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A B S T R A C T

Spontaneous mutation and natural selection pressure have contributed immensely to the genetic diversity of
barley; a crop domesticated and grown since antiquity under diverse agro-ecological regions. Similarly, anthro-
pogenic factors like cultural traditions and food preferences have also shaped the evolution of barley genetic
diversity in the course of acclimatization under diverse ecosystems. Despite a rich genetic diversity, rapid
depletion of barley genetic resources including the virtual extinction of several important landraces due to
introduction of high yielding varieties and the loss of traditional farming systems remains a significant concern.
Genetic gain in terms of higher grain yield and quality has obviously reduced the resilience of farmers’ varieties
and landraces to environmental stresses; that could in fact be explored as an important source of genes and traits
for improving barley adaptability to adverse agro-climatic conditions. Unfortunately, landraces are not being fully
exploited in barley breeding programs mainly due to lack of inadequate information. In this backdrop, this article
attempts to present an overview of the historical trends in barley conservation and the plausible use of barley
landraces in modern breeding programs to achieve sustainable production suited to the current needs.
Introduction

Expanding global population, set to cross 9.0 billion by the middle of
this century, has placed an unprecedented pressure on global land and
water resources to produce adequate food (FAO, 2009; Foley et al.,
2011). It is unfortunate; however, that productive soils and good quality
water are diminishing (d’Amour et al., 2017) and degrading (FAO and
ITPS, 2015; Foley et al., 2011), increasingly pushing agricultural pro-
duction to marginal lands suffering from different environmental con-
straints (FAO, 2011). There is evidence that increased consumption of
energy and nutrient-dense food (e.g., meat and livestock products)
(Alexandratos and Bruinsma, 2012; Tilman et al., 2002) would further
accentuate the pressure on shrinking farmlands. With severe adverse
impacts of climate change on farm sector including increased frequency
of droughts and floods, soil and water degradation, sea level rise and
disease outbreaks remaining virtually certain in the coming years (Kur-
ukulasuriya and Shane, 2003; Schmidhuber and Tubiello, 2007), changes
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in means and ways of food production while ensuring ecological sus-
tainability remain absolutely essential (Tilman et al., 2002). The chal-
lenges confronting global agriculture have served as a wake-up call,
leading to a growing emphasis on sustainable solutions that could
simultaneously address the intertwined goals of adequate food avail-
ability, safeguarding the natural resources from degradation, improving
the human health and reducing the adverse impacts of climate change
(Gliessman, 1990; Horrigan et al., 2002; Lichtfouse et al., 2009; Wezel
et al., 2014). More recently, ‘The 2030 Agenda for Sustainable Devel-
opment’, adopted by the United Nations General Assembly in 2015, sets
out an ambitious path for a peaceful and prosperous human future
through a set of 17 interconnected and indivisible ‘Sustainable Devel-
opment Goals’ (SDGs) (Gaffney, 2014). In so far as food and agriculture
sector is concerned, the Food and Agriculture Organization of the United
Nations has identified a set of 20 integrated actions that could contribute
immensely to achieving the goal of a sustainable human society. It spe-
cifically underscores an urgent need for mainstreaming biodiversity
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conservation and protecting ecosystem functions by implementing a se-
ries of initiatives established in the United Nations Decade on Biodiver-
sity (2011-2020) and the Aichi targets (FAO, 2018).

