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Abstract

QTL mapping remains an unavoidable technique to decipher the genetic components of quantitative traits variation in plants and especially in cereals given its economic importance. However the efficiency of statistical methods and the advance made in conducting such experiments, There still exist some bottlenecks mainly represented in the lack of heterogeneity between different studies, lack of results validation, and also imprecise statistical QTL detection leads to huge confidence intervals which increases  candidate gene mining complexity. However, data integration methods such as meta-analysis can provide an efficient framework to detect “real” QTL and narrow down their confidence intervals for better control of candidate gene mining. Therefore, the objective of the first part of this work is to provide an overview of current advances in QTL analysis and meta-analysis highlighting different statistical methods and computational tools employed. In the second part, a meta-analysis approach has been applied on published QTL associated with Fusarium head blight resistance in barley. And in last part, a meta-analysis of QTL associated with four flowering time related traits in maize was performed using public QTL datasets associated with flowering-time related traits in maize, also an ontology-based candidate gene prioritization approach has been executed on genes flaking detected metaQTL confidence intervals in order to detect GO terms that are most over-represented in these regions.
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1.  General introduction

1.1  Introduction

Due to its scientific and economic importance, cereals has motivated decades of rich history of research into their genetics, development and improvement [1]. The advance made in molecular markers, biotechnology techniques, sequencing technologies and computational utilities has launched the need to decipher the relation genotype-phenotype in different species. Given its economic importance, cereal crops and plants in general occupy a huge interest in which concern improving its performance by deciphering its genetic architecture and shedding lights on the genetic components controlling particular traits that contribute in the assessment of agronomic development.
The main purpose of breeding research programmes is the possibility of selection of particular plants with specific traits and the production of new plant varieties with desirable set of genes known as resistant to abiotic stresses and environmental interactions. This approach is known as Molecular Assisted Selection (or MAS).
QTL mapping is an effective method that aims to decipher the genetic architecture of continuous variations of complex quantitative traits (such as height, weight ...). The identification of the genomic region containing genes controlling these complex traits is the main objective of QTL mapping [2]. The traits could be controlled by many or few genes with small or large effect, so it is important that multiple QTL could be associated with a single trait. Usually, QTL mapping is considered as preliminary step before sequencing the detected regions in order to decipher the located candidate genes and then sort them by their significance in association with the trait of interest.
To date, Many mapping experiments have been conducted in order to determine the genetic components of a particular phenotypic trait. However these published  experiments have used different techniques (population size, design...) and statistical methods and consequently provided heterogeneous results and also validation of results is needed. In addition to the lack of homogeneity between different studies, the problem of imprecise detection of QTL can lead to  large confidence intervals, which is a trigger to the necessity of dealing with huge numbers of candidate genes. From those limitations came the need of meta-analysis which consists on the integration and combination of QTL data generated from different experiments that address the same issue, and so after the execution of this approach, QTL detection accuracy could be increased and consequently, the confidence intervals will be narrowed down for better control of candidate genes.
1.2  Objectives of the thesis

The main objectives of this thesis are:
· To underline different steps and approaches involved in QTLs identification and meta-analysis studies, the construction of clear workflows and the highlight of its importance in crops breeding improvement and candidate gene mining control.
· List the available bioinformatics methods and computational tools involved in QTL analysis, meta-analysis of QTL and ontology-based candidate gene mining.
· In silico execution of QTL meta-analysis and ontology-based candidate gene prioritization using chosed bioinformatics tools and sample QTL data.

2.  Review of literature 

QTL analysis remains important task in plant genetics. Many steps are required in order to ensure a complete QTL mapping study. From the design of population to detection of QTL, many choices among different methodologies are to be held. In this chapter, we focused on the main concepts and techniques involved in the QTL mapping workflow and meta-analysis of QTL, and also its implementation through different statistical methods and computational softwares.
2.1  QTL mapping: from the phenotype to the genotype

Many important traits in agronomy such as yield, quality and disease resistance are controlled by many genes (loci) and are known as quantitative traits [2]. The essential aim of QTL mapping is to shed light on the genomic regions controlling these traits. The results of such studies can be utilized for the crop improvement and development through marker-assisted selection in breeding programmes [2].
There exist two main types of agronomic traits (or stresses), the abiotic stressess represent a negative effect of non-living factors such as drought, phosphate… on a particular population, which impact negatively on the quality, physiology or a particular parameter of its productivity.  Otherwise, the other type, namely biotic stresses, are caused by the intervention of living organisms such as fungi, bacteria… and depend on the level of resistance of the affected organism, and the environment in which it is living.
It is also known that the more the trait is controlled by many genetic positions, the more it is difficult to identify an important amount of the causative QTL. Knowing that each individual detected QTL might have different effect size [3]. In addition to the genetic impact, quantitative variations can also be modulated by the environmental factors, or by gene-environment interactions. These advances, in addition to the evolution made in DNA sequencing-related technologies have motivated the appearance of the next generation breeding concept that use genomic instruments and apply molecular-assisted selection techniques for crop improvment and development.

The fundamental basis of plant breeding research programmes is the selection of specific plants with desirable traits and assemble desirable combinations of genes in new improved varieties such as resistance to diseases [4]. It is important to note that, molecular techniques, if combined with functional genomics and molecular-assisted selection approach, can provide powerful frameworks capable of ensuring crops improvement by the release of new varieties with desirable phenotypes.
Generally, the main steps (Figure 2.1) involved in QTL mapping studies are: (1) mapping population development which consists on the selection of two individual who differ in the trait to be studied (2) generation of the phenotypic and genotypic measurements (3) linkage mapping analysis and genetic map construction (4) QTL statistical analysis.
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Figure 2.1: The three main steps of QTL mapping studies
2.1.1  Types of mapping population 

The construction of genetic maps requires a segregating plant population (commonly known as mapping population), and the selected parents must differ and have sufficient variations (or homozygous) for one or more trait of interest [5]. It is important to note that the quality and resolution of the map to be generated are really dependent to the size of used population which is dependent to the study’s objectives., so an appropriate population choice is critical to optimal mapping results. Figure 2.2 below represents the commonly and mainly used populations types in plant analysis.
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Figure 2.2: Diagram showing the main types of mapping populations in plant analysis [5]
F2 population: F2 populations are known as the simplest form of mapping populations which can be generated after the crossing of two selected pure lines that result from natural or artificial inbreeding [6]. After crossing two parents (P1 and P1) to get a F1 population, a F1 individual is then to be selfed to generate an F2 population which is produced from a single meiotic cycle.
Back-cross population: Back-cross populations could be generated by crossing the F1 with one of the parents (recessive parent is usually used). Back-cross populations do not demand much time to develop.

Recombinant inbred lines (RIL): Recombinant inbred lines populations could be developed by selfing continuously an F2 population members until the achievement of complete homozygous. Recombinant inbred lines are immortal populations, suitable for QTL mapping studies and provide efficient identification of linked markers.
Doubled haploid population (DH): Doubled haploid populations can be produced using chromosome doubling of anther culture derived haploid or using wide crossing. Like F2 type, Doubled haploid populations is derived from one meiotic cycle and could be used in mapping quantitative and qualitative traits
2.1.2  Genetic maps construction

Linkage/genetic maps are always compared to road maps of chromosomes with markers as milestones, They indicate the position of each genetic marker (in centimorgan unit) and relative distances between them along the chromosome [7]. The construction of linkage maps represents a mandatory step in the QTL mapping workflow.
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Figure 2.3: Example of genetic linkage map using SSR markers
Different types of generic markers [8].
Genetic markers represent genetic variations between individuals of a particular population, they occupy particular genomic positions and may act as flags if they are tightly linked to genes controlling specific traits [2]. There exist three general classes of markers including morphological, biochemical and DNA markers. 

The advance made in molecular technique gave birth to multitude of technologies that can decipher the information behind DNA fragments. In fact, Many types of DNA genetic markers could be used in constructing genetic maps, but we can distinguish the main commonly used techniques in plant genetics such as AFLP (Amplified fragment length polymorphism), RFLP (Restriction fragment length polymorphism), RAPD (Random amplified polymorphic DNA) and SSR (Simple sequence repeats or Microsatellites). Table below shows the main differences between these types of markers.
	Molecular marker
	Advantages
	Disadvantages
	

	Restriction fragment length polymorphism (RFLP)
	· Robust
· Reliable
· Transferable across populations
	· Time and resources expensive
· Large amounts of DNA required
· Limited polymorphisms
	

	Random amplified polymorphic DNA (RAPD)
	· Simple
· Inexpensive
· Few amounts of DNA required
	· Reproducibility problems
· Not transferable
	

	Simple sequence repeats (SSRs)
	· Simple
· Robust and reliable
· Transferable across populations
	· Primer production requires time
· Require polycrylamide electrophoresis
	

	Amplified fragment length (AFLP)
	· Multiple loci

	· Large amounts of DNA required
· Complicated approach
	


Table 2.1: Advantages and disadvantages of the main used types of genetic markers (RFLP, RAPD, SSR, AFLP) in QTL analysis [5]
The first generation of markers that have been appeared is RFLP markers which are based on the hybridization of a specific probe to restricted genomic DNA of different genotypes [6]. The second generation consists on both RAPD and AFLP, and require PCR amplification. The latest method to appear are SNPs markers (Single Nucleotide Polymorphism), its approach is capable of generating more dense generic maps.
Linkage analysis of markers

The final and main step in linkage maps construction involves the linkage analysis of markers, which consists on mapping heritable trait genes to their chromosome locations that are likely to harbor genes for the trait of interest [9].
Linkage between markers is often calculated with LOD score (or logarithm base 10 of odds) which can be calculated using formula fellow (Figure 2.4).
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Figure 2.4: LOD score calculation formula
It is known that a LOD score of 3 or higher means that 1000-to-one odds, this gene is linked to the disease, and consequently the higher the LOD score the more likely the loci is linked to the  trait [10]. Many existent softwares can be used to automate this task, such as JoinMap, R/qtl… Figure 2.5 below shows examples of genetic maps construction softwares with the highlight of their advantages and limitations.
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Figure 2.5: Examples of software packages for estimating genetic linkage maps
After determining linkage scores, it is important to estimate the linear order of markers, to do so a mapping function (such as Haldane, Kosambi…) that can convert recombination frequencies to centimorgan units must be used.
Grouping and ordering of markers

Linkage analysis basically involves grouping and ordering of linkage groups. First, each locus has to be assigned to its appropriate linkage group, then linkage groups must be arranged in a linear order.
To date, many solutions that deal with marker grouping problem have been proposed. Methods such as the one implemented in MAPMAKER is called “nearest neighbor locus”. It is based on a sequential clustering procedure, so a particular marker could be added to cluster members that show higher recombination scores. There exist also further grouping approaches inspired from graph theory concepts, such as the one implemented in MSTmap which creates a graph of weighted connected markers, then could be divided to subgraphs depending on particular thresholds, each of which represents a linkage group [11].
After assigning each marker to its linkage group, the question now to be asked is related to the physical arrangement of markers in each group. Here objective functions could be used to estimate the most optimal order of markers that maximizes of minimizes parameters in a scoring statistical function. An example of popular objective functions includes SARF (sum of adjacent recombination fractions) and SALOD (sum of adjecent LOD scores) [11].
Figure 2.6 below illustrates the process of genetic maps estimation. In (a) a Fn population has been developed. (b) represents the resulting markers scored in each individual. The grouping procedure has lead to 3 linkage groups (c) The groups have been ordered (d) to form a genetic map of each linkage group (chromosome) .
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Can not handle F1 crosses; Little documentation; Gurrently
unsupported and may not be under further development;
No methods to address bias in high-throughput DNA
sequence markers

Lep-MAP
(Rastas et al., 2013)

HighMap
(Liu et al,, 2014)

F1 crosses; Can handle >10,000 markers; Specialized module utiizes
scaffold location of genetic markers in assigning linkage groups.

Can handle >1000 markers; Utlizes high-throughput sequencing errors

in correcting genotyping errors and imputing missing data; Graphics
and evaluation functions

Assumes no recombination in one parent (specialized
Lepidopteran mating system; Suomalainen et al., 1973)

Recently published and has not been widely tested



Figure 2.6: General workflow of genetic maps construction [11].
2.1.3  QTL analysis: statistical methods and computational tools

Statistical QTL analysis is considered a last step in QTL experiments, and consists on the detection of marker regions that are significantly statically associated with a trait of interest. In other words, it is based on the execution of correlation tests between the genotype and phenotypic measurements. To do so, many command-line and user-friendly tools that implemented statistical methods of QTL detection have been developed. There exist many statistical methods in QTL detection (Table 2.2). From linear regression methods to multiple interval mapping, the more the method is complex and sophisticated, the more it is efficient and could provide powerful results. It is notable that the performance of QTL mapping studies is dependent to the choice of statistical method to be used. The simplest and commonly used method in linear regression because of no need of complete genetic maps and can be performed using basic computational programs [2]. The most recent methods implemented machine learning approach which consists on the use of training example datasets for the
creation of the model, and testing datasets for the validation of generated model, which note the case for further methods. Machine learning methods could largely contribute in reducing type I (false positives) error rate in QTL detection.

	QTL analysis method
	Description of the method
	Available software

	Simple Marker Analysis (SMA)
	Most commonly used method. Include t-test, ANOVA and linear regression and doesn’t requires complete linkage map. 
	QGene, MapManager, SAS, QTX...

	Interval Mapping (IM)
	Considered as more powerful comparing to SMA due to the use of markers positions,  intervals and LOD scores calculation. 
	MapMaker, QTL Cartographer...

	Composite Interval Mapping (CIM)
	Consensus method because it integrates both IM and linear regression. Provide more accurate QTL detection due to the use of additional markers.
	PLABQTL, MapManager,  QTL Cartographer...

	Multiple Interval Mapping (MIM)
	This method uses multiples marker intervals in order to fit the putative QTLs to the model of QTL mapping

	QGene, QTL Cartographer...


Table 2.2: List of principle statistical methods used in QTL analysis
However the problems that this approach can cure, QTL analysis is not limitations-free, in fact, it exist many factors influencing the accuracy of QTL detection. The most cited ones are related to lack of heterogeneity between different mapping experiments results due to the choice of different parameters (including population size, statistical method…). Another limitation is related to the need of results validation, which is the case for most of mapping studies, however some rare exceptions. All these observed limitations and more, motivated the interest for the implementation of novel statistical methods of data integration and combination that could lead to an important increase of accuracy in QTL detection
2.2  Meta-analysis of QTL: detection of real QTLs

A meta-analysis study aims to combine and integrate different independent studies that address a same issue. This approach has been already used in other disciplines such as social, medical and behavioral sciences [12]. Nowadays, multiple public databases reported data of QTL experiments using different populations, the integration of these data can be useful to detect weather a detected QTL associated with a particular trait, has been also detected in further populations. Meta-analysis approach can clearly enhance the power of QTL detection and provide a unified representation of QTL associated with a particular trait and particular organism. The main goal of meta-analysis is the statistical compilation of QTL data in order to determine if several mapped QTL represent the same locus, this locus is then called consensus QTL or metaQTL. It is known that QTL regions can harbor hundreds of genes, which make the prioritization of important candidate genes in association with the trait very complex. However through many successful studies, meta-analysis has proved its efficiency in narrowing down the confidence intervals, which provide more accurate candidate genes estimation. 
2.2.1  Biomercator software vs. MetaQTL package
First, meta-analysis of QTL has been implemented in Biomercator software [13] which is based on a probabilistic method [14] that use a transformed Akaike classification criterion in choosing the metaQTL model with best likelihood. In addition to QTL compilation and meta-analysis methods provided through a friendly graphical user interface, Biomercator software in its last release offers tools to integrate this data with genome structural and functional annotations. The appearance of MetaQTL Java package [15] in 2007 has extended the old Biomercator’s approach by the use of more flexible methods implemented in clustering procedures such as a Gaussian mixture model (Figure 2.7). MetaQTL package also implemented a Weighted Least Square strategy (WLS) which can integrate all the input genetic maps into a single consensus map in a unique step unlike the projection method implemented in Biomercator. Table 2.3 bellow illustrates different programs provided by MetaQTL Java package. 
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  Figure 2.7: A life-cycle showing history of development of Meta-QTL analysis tools

	Module
	Program
	Description

	Data Base
	MetaDB
	Checks and summarizes all the input data into a set of XML files.

	Meta-analysis of genetic map
	InfoMap
	Displays information of the common marker configurations between input marker map.

	Meta-analysis of genetic map
	ConsMap
	Performs the WLS approach to build the consensus marker map.

	Meta-analysis of QTL
	QTLProj
	Projects QTL from a set of mapping experiments on a given marker map.

	Meta-analysis of QTL
	QTLