85
Maikona 235 96 125 62 87 63 0.11 0.04 0.11 0.02 0.87

Laisamis Karare 367 159 206 106 133 81 0.34 0.11 0.00 0.74 0.26
Logologo 326 138 178 94 123 72 0.24 0.12 0.05 0.31 0.64
Ngurunit 255 135 147 88 88 75 0.26 0.08 0.07 0.19 0.74
Korr 255 125 146 92 89 63 0.17 0.07 0.05 0.03 0.92

Livestock Allocation (headcount)Annual rain (mm) Long rain (mm) Short rain (mm) NDVI

Cluster/ No. of
Location Obs. Mean S.D. Min Max Mean S.D. Mean S.D. M>10% M>15% M>20% M>25% M>30% M>50%

Chalbi 48 10% 16% 0% 67% 7% 8% 13% 20% 0.33 0.26 0.15 0.15 0.09 0.06
North Horr 16 9% 15% 1% 59% 6% 9% 11% 20% 0.25 0.19 0.13 0.13 0.06 0.06
Kalacha 16 13% 22% 0% 67% 7% 10% 18% 29% 0.38 0.31 0.19 0.19 0.13 0.13
Maikona 16 10% 11% 0% 39% 8% 7% 13% 15% 0.38 0.31 0.13 0.13 0.06 0.00
Laisamis 64 10% 13% 0% 57% 13% 15% 8% 11% 0.33 0.22 0.19 0.19 0.14 0.02
Karare 16 15% 16% 0% 57% 17% 19% 12% 12% 0.44 0.25 0.25 0.25 0.19 0.06
Logologo 16 8% 14% 0% 42% 10% 16% 6% 12% 0.19 0.19 0.19 0.19 0.13 0.00
Ngurunit 16 8% 11% 0% 36% 11% 14% 5% 8% 0.31 0.25 0.13 0.13 0.06 0.00
Korr 16 11% 13% 1% 41% 13% 12% 9% 14% 0.38 0.19 0.19 0.19 0.19 0.00

Overall LRLD Season SRSD Season Proportion of 16 Seasons with

Table 1: Descriptive Statistics, by Cluster 
 

 
 
 
 

 

 

 

 

 

 

 

Table 2: Seasonal Herd Mortality Rates, 2000-2008 
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Number of observations 48 Number of observations 64
R-squared 0.5689 R-squared 0.6554
Adj R-squared 0.5187 Adj R-squared 0.6062

Mortality Coeff. Std.Err Mortality Coeff. Std.Err
Czndvi_pos 0.0024 0.0018 Czndvi_pre -0.0003 0.0028

CNzndvi 0.0087 0.0081
CPzndvi 0.0013 0.0024
SRSD 0.0147 0.0402

Mortality Coeff. Std.Err Mortality Coeff. Std.Err
Czndvi_pre -0.0187*** 0.0051 Czndvi_pre -0.0093*** 0.0024
CNzndvi 0.0018 0.0033 CNzndvi 0.0117*** 0.0022
CPzndvi -0.0064 0.0087 CPzndvi -0.0111** 0.0049
SRSD 0.0354 0.0564 SRSD -0.0446* 0.0299

*, **, *** for statistical significance at the 10%, 5% and 1% levels respectively. 

Bad-climate regime (Czndvi_pos<0)Bad-climate regime (Czndvi_pos<0)

Chalbi Model Laisamis Model

Good-climate regime (Czndvi_pos>=0) Good-climate regime (Czndvi_pos>=0)

Table 3: Regime Switching Model Estimates of Area Average Livestock Mortality 
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Cluster Strike
Correct decision

Type I error Type II error
Chalbi 10% 0.75 0.25 0.00

15% 0.88 0.00 0.13
20% 0.75 0.00 0.25
25% 0.88 0.00 0.13
30% 0.88 0.00 0.13

Laisamis 10% 1.00 0.00 0.00
15% 1.00 0.00 0.00
20% 0.75 0.25 0.00
25% 0.75 0.25 0.00
30% 0.75 0.25 0.00

* Out-of-sample errors are based on 2000-2002 PARIMA data for North Horr and Kargi in

Chalbi cluster and Logologo and Dirib Gombo for Laisamis cluster. 

Proportion of Sample
Incorrect decision

Error Magnitude
(absolute value) Chalbi Model Laisamis Model
Under prediction

< 5% 0.13 0.50
5-10% 0.25 0.25

10-15% 0.00 0.00
15-20% 0.00 0.00
20-25% 0.00 0.00
>25% 0.00 0.13

Over prediction
< 5% 0.38 0.13

5-10% 0.13 0.00
10-15% 0.00 0.00
15-20% 0.00 0.00
20-25% 0.00 0.00
>25% 0.13 0.00
Total 1.00 1.00

* Out of sample errors are based on 2000-2002 PARIMA data for North Horr and

 Kargi in Chalbi cluster and Logologo and Dirib Gombo for Laisamis cluster. 

Proportion of Sample 

Table 4: Out of Sample Forecast Performance 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

Table 5: Testing Indemnity Payment Errors 
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Cluster/
Location

p S.D.(p ) p S.D.(p ) p S.D.(p ) p S.D.(p ) p S.D.(p ) 10% 15% 20% 25% 30%
Chalbi 
North Horr 4.3% 7.5% 2.8% 5.5% 1.5% 3.8% 0.7% 2.3% 0.3% 1.2% $6.5 $4.2 $2.3 $1.0 $0.4
Kalacha 4.9% 7.2% 2.9% 5.4% 1.5% 3.6% 0.6% 2.0% 0.2% 0.9% $7.4 $4.4 $2.3 $0.9 $0.3
Maikona 3.7% 5.9% 2.0% 4.1% 0.9% 2.4% 0.3% 1.1% 0.0% 0.2% $5.6 $3.0 $1.3 $0.4 $0.0
Laisamis
Karare 2.2% 4.9% 1.1% 3.3% 0.5% 2.1% 0.2% 1.3% 0.1% 0.6% $3.3 $1.7 $0.7 $0.3 $0.1
Logologo 3.4% 5.6% 1.8% 3.7% 0.7% 2.0% 0.1% 0.7% 0.0% 0.0% $5.0 $2.7 $1.1 $0.2 $0.0
Ngurunit 2.6% 6.0% 1.6% 4.4% 0.9% 2.9% 0.4% 1.7% 0.1% 0.7% $3.9 $2.4 $1.3 $0.6 $0.2
Korr 3.1% 5.7% 1.7% 3.8% 0.7% 2.2% 0.2% 1.0% 0.0% 0.2% $4.7 $2.6 $1.1 $0.3 $0.0

% Premium Rate (p ) US$ Premium/TLU 
At Strike (M*)M* = 30%M* = 10% M* = 15% M* = 20% M* = 25%

Cluster/ No. of
Location Obs. Mean S.D. Min Max Mean S.D. Mean S.D. M>10% M>15% M>20% M>25% M>30%

Chalbi 162 10% 10% 0% 37% 8% 8% 13% 11% 0.40 0.30 0.20 0.10 0.04
North Horr 54 9% 11% 0% 37% 7% 8% 12% 13% 0.34 0.28 0.21 0.11 0.06
Kalacha 54 11% 10% 0% 36% 8% 9% 14% 11% 0.45 0.32 0.21 0.13 0.06
Maikona 54 10% 9% 0% 31% 7% 7% 12% 10% 0.42 0.30 0.19 0.06 0.02
Laisamis 216 8% 9% 0% 34% 10% 9% 7% 7% 0.29 0.21 0.12 0.06 0.02
Karare 54 8% 8% 0% 34% 9% 9% 6% 6% 0.28 0.15 0.09 0.04 0.02
Logologo 54 9% 8% 0% 30% 11% 10% 8% 7% 0.34 0.28 0.15 0.06 0.02
Ngurunit 54 8% 9% 0% 34% 10% 9% 6% 7% 0.23 0.17 0.11 0.08 0.04
Korr 54 9% 9% 0% 31% 11% 10% 6% 7% 0.32 0.25 0.13 0.06 0.02

Overall LRLD Season SRSD Season Proportion of 16 Seasons with

Table 6: Predicted Seasonal Mortality Rates, 1982-2008 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 7: Unconditional Fair Seasonal Premium Rates at Various Strike Levels 
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Location

p S.D.(p ) p S.D.(p ) p S.D.(p ) p S.D.(p ) p S.D.(p ) 10% 15% 20% 25% 30%
Unconditional
North Horr 8.8% 11.7% 5.7% 8.2% 3.2% 5.2% 1.4% 3.2% 0.5% 1.6% $13.2 $8.6 $4.7 $2.1 $0.8
Kalacha 9.8% 11.2% 5.8% 8.0% 3.1% 5.0% 1.3% 2.8% 0.4% 1.3% $14.7 $8.6 $4.6 $1.9 $0.5
Maikona 7.5% 8.9% 4.1% 5.8% 1.8% 3.3% 0.5% 1.6% 0.1% 0.3% $11.3 $6.1 $2.7 $0.8 $0.1
Karare 4.2% 7.3% 2.2% 4.6% 0.9% 2.9% 0.4% 1.8% 0.2% 0.8% $6.4 $3.3 $1.4 $0.5 $0.2
Logologo 6.5% 8.6% 3.5% 5.5% 1.4% 2.8% 0.3% 1.0% 0.0% 0.0% $9.8 $5.3 $2.1 $0.4 $0.0
Ngurunit 5.2% 10.1% 3.2% 7.5% 1.7% 5.2% 0.8% 3.1% 0.3% 1.2% $7.8 $4.9 $2.6 $1.3 $0.4
Korr 6.1% 9.2% 3.4% 6.2% 1.4% 3.8% 0.4% 1.6% 0.1% 0.3% $9.2 $5.1 $2.1 $0.7 $0.1
Conditional on observed Czndvi_beg>=0 before the sale period
North Horr 4.7% 8.4% 3.3% 6.4% 2.0% 4.5% 1.0% 2.9% 0.4% 1.5% $7.1 $4.9 $3.0 $1.5 $0.6
Kalacha 5.5% 7.6% 3.1% 5.6% 1.7% 3.7% 0.7% 1.9% 0.1% 0.6% $8.3 $4.7 $2.5 $1.1 $0.2
Maikona 5.0% 7.1% 2.9% 4.9% 1.3% 3.2% 0.5% 1.6% 0.1% 0.3% $7.5 $4.3 $1.9 $0.7 $0.1
Karare 1.2% 4.1% 0.6% 1.9% 0.2% 0.5% 0.0% 0.0% 0.0% 0.0% $1.8 $0.9 $0.2 $0.0 $0.0
Logologo 1.9% 4.0% 0.7% 1.6% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% $2.8 $1.0 $0.0 $0.0 $0.0
Ngurunit 0.7% 2.3% 0.2% 1.1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% $1.1 $0.3 $0.0 $0.0 $0.0
Korr 1.4% 3.4% 0.3% 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% $2.2 $0.5 $0.0 $0.0 $0.0
Conditional on observed Czndvi_beg<0 before the sale period
North Horr 12.0% 13.0% 7.6% 9.0% 4.1% 5.7% 1.7% 3.4% 0.6% 1.7% $18.0 $11.4 $6.1 $2.6 $0.9
Kalacha 12.5% 12.4% 7.4% 8.9% 4.0% 5.5% 1.6% 3.2% 0.5% 1.6% $18.7 $11.1 $6.0 $2.4 $0.7
Maikona 9.0% 9.6% 4.8% 6.2% 2.1% 3.4% 0.6% 1.6% 0.0% 0.2% $13.5 $7.2 $3.1 $0.8 $0.1
Karare 6.8% 8.5% 3.6% 5.7% 1.6% 3.8% 0.7% 2.4% 0.3% 1.1% $10.2 $5.5 $2.4 $1.0 $0.4
Logologo 9.9% 9.5% 5.6% 6.3% 2.4% 3.4% 0.5% 1.3% 0.0% 0.0% $14.9 $8.4 $3.7 $0.7 $0.0
Ngurunit 9.3% 12.6% 6.0% 9.6% 3.3% 6.9% 1.6% 4.1% 0.5% 1.6% $13.9 $9.0 $5.0 $2.4 $0.8
Korr 9.3% 10.6% 5.5% 7.4% 2.3% 4.7% 0.7% 2.1% 0.1% 0.4% $13.9 $8.2 $3.5 $1.1 $0.1

% Premium Rate (p ) US$ Premium/TLU 
At Strike (M*)M* = 10% M* = 15% M* = 20% M* = 25% M* = 30%

Table 8: Unconditional Vs. Conditional Fair Annual Premium Rates 
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Strike

Mean S.D. Mean S.D.
10% 49% 83% 32% 53%
15% 53% 95% 35% 60%
20% 56% 108% 36% 66%
25% 59% 134% 42% 85%
30% 68% 162% 49% 115%

Stop-loss Reinsurance Coverage at 100% of Pure Premium
Unconditional Premium Conditional Premium

Probability
of Loss Ratio

1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5
Less than 0.5 0.52 0.38 0.13 0.59 0.42 0.30 0.63 0.38 0.26 0.44 0.31 0.13 0.63 0.42 0.13 0.63 0.46 0.26
Between 0.5 to 1 0.15 0.12 0.48 0.07 0.12 0.39 0.00 0.31 0.57 0.22 0.27 0.52 0.00 0.19 0.52 0.07 0.19 0.57
Between 1 to 2* 0.07 0.42 0.39 0.11 0.36 0.17 0.22 0.19 0.04 0.16 0.35 0.36 0.15 0.31 0.45 0.11 0.14 0.04
Between 2 to 3 0.19 0.07 0.00 0.11 0.04 0.13 0.00 0.00 0.13 0.19 0.08 0.00 0.19 0.07 0.00 0.11 0.08 0.13
Greater than 3 0.07 0.04 0.00 0.11 0.08 0.00 0.16 0.12 0.00 0.00 0.00 0.00 0.04 0.04 0.00 0.07 0.08 0.00

* The shaded zone represents the scenerio when underwriter experiences loss (loss ratio less than 1).

Unconditional Premium Conditional Premium
Strike = 10% Strike = 20% Strike = 25% Strike = 10% Strike = 20% Strike = 25%

Years of risk pooling Years of risk poolingYears of risk pooling Years of risk pooling Years of risk pooling Years of risk pooling

Table 9: Distribution of Estimated Loss Ratios 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 10: Mean Reinsurance Rates for 100% Stop Loss Coverage 
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Survey Sites in Marsabit, Northern KenyaSurvey Sites in Marsabit, Northern KenyaSurvey Sites in Marsabit, Northern Kenya

Chalbi

Laisamis

Survey Sites in Marsabit, Northern KenyaSurvey Sites in Marsabit, Northern KenyaSurvey Sites in Marsabit, Northern Kenya
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Figure 1: Clustered Sites in Marsabit, Northern Kenya  
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Figure 2: Seasonal TLU Mortality Rate by Clusters 
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Figure 3: Temporal Structure of IBLI Contract 
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Figure 4: NDVI and zndvi  for Locations in Marsabit, by Clusters 
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Figure 5: Temporal Structure of IBLI Contract and Vegetation Regressors 
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Figure 6: Loss Ratio Cumulative Distributions, by Pricing, Strike and Number 
of Years Risk Pooled 
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Cluster/ Variable % Bad-
Location Climate

Mean S.D. Min Max Mean S.D. Mean S.D. Mean S.D. Mean S.D. Regime
Chalbi Mortality rate 0.1 0.2 0.0 0.7 0.1 0.2 0.1 0.1 0.0 0.1 0.1 0.2
(Pooled) Czndvi_pos -1.5 15.9 -26.3 25.9 -1.8 15.7 -1.2 16.5 15.8 7.4 -12.9 7.3 60%

Czndvi_pre -0.7 9.9 -19.6 21.8 -0.3 13.2 -1.1 5.1 8.6 7.4 -6.8 5.7
CNzndvi 6.4 4.6 0.1 18.6 5.2 3.0 7.6 5.6 2.5 1.6 8.9 4.1
CPzndvi 5.5 6.0 0.0 21.4 3.6 2.7 7.4 7.7 9.9 7.0 2.6 2.7

North Horr Mortality rate 0.1 0.2 0.0 0.6 0.1 0.2 0.1 0.1 0.0 0.0 0.2 0.2
Czndvi_pos -4.8 14.3 -26.2 17.4 -4.9 14.3 -4.7 15.3 9.0 5.7 -15.5 7.9 56%
Czndvi_pre -2.5 9.5 -19.6 18.3 -2.6 12.9 -2.4 5.2 5.0 6.7 -8.4 7.0
CNzndvi 6.9 5.0 1.6 18.6 5.4 2.9 8.4 6.4 3.3 1.3 9.7 5.1
CPzndvi 4.4 5.3 0.0 20.7 3.0 2.5 5.8 7.0 7.3 6.6 2.2 2.7

Kalacha Mortality rate 0.1 0.2 0.0 0.7 0.2 0.3 0.1 0.1 0.0 0.0 0.2 0.2
Czndvi_pos -1.5 17.9 -26.3 25.9 -2.1 18.6 -0.9 18.5 19.3 5.9 -14.0 7.4 63%
Czndvi_pre -0.6 10.9 -16.5 21.8 -0.4 15.0 -0.8 5.5 10.2 8.4 -7.1 5.9
CNzndvi 6.6 5.0 0.6 16.3 5.3 3.7 7.9 5.9 2.1 1.5 9.4 4.2
CPzndvi 5.6 6.7 0.0 21.4 3.5 2.7 7.7 8.9 11.3 7.9 2.2 2.4

Maikona Mortality rate 0.1 0.1 0.0 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Czndvi_pos 1.8 15.7 -17.4 24.4 1.5 15.3 2.0 17.1 20.3 4.5 -9.3 5.8 63%
Czndvi_pre 1.0 9.5 -10.8 18.7 2.1 12.9 0.0 5.0 11.2 6.7 -5.1 4.0
CNzndvi 5.6 4.0 0.1 11.1 4.8 2.7 6.4 5.0 1.9 2.0 7.8 3.1
CPzndvi 6.3 6.1 0.0 19.9 4.2 3.0 8.5 7.7 11.4 6.8 3.3 3.0

Laisamis Mortality rate 0.1 0.1 0.0 0.6 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.2
(Pooled) Czndvi_pos -3.5 16.5 -35.3 34.9 -3.8 16.7 -3.2 16.6 12.9 9.0 -14.7 9.7 59%

Czndvi_pre -1.9 10.1 -20.3 23.0 -1.7 12.1 -2.2 7.8 6.0 7.9 -7.4 7.7
CNzndvi 6.7 5.1 0.0 19.6 5.8 4.1 7.7 5.9 2.5 2.1 9.6 4.6
CPzndvi 4.8 5.8 0.0 24.1 3.4 4.3 6.3 6.8 9.3 5.7 1.8 3.6

Karare Mortality rate 0.1 0.2 0.0 0.6 0.1 0.1 0.2 0.2 0.1 0.0 0.2 0.2
Czndvi_pos -5.8 12.7 -26.8 19.1 -6.2 13.8 -5.4 12.5 7.3 7.4 -13.6 7.5 63%
Czndvi_pre -3.1 7.8 -16.0 12.3 -3.4 8.5 -2.7 7.7 2.5 6.2 -6.4 6.9
CNzndvi 6.5 4.4 0.3 16.3 6.0 4.4 7.0 4.7 2.4 1.2 8.9 3.8
CPzndvi 3.4 3.7 0.0 13.4 2.9 3.1 3.9 4.4 6.8 4.1 1.3 1.2

Logologo Mortality rate 0.1 0.1 0.0 0.4 0.1 0.1 0.1 0.2 0.0 0.0 0.1 0.2
Czndvi_pos -2.5 17.4 -26.3 26.5 -2.7 19.3 -2.3 16.5 13.1 7.5 -18.1 5.6 50%
Czndvi_pre -1.4 10.5 -14.9 17.2 -1.1 13.0 -1.8 8.3 6.1 8.7 -8.9 5.7
CNzndvi 6.2 4.9 0.2 14.6 5.4 4.0 7.0 5.9 2.3 1.4 10.1 3.9
CPzndvi 4.8 6.3 0.0 18.7 3.6 4.6 6.1 7.7 9.3 6.3 0.4 0.5

Ngurunit Mortality rate 0.1 0.1 0.0 0.4 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1
Czndvi_pos -4.3 16.8 -35.3 22.8 -4.7 16.8 -3.9 17.9 11.8 7.7 -14.0 12.6 63%
Czndvi_pre -2.3 10.2 -20.3 16.1 -2.1 13.1 -2.6 7.2 5.4 6.2 -7.0 9.5
CNzndvi 7.0 6.0 0.2 19.6 5.7 4.8 8.3 7.1 2.5 2.5 9.7 5.8
CPzndvi 4.6 5.0 0.0 17.1 2.7 2.7 6.6 6.2 8.7 4.6 2.2 3.6

Korr Mortality rate 0.1 0.1 0.0 0.4 0.1 0.1 0.1 0.1 0.0 0.0 0.2 0.2
Czndvi_pos -1.4 19.8 -30.1 34.9 -1.5 19.3 -1.3 21.6 19.2 11.4 -13.7 11.4 63%
Czndvi_pre -1.0 12.3 -17.7 23.0 -0.2 15.3 -1.7 9.5 9.9 9.5 -7.5 8.8
CNzndvi 7.2 5.5 0.0 17.2 6.0 4.2 8.4 6.6 2.9 3.4 9.8 4.9
CPzndvi 6.5 7.7 0.0 24.1 4.3 6.4 8.6 8.7 12.2 7.0 3.0 6.0

Overall SRSD Season Bad Year
Czndvi_pos<0

LRLD Season Good Year
Czndvi_pos>=0

Appendix Table 1: Descriptive Statistics for Vegetation Index Regressors and Area-
Average Seasonal Mortality, by Location and Regime (2000-2008) 
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Year

Chalbi Laisamis All Chalbi Laisamis All Chalbi Laisamis All Chalbi Laisamis All

1982 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0
1983 0.5 0.2 0.4 0.0 0.0 0.0 0.8 0.7 0.8 0.1 0.0 0.1
1984 2.3 3.2 2.7 2.5 5.6 3.5 1.8 2.0 1.9 1.8 3.2 2.3
1985 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1986 0.7 1.2 0.9 0.5 0.4 0.5 0.9 0.8 0.9 0.6 0.3 0.4
1987 0.2 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0
1988 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
1989 0.3 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0
1990 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1991 1.6 1.5 1.6 1.9 0.1 1.3 1.6 5.4 2.2 2.1 1.4 2.1
1992 2.7 1.6 2.2 2.1 1.4 1.9 2.0 1.0 1.6 1.5 0.8 1.3
1993 0.2 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0
1994 1.9 2.5 2.1 1.7 4.2 2.5 1.6 2.0 1.8 1.5 3.3 2.1
1995 0.3 0.2 0.3 0.2 0.0 0.2 0.6 0.7 0.6 0.4 0.0 0.4
1996 2.5 3.8 3.0 2.0 2.7 2.2 1.9 2.8 2.2 1.5 1.7 1.6
1997 0.2 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0
1998 0.8 0.0 0.5 0.0 0.0 0.0 1.4 0.0 1.1 0.0 0.0 0.0
1999 0.1 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0
2000 2.3 2.8 2.5 3.2 0.9 2.5 2.0 2.6 2.2 2.8 0.9 2.3
2001 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0
2002 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2003 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2004 1.1 0.5 0.8 1.4 0.0 0.9 1.5 0.4 1.0 1.9 0.0 1.1
2005 3.3 4.8 3.9 4.6 6.4 5.2 2.5 3.0 2.7 3.4 3.6 3.5
2006 3.3 2.4 2.9 3.9 3.8 3.9 2.5 1.5 2.1 2.9 2.1 2.6
2007 1.2 0.0 0.7 1.6 0.0 1.1 0.9 0.0 0.7 1.2 0.0 1.0
2008 0.8 1.8 1.2 0.4 1.1 0.6 0.7 1.1 0.9 0.4 0.6 0.5
Mean 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.8 0.7 0.8
S.D. 1.1 1.4 1.2 1.4 1.9 1.4 0.9 1.3 0.9 1.1 1.1 1.0

Unconditional Premium Conditional Premium
Strike = 10% Strike = 20% Strike = 10% Strike = 20%

Appendix Table 2: Estimated Annual Loss Ratios under Pure Premia, 1982-2008 
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Year

Total Total 100% Total Total 100% Total Total 100%
Pure Indemnities Stop-loss Pure Indemnities Stop-loss Pure Indemnities Stop-loss

Premium Coverage Premium Coverage Premium Coverage

($) ($) ($) ($) ($) ($) ($) ($) ($)

1982 32,354 0 0 20,351 3,227 0 52,706 3,227 0
1983 32,354 15,498 0 20,351 3,800 0 52,706 19,297 0
1984 32,354 75,926 43,572 20,351 66,058 45,707 52,706 141,984 89,278
1985 32,354 0 0 20,351 0 0 52,706 0 0
1986 32,354 23,630 0 20,351 23,805 3,453 52,706 47,434 0
1987 32,354 7,543 0 20,351 859 0 52,706 8,402 0
1988 32,354 3,050 0 20,351 0 0 52,706 3,050 0
1989 32,354 9,548 0 20,351 0 0 52,706 9,548 0
1990 32,354 0 0 20,351 0 0 52,706 0 0
1991 32,354 51,333 18,979 20,351 30,481 10,129 52,706 81,814 29,108
1992 32,354 85,930 53,576 20,351 32,082 11,731 52,706 118,012 65,306
1993 32,354 5,595 0 20,351 2,326 0 52,706 7,921 0
1994 32,354 61,748 29,394 20,351 51,463 31,112 52,706 113,211 60,506
1995 32,354 10,475 0 20,351 4,060 0 52,706 14,535 0
1996 32,354 80,366 48,012 20,351 77,762 57,411 52,706 158,128 105,422
1997 32,354 6,783 0 20,351 0 0 52,706 6,783 0
1998 32,354 26,475 0 20,351 0 0 52,706 26,475 0
1999 32,354 3,516 0 20,351 0 0 52,706 3,516 0
2000 32,354 73,615 41,261 20,351 57,035 36,684 52,706 130,650 77,944
2001 32,354 0 0 20,351 3,216 0 52,706 3,216 0
2002 32,354 909 0 20,351 0 0 52,706 909 0
2003 32,354 0 0 20,351 0 0 52,706 0 0
2004 32,354 34,627 2,273 20,351 9,408 0 52,706 44,035 0
2005 32,354 105,796 73,442 20,351 97,943 77,592 52,706 203,739 151,034
2006 32,354 106,484 74,130 20,351 48,798 28,446 52,706 155,282 102,576
2007 32,354 39,098 6,744 20,351 0 0 52,706 39,098 0
2008 32,354 26,527 0 20,351 36,855 16,504 52,706 63,382 10,677

Mean 32,354 32,354 14,496 20,351 20,351 11,806 52,706 52,706 25,624
% Premium 100% 100% 45% 100% 100% 58% 100% 100% 49%

Note: Total premia ($) and indemnities ($) are calculated based on hypothetical liability of $75,000 (500 TLU×150$/TLU) per location
 and 5 locations in each cluster.

Chalbi Locations Laisamis Locations All Locations
 (Total liabilities = $375,000) (Total liabilities = $375,000) (Total liabilities = $750,000)

Appendix Table 3: Annual Unconditional Premiums, Indemnities and Reinsurance 
for Hypothetical IBLI Contracts at 10% Strike (1982-2008) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