Several studies have shown that land use change, habitat destruction
and intensive agricultural practices often lead to the loss of biodiversity in
ways that many locally adapted species critical to the ecosystem functions
and services could disappear over time (Gonthier et al., 2014; Mattison
and Norris, 2005; Pascual and Perrings, 2007). Gradual loss of
agro-biodiversity reported from both developed (Renard et al., 2016;
Schr€oder et al., 2007) and developing (Khumalo et al., 2012; Upreti and
Upreti, 2002) regions of the world is often also accompanied by an erosion
of traditional ecological knowledge (TEK) and local farming practices
(Singh et al., 2014) that in turn reduce the capacity of local communities in
securing healthy food and environmental services. Crop wild relatives and
landraces, important constituents of agro-biodiversity, continue to face the
risk of depletion world over. Many studies have shown that arresting the
loss of such genetic resources and their mainstreaming with the modern
farming systems remains crucial to tide over a multitude of food and
environment related issues (Dempewolf et al., 2014; Ford-Lloyd et al.,
2011; Jarvis et al., 2008). Barley has been used in diverse ways since
antiquity; including use as human food and livestock feed and in malt
production. Legend has it that gladiators used barely as a key ingredient of
their diet to gain strength, stamina and to accelerate the healing of wounds
(Curry, 2008). It is possible that Carl Linnæus considered this particular
use of barley while designating it as Hordeum vulgare, as name Hordeum
derives from Latin name for gladiators (hordearii). Being one of the major
crops of the Old World agriculture and based on archaeological evidences,
barley was first used primarily for food (Grando and Macpherson, 2005).
Since time immemorial, deliberate selection of preferred genotypes by the
farmers coupled with spontaneous mutation and natural selection have
contributed to rich variation in primitive landraces. Over the past one and
a half century, these landraces were harnessed as the base material in
modern genetic improvement programs (Von Bothmer et al., 2003). It is
estimated that of the total global production, a bulk (60–70%) is used as
livestock feed, and 30–40% for malt production. Hardly 2–4% production
is used directly as food and about 5% as seed (Newman and Newman,
2008). Currently, about 147 million tons of barley is produced from 47
million hectares of land with average productivity of about 3.0 ton/ha
(FAO, 2017). Barley (Hordeum vulgare), one of the oldest cereal crops, is
widely grown in marginally productive soils across the world. Despite a
high concentration in temperate areas and the high altitude regions of the
tropics and subtropics; wide adaptability of barley crop to varying
agro-ecological situations, particularly those suffering from relatively
harsh environmental conditions, is well documented (Nevo, 1992).
Available evidence suggests that barley cropwas first domesticated around
10,000 years ago from its wild relative (Hordeum spontaneum) in the Fertile
Crescent (Badr et al., 2000). The fact that barley crop is grown widely
under low input conditions in areas suffering from a range of edaphic
constraints points to the high adaptability of genus Hordeum to edaphic
stresses defined herein as the growth and yield limiting effects of various
soil-related constraints occurring either alone or in combination. As the
climate change induced anomalies in crop growing conditions intensify,
adverse impacts of such edaphic stresses on soils and crops are likely to
magnify manifold in the foreseeable future with fragile agro ecosystems
like drylands likely to be hit hard. Like other crops, drought and salinity
are the twomost prominent edaphic constraints causing considerable yield
losses in barley throughout the globe. It is estimated that depending on
agro-climatic conditions, stress intensity and other factors, drought and
salinity impacts can diminish 20–50% of the potential barley yields
(Shrivastava and Kumar, 2015). Globally, nearly 20% of the total culti-
vated area and about one third of the total irrigated area is salt-affected.
Further, global salinized area is expanding by about 10% annually due
to various natural and anthropogenic causes (Jamil et al., 2011). Water-
logging is also a severe limitation to profitable barley production in several
high rainfall zones (Van Gool and Vernon, 2006). Unlike wheat and oats,
barley is more susceptible to waterlogged conditions (GRDC, 2016b) as
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evidenced by moderate (~15%) to heavy (up to 80%) reductions in yield
with the increasing duration and severity of waterlogging and the toler-
ance threshold of a particular variety (Zhou, 2011). Barley is also more
vulnerable to sub-zero temperatures than wheat, particularly at the early
seedling stage (Gomez-Macpherson, 2001). In Australia, where barley is
grown on a large area, yearly losses in barley production due to frost
damage are estimated to vary between $33 to 100 million (GRDC, 2006,
2012). In marginal areas (e.g., arid lands), crops are often exposed to at
least two stresses like drought and heat taking a heavy toll on economic
yields (Savin et al., 1996). Similarly, in salt-affected lands, seasonal
waterlogging (Datta and Jong, 2002) and boron toxicity (Goldberg, 1997)
could be additional constraints to crop production. Besides curtailing the
growers’ incomes, less than expected barley yields also mean reduced
supplies of malted barley for brewing (Stephanie et al., 2018). Barley va-
rieties exhibit extensive variability in dry biomass, seed yield and malting
quality traits, namely, β-glucan, α-amylase activity, soluble protein,
refractive index, and free amino nitrogen under various edaphic stresses
(Mahalingam, 2017). Various researchworkers revealed that terminal heat
stress reduced the malt quality parameters such as starch, sucrose,
β-glucan, malt extract, grain weight and starch quality though grain pro-
tein content increased under edaphic stresses (Table 1). Up to the late
nineteenth century, barley cultivation was based almost entirely on locally
adapted highly heterogeneous landraces and farmers’ varieties. After
advent of Mendelian genetics and the consequent emergence of systematic
crop improvement methods, these locally adapted strains were gradually
replaced by the high yielding improved cultivars (Nevo, 1992). This
transition had apparently led to the erosion of genes and traits conferring
ecological resilience to the landraces. Thus, genetic gain in terms of higher
yields was achieved at the expense of reduced adaptability to various
ecological stressors and a narrowing of the genetic base in the cultivated
barley. Despite a noticeable shift towards improved cultivars, several
farming communities transcending continental boundaries continue to
retain the interest in barley landraces; due apparently to their better per-
formance and compatibility with the local needs (Cleveland et al., 2000).
As they are traditionally maintained by the farmers, landraces are seldom
subject to genetic improvement for yield and quality (Scholten et al.,
2009). They have an inherent capacity to provide sustained yields in low
input and stressful agro-ecosystems (Zeven, 1998). Intra-specific diversity
and differentiation in landraces within eco-geographical regions evolved
from ancient agricultural practices and natural selection, as well as during
the progressive adaptation to a wide range of ecosystems having the se-
lection pressure of biotic and abiotic stressors (Teshome et al., 2001).
Clearly, landraces are rightly recognized as the mainstay of sustainable
food production; especially in areas suffering from various environmental
constraints. Unique morpho-physiological and genetic traits enabling the
barley landraces to withstand harsh agro-ecological conditions need to be
harnessed for developing climate resilient varieties. It was found that
barley landraces produced up to 61% more grain yield than improved
cultivars under unfavourable growing conditions. In comparison, grain
yields of improved cultivars were only 6–18% higher than landraces under
optimum conditions (Ceccarelli, 1996). It is due to this reason that crop
landraces and heirloom varieties continue to contribute nearly one fifth of
the food grain produced in the marginal areas globally (Veteto, 2008).
Identification of dwarfing gene like uzu, sdw, ari-GP and denso has revo-
lutionized barley breeding programs in many countries. The allelic
dwarfing genes sdw1 of Diamant and denso of Triumph located on chro-
mosome 3HL, and ari-GP of Golden Promise located on chromosome 5H
have been usedwidely in the barley genetic improvement in Europe, North
America and Australia. Similarly, uzu gene located on chromosome 3HL
has been found useful in Southeast Asia (Ren et al., 2010). In the recent
past, successful application of crop landraces in improving the food secu-
rity began with the introgression of dwarfing genes in wheat; slowly
paving the way for ‘Green Revolution’ and reflecting the enormous impact
that landraces can have on world food production. It was the Japanese
wheat landrace ‘Shiro Daruma’ possessing dwarfing genes (Rht-B1 and
Rht-D1) which provided a sound footing to the ‘Green Revolution’, resulting



Table 1
Effect of edaphic stresses on barley malt quality parameters.

Edaphic
stresses

Quality parameters References

Starch Sucrose Protein β-Glucan Malt
Extract

Grain
weight

Starch
quality

Salinity ↓ ↑ – – – – – Bagheri and Sadeghipour (2009)
Drought ↓ ↓ ↑ ↓↑ ↑ S ↓ Macnicol et at. 1993, Coles et al. (1991); Morgan and Riggs (1981); Savin

and Nicolas (1999); Afshari-Behbahanizadeh et al. (2016)
Terminal heat
stress

↓ ↓ ↑ ↓↑ ↓ ↓ ↓ Savin et al., (1997), Wallwork et al., (1998), Savin and Nicolas (1999),
Passarella et al., (2008), Mangelsen et al., (2011)

S: Stable; ↓: Decrease; ↑: Increase.
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in the development of semi-dwarf wheat ‘Norin 10’ (Kihara, 1983). In this
review, an attempt has been made to examine and compile the literature
on the evolution of barley landraces, their usage in modern breeding
programs with focus on developing climate resilient and abiotic stress
tolerant cultivars.,

Adaptation to dry soils

Extended periods of soil moisture deficit and, in some areas repeated
droughts; continue to inflict serious losses in commercial barley farming
in several rain-fed agricultural areas across the globe. In Mediterranean
countries, for example, drought periods coinciding with the end stages of
plant life cycle often cause heavy yield reductions (Passioura, 1996). This
is in contrast to the fact that barley crop is well adapted to arid conditions
and its immediate progenitor (H. vulgare ssp. Spontaneum) flourishes
even in desert soils (Zohary and Hopf, 1988). Such ecotypes have also
been reported from the desert areas of Jordan (Jaradat et al., 1996). Two
barley landraces grown traditionally in Syria i.e. “Arabi Abiad” and “Arabi
Aswad” performwell in the regions with scarce rainfall. While the former
is commonly found in areas having annual rainfall between 250 and 400
mm; the latter adapts well in regions having extremely low annual
rainfall (<250 mm). Some adaptive traits enabling the black-seeded
“Arabi Aswad” landrace to adapt to harsh arid conditions include less
vigorous early growth and maintenance of grain productivity under
water scarce conditions. In comparison, the more drought tolerant
white-seeded landrace “Arabi Abiad” has a very short grain filling period.
After twelve years of pure line selection, two black seeded pure lines i.e.
‘Tadmor’ and ‘Zanbaka’ were released by International Centre for Agri-
cultural Research in the Dry Areas (Ceccarelli and Grando, 2000). Field
experiments have also indicated better adaptability of ‘Arabi Aswad’ and
‘Tadmor’ to dry and hot conditions (Van Osterom, Ceccaralli and Pea-
cock, 1993). ‘Tadmor’ plants were found to have a pale green leaf foliage
and only about one third of leaf chlorophyll and carotenoids than other
barley cultivars allowing them to endure the excessive irradiance
through a passive reduction of the light absorbance and thus minimal
photoinhibition (Tardy et al., 1998). Chinese landrace ‘TX9425’ could
also be a valuable genetic resource for improving the drought tolerance
of barley. Because repeated droughts are a major hindrance to successful
barley cultivation in arid and semi-arid regions, genetic mapping for
identifying the drought associated traits and genes remains a major area
of interest to the barley breeders. A major QTL conferring drought
tolerance was recently identified on chromosome 5H in the Chinese
barley landrace ‘TX9425’ (Fan et al., 2015). The gene underlying this
QTL was suggested to be 9-cis-epoxycarotenoid dioxygenase 2
(HvNCED2), which is involved in the synthesis of abscisic acid. Two
candidate genes i.e. HvCBF10B and HvCBF10A underlying this QTL could
be linked to drought tolerance in ‘TX9425’ (Reinert et al., 2016).

Adaptation to frost

Frost damage often curtails barley yields by inducing floret and spike
abortion and by hampering the kernel development (Zheng et al., 2015).
In Turkey, selection of highly frost tolerant lines from barley landraces
3

during 1940s was instrumental in expanding the area under winter
barley: currently about 60% of the total barley production of Turkey
comes from the winter crop and the remainder 40% from the spring crop.
Again, introduction of such winter hardy cultivars has also led to the
doubling of grain productivity compared to the spring cultivars. In
Turkey, winter hardy landraces have widely been used as parents in
barley breeding programmes (Akar et al., 2009). Frost tolerance loci
(Fr-H1 and Fr-H2), located on chromosome 5HL approximately 30 cM
apart from each other in the parental mapping population (Nure x
Tremois) are the key determinants of low temperatures tolerance in
barley (Francia et al., 2004).

Adaptation to salinity stress

Barley is one of the most salinity tolerant cereal crops (Lacolla and
Cucci, 2008). In general, six-rowed barley cultivars are more salt tolerant
than two-rowed, hull-less than hulled, tall than semi-dwarf ‘uzu’ and
winter types than spring types. Such differences in salt tolerance of
various barley types can be attributed to the differences in tissue toler-
ance and compartmentation. In addition to accumulation and tissue
tolerance to the high levels of Naþ, Naþ exclusion is another important
mechanism for salinity tolerance in barley. Ethiopian landrace “Abyssi-
nia” grown commercially for forage has been reported to be the most salt
tolerant barley genotype to date (Abo-Elenin et al., 1981). Numerous
Quantitative Trait Loci (QTLs) associated with salinity tolerance in barley
have been identified (Wu et al., 2011). A major salinity tolerant locus i.e.
HvNax3 was identified on chromosome 7HS in a bi-parental population
resulting from a cross between the wild barley CPI-71284-48 (Hordeum
vulgare ssp. spontaneum) and the cultivar Barque-73 (Shavrukov et al.,
2010, 2013). Position of this locus mapped on 13.9-cM interval between
markers Bmag914 and HvSS1 on chromosome 7H genetic map, was most
closely associated with the DArT marker bPb-1209 and the microsatellite
marker GBM1519 (Shavrukov et al., 2010). A strong candidate gene
HVP10 has been proposed to underly the locus i.e.HvNax3 andwas found
responsible to reduce shoot Naþ accumulation by 10–25% in plants
exposed to 150 mM NaCl (Shavrukov et al., 2013). This wild accession is
capable of limiting Naþ accumulation in the shoots under saline condi-
tions. Another salt tolerant locus HvNax4 (for Hordeum vulgare Naþ

exclusion 4) was identified on chromosome 1HL in the Algerian landrace
“Sahara 3771” (Lonergan et al., 2009). The locus HvNax4 is different
from the salt tolerant loci Nax1 and Nax2 in durum wheat, which do not
reside on chromosome regions corresponding to barley 1HL. A candidate
gene HvCBL4 underlying the HvNax4 locus is homolog of Arabidopsis
SOS3 (Rivandi et al., 2011). Recently, a major QTL underpinning salinity
tolerance in landrace ‘TX9425’ was detected on chromosome 2H. The
phenotypic variation due to this QTL was nearly 50% of total variation
(Xu et al., 2012).

Adaptation to alkali stress

Soil alkalinity is also a major concern in many barley growing areas
because crop is adversely affected when soil pHs ranges between 8 and
10. In such soils, boron toxicity could diminish the grain yield by up to
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17% (Sutton et al., 2007). Soil pHs range in which soil is neither deficient
nor excess in boron is quite narrow (Goldberg, 1997). In arid and
semi-arid regions with low rainfall, soluble boron is only partially
leached such that high boron concentrations persist in the sub-surface
causing boron toxicity (Reid, 2007; Ryan et al., 1998). Tolerance to
boron toxicity is linked with the ability a particular genotype to maintain
low shoot boron concentrations (Yau and Ryan, 2008). Screening of 444
accessions of winter barley from Europe, West Asia and North Africa
revealed that boron toxicity tolerance varied with the geographic origin
(Yau, 2002). Algerian barley landrace ‘Sahara 3771’ grows profusely in
boron rich acidic soils and thus could be a promising resource of alleles
conferring boron tolerance. Despite high boron concentrations in the soil
solution, its low accumulation in the vegetative tissues of ‘Sahara 3771’
seems to be due to efflux from the roots (Hayes and Reid, 2004). A major
QTL on chromosome 4H and several minor QTLs underlying boron
tolerance were identified in a population derived from the cross of the
boron-tolerant Algerian landrace ‘Sahara 3771’ and boron-sensitive ge-
notype ’Clipper’. Higher transcript levels of candidate gene HvBot1 un-
derlying the 4H QTL seem to improve boron toxicity tolerance in
landrace ‘Sahara 3763’ (Sutton et al., 2007). The proposed role of the
Bot1gene product is to limit the amount of boron entering the root and to
increase boron removal from the leaves (Jefferies et al., 1999). Turkish
winter variety ‘Tokak’ is among the most boron tolerant barley cultivars
ever tested (Braun, 1995).

Adaptation to acidic soils

Soil acidity is a serious threat to agricultural production, affecting as
much as 40% of the world’s arable land and up to 70% of the world’s
potentially arable land (Hede et al., 2001). Aluminium toxicity (Al3þ)
commonly seen in acidic soils (pH below 5.0) is the main factor sup-
pressing plant growth and yield (Davies, 1994) and, it can directly reduce
the crop yields by up to 60% (Tang et al., 2003). Under acidic conditions,
aluminium is solubilized to its ionic form and rapidly inhibits root
elongation and subsequently the uptake of water and nutrients, causing
significant reductions in crop yields (Foy, 1988; Von Uexkull and Mutert,
1995). Although one of the most sensitive cereals to aluminium toxicity,
ample genetic variation for Al-toxicity tolerance exists in barley germ-
plasm (Reid et al., 1969). Barley shows differential responses to
Al-toxicity and soil acidity (Foy et al., 1965). Despite being potentially
novel sources for improving the aluminium toxicity and acidity toler-
ance, barley landraces remain neglected and most of the research on
Al-toxicity tolerance deals with elite cultivars or isogenic lines (Kochian
et al., 2005). The sources of aluminium tolerance in barley are limited to
old cultivars and landraces, and represent multiples alleles of a single
locus (Nawrot et al., 2001). Physiological studies demonstrate a strong
correlation between Al-toxicity tolerance and citrate secretion from roots
with cultivars/lines rapidly secreting citrate from the roots likely to
withstand Al- toxicity (Zhao et al., 2003). It has been shown that a major
locus Alp on the long arm of chromosome 4H of landrace “Dayton”
(Al-toxicity tolerant) regulates Al-tolerance in barley (Minella and Sor-
rells, 1992). Another study revealed that a single major gene Pht on
chromosome 4H in barley landrace ‘Scottish Bere’ was responsible for
tolerance to high soil acidity (Stølen and Andersen, 1978). Candidate
gene HvAACT1which encodes a citrate transport protein located on the
plasma membrane has been identified to underlie the Al-tolerance locus
(Furukawa et al., 2007). Scottish landrace ‘Bere’, considered to be one of
the oldest extant crop varieties in the United Kingdom (Scholten et al.,
2009), is supposed to have been introduced via waves of Viking invasion
from Scandinavia in the 8th century (Martin and Wishart, 2007; Theo-
bald et al., 2006). Landrace ‘Bere’ needed far lesser inputs in comparison
to improved cultivars of barley (Theobald et al., 2006) and produced
good yields in nutrient-poor soils without extra dose of fertilizers
(Scholten et al., 2009). In acidic soils, landrace ‘Bere’ produces more
number of panicles and more grains per panicle than contemporary
cultivars (Riggs and Hayter, 1975). In comparison to most of the barley
4

genotypes showing poor adaptability in acidic soils, ‘Bere’ performs well
under low soil pH conditions. Since chemical amelioration of acidic soil
may not always be an economically feasible practice, emphasis has
increased on developing barley genotypes with enhanced tolerance to
acidity and Al- toxicity (Scott and Fisher, 1989). In UK and Orkney, ’Bere’
is grown commercially for milling and flours for traditionally used for
making bannocks and bread. Orkney grown ’Bere’ grains are rich in
minerals and neutraceuticals such as iron, iodine, magnesium, pan-
tothenic acid, thiamine and folate. ’Bere’ flour contains six times as much
iodine and good amount of folate and dietary fibre compared to white
wheat flour (Theobald et al., 2006)

Underuse of landraces in breeding programs

From ancient times, barley breeding was carried out by the farmers
for specific adaptations and nutritional quality, leading to the evolution
of landraces. However, in contemporary times, more emphasis was
placed on high yield and tolerance to biotic stresses. In modern breeding
projects, favourable alleles are selected and fixed repeatedly resulting in
reduced genetic variability and thus minimizing the potential genetic
gain. Evidently, introgression of potentially novel genes from landraces
has received little attention compared to the widespread use of elite lines
in the barley cultivar development programs (Rasmusson and Phillips,
1997). Less than potential use of the landraces in contemporary barley
breeding programs may partly be attributed to the fear of linkage drag,
loss of co-adapted gene complexes and the prolonged time needed for
pre-adaptation or pre-breeding. Rapidly vanishing agro-biodiversity
could pose severe obstacles to develop multiple stress resilient cultivars
for coping with climate change related stresses (Ceccarelli, 2012; Friso-
net et al., 2011). Barley breeders, in order to accomplish the short-term
breeding goals, rely almost solely on elite lines with which they are
well acquainted (Sharma et al., 2013). Climate change is posing formi-
dable risks to barley cultivation worldwide. Landraces showing adapta-
tion to the stressful environments often out-yield the modern cultivars
under unfavourable conditions. Accordingly, inclusion of landraces in the
on-going barley pre-breeding programs seems to be a prerequisite for
improving the adaptability to abiotic stress and grain nutritional
composition for sustaining the global food and nutritional security.

Climate resilience of barley landraces

It is expected that climate change would affect the modern and
traditional barley varieties differentially. Barley landraces; in and outside
their centres of diversity, respond to climate change induced anomalies
in a far better way than modern cultivars. In some parts of the world,
modern varieties have limited acceptance in drought and salinity prone
areas (e.g., Syria and Iraq) where indigenous landraces shows better
adaptation (Ceccarelli et al., 1995). In Iran, barley is grown primarily for
use as animal feed. Until recently, nearly 35% of the irrigated and more
than 60% of rain fed barley growing areas of Iran were under landraces.
Many important barley landraces such as ’Productive’, ’Binam’, ’Zarjo’,
’Afzal’, ’Sahand’, ’Rihane’ and other indigenous types (suited to both
irrigated and rainfed conditions) have traditionally been grown by the
farmers in harsh climatic conditions. Locally adapted indigenous races
occupied an estimated 18% of the total irrigated and over half of the total
rainfed barley area in Iran (Sarbarzeh et al., 2005). Given the huge
agro-climatic diversity of Iran, a single improved cultivar or landrace is
unlikely to be successful throughout the country. Barley cultivation in
Eritrea still revolves around local landrace populations. The oldest
landrace ‘Abat’ appreciated for its drought tolerance is still widely grown
under rainfed conditions (Bereket, 2005). Tunisia is a secondary centre of
diversity for barley and durum wheat (Vavilov, 1951). Over the cen-
turies, early domestication and indigenous traditional knowledge have
generated diverse barley landraces suited to varying food and feed needs.
Barley landraces ’Martin’, ‘Rihane’ and others are the main barley vari-
eties grown in all the regions of Tunisia. While landrace ‘Rihane’ is grown
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for food grains on more than 50% of the barley growing area, other
landraces (‘Souihli’, ‘Ardhaoui’, ‘Frigui’, ‘Beldi’, ‘Djebali’, ‘While Sfira’ and
‘Djerbi’) are cultivated for use both as feed and food (Felah and Medi-
magh, 2005). The main reason behind widespread adoption of the
landraces is the low adaptability of modern cultivars in harsh
agro-ecosystems. Continual efforts led to the release of Turkish local
landrace selection ‘Tokak’ in 1937 which occupied over 3 Million ha in
Turkey till early 2000 and was also released as an improved cultivar
under the name ‘Sahand’ in Iran (ICARDA, 1997). Most of the present-day
high yielding Turkish barley cultivars had developed from ‘Tokak’
landrace (Kilian et al., 2006). Acclaimed barley landrace ‘Batini’ endemic
to the coastal Batinah region of Oman, is still highly preferred by the
subsistence farmers of Oman and the adjacent regions of the United Arab
Emirates because of its high adaptability and tolerance to salinity
(Abdullah et al., 2012). Similarly, primitive barley landrace ‘Bere’ highly
tolerant to acidic soil condition and climatic aberrations and producing
high quality malt is still grown widely in the Scottish islands of Orkney
and Shetland (Mohan et al., 2016). Chinese hulless landrace ‘Naigou’,
highly adapted to flooded situation of Northwest Yunnan, China is more
suitable for commercial cultivation than other crops in areas suffering
frequently from adverse weather conditions (Liu et al., 2019). Primitive
barley landraces and their specific adaptations are summarized in
Table 2.

Impact of landraces in barley improvement

Available evidence suggests that two-rowed barley was the oldest
cereal domesticated by the humans (Harlan and Zohary, 1966). The wild
barley, Hordeum vulgare ssp. spontaneum, is still widely distributed in the
extremely dry areas of the Fertile Crescent. It is hypothesized that
H. spontaneum contributes to the evolutionary processes of barley
Table 2
Primitive barley landraces along with their specific adaptation and genes/locus iden

Landrace Region Drought Flood Frost Salinity Alk

Scots Bere Scottish islands
of Orkney and
Shetland

– – – – X

Sahara 3771 Algeria – – – – X

Nure Turkey – – X – –

Dayton USA – – – – X

TX9425 China X – – X –

Wild barley CPI-71284-
48

Australia – – – X –

Tokak Turkey – – – – X
Arabi Aswad, Tadmor Syria X – – – –

Abyssinia Ethiopia – – – X –

Abat Eritrea X – – – –

Batini Oman – – – X –

Bilara 2 India – – – X –

Martin, Rihane, Souihli,
Ardhaoui, Frigui, Beldi,
Djebali, while Sfira and
Djerbi

Tunisia X – – – –

Productive, Binam, Zarjo,
Afzal, Sahand, Rihane

Iran X – – – –

Naigou China – X – – –

Duinian, Jianggai China X – – – –
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landraces through continuous gene introgression (Russell et al., 2011). It
is known that barley landraces not only out-yield the modern cultivars,
but also produce satisfactory yields even under the extremely harsh
conditions (Ceccarelli, 1994). Such hardy landraces maintain early
vigour, earliness, plant height, long peduncle and have a short
grain-filling duration (Acevedo and Ceccarelli, 1989). It is pertinent to
mention, however, that the degree of association between each of these
traits and grain yield under stress conditions is likely to vary from year to
year, and that their relative importance depends on the timing, duration
and intensity of the abiotic stress (Ceccarelli et al., 1991). Although
landraces have been grown continually since the domestication of barley
crop, adoption of improved cultivars in many countries pushed them to
unfavourable and stress-prone environments (Li et al., 2012). Earlier
research works on the landraces have shed light on their adaptation to
low-input and stressful agro-ecosystems. The evaluation of pure lines
extracted from Syrian and Jordanian barley landraces revealed a high
degree of seed dormancy and variability in the requirement for vernali-
zation (Weltzien and Fischbeck, 1990), reflecting that they could be
potential sources of genes for such traits . Recently, rich genetic variation
was noted in barley landraces with most of the landraces out yielding
compared to modern cultivars in stressful environments of Spain
(Yahiaoui et al., 2014). The discovery of abiotic stress tolerant alleles in
barley landraces clearly shows the importance of conserving and
exploring them as a means to identify beneficial alleles for enhancing
adaptation and productivity in stress-prone environments. For example,
Syrian landrace ‘Tadmor’ produced 1237 kg grain yield ha-1 while the
lines lacking ‘Tadmor’ in their pedigree produced only 604 kg ha-1 grain
yield under drought affected conditions (ICARDA, 2007) suggesting that
chromosomal segments with a low frequency of recombination enhance
adaptation to the stressful conditions (Gepts, 2006). In India, several salt
tolerant barley varieties (NDB 1173, NDB 1445, RD 2552 and RD 2794)
tified for specific traits.

alinity Acidity Gene/locus identified Reference

X A single major gene Pht, for high soil
acidity tolerance mapped on
chromosome 4H

Stolen and Andersen
(1978); Scholten et al.
(2009); Mohan et al.
(2016)

– HvNax4 locus for salt tolerance
mapped on chromosome 1HL. Boron
tolerance candidate gene HvBot1
underlying the 4H QTL.

Rivandi et al. (2011)
Jefferies et al., (1999);
Hayes and Reid (2004);
Sutton et al., (2007)

– Fr-H1 and Fr-H2 QTLs mapped on 5HL Francia et al. (2004)
X Al-toxicity tolerant gene Alp mapped

on 4HL
Minella and Sorrells
(1992)

A major QTL (underlying two
candidate genes i.e HvCBF10B and
HvCBF10A) for drought tolerance was
mapped on chromosome 5H.
A major QTL for salinity tolerance
detected on chromosome 2H.

Fan et al., (2015), Xu
et al., (2012)

– Salinity tolerant locus HvNax3
identified on chromosome 7HS

Shavrukov et al.,
(2010); Shavrukov
et al., (2013)

– – Braun (1995)
– – Tardy et al., 1998
– – Abo-Elenin et al. (1981)
– – Bereket (2005)

– Abdullah et al. (2012)
– Kumar et al., 2017

– – Felah and Medimagh
(2005)

– – Sarbarzeh et al. (2005)

– – Liu et al. (2019)
– – Liu et al. (2019)
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were developed by cross-breeding for cultivation in salt affected soils.
Oldest salt tolerant Indian barley cultivars i.e. ‘Bilara 2’ and ‘Azad’
originated from the crosses between ‘Bahraich Local’ and ‘Rajasthan
Local’ landraces. Majority of the subsequently released cultivars
descended from genetic recombination between parents of different
landrace origin (Vishnu Kumar et al., 2017). In Egypt, barley is mainly
grown under rainfed conditions in the north coastal regions and under
irrigation in salt-affected regions facing limited supplies of the fresh
irrigation water. Concerted breeding efforts over the decades led to the
development of many abiotic stress tolerant barley varieties in Egypt.
Some of these varieties originating from the crosses between cultivars
selected from landraces include salt tolerant ‘Giza 123’, heat tolerant
’Giza 124’ and drought tolerant ‘Giza 125’ and ‘Giza 126’.(Ahmed,
2005). Chinese landrace ‘TX9425’ has two QTLs for drought tolerance
(explaining 42% and 14% of variation, respectively) and one QTL for
salinity tolerance (explaining 29% of variation) which are being tapped
in barley improvement programs (Fan et al., 2015). A major gene i.e.
Bot1, associated with tolerance to boron toxicity, has been delineated at
0.15 cM interval between markers xBM178 and xBM162 in barley
landrace ‘Sahara 3763’ (highly tolerant to boron toxicity). It was intro-
gressed into commercial barley cultivars using tightly linked markers
(Sutton et al., 2007).

Conclusion and recommendations

Barley landraces are surviving from more than a millennium of
evolutionary history and are well adapted to stressful agro-climatic
conditions. Natural and artificial selection coupled with spontaneous
mutations operating in environmentally harsh areas have contributed to
the evolution of abiotic stress adaptive traits in barley landraces. Such
landraces could be promising sources of genetic resources for novel genes
and traits for developing multiple stress tolerant and high yielding barley
cultivars . Over the decades, continued efforts of barley breeders to
transfer adaptive traits/genes from landraces to elite genotypes and
modern cultivars have met with little success; due apparently to problems
of linkage drag, more residual heterozygosity and complex adaptive gene
cassettes involved in metabolic pathways. Emphasis should be placed on
increasing the yield potential of barley landraces without altering their
adaptation: landraces need to be invariably used as recipient rather than
as donor parents. However, advent of marker-assisted and omics-based
tools offers a great opportunity to barley breeders for transferring
gene(s)/QTLs from landraces to popular cultivars while minimizing
problems like linkage drag. We putforth following specific recommen-
dations for the best use of barley landraces in future genetic improvement
programs for developing multiple stress tolerant and high yielding
cultivars:

1 Advanced tools and approaches need to be harnessed for detecting the
genes and QTLs (and their genetic sequences) underpinning abiotic
stress tolerance in barley landraces.

2 In spite of exclusive focus on transferring genes from the landraces to
the improve cultivars, there is a need to improve the genetic back-
ground of landraces themselves through conventional and molecular
approaches.
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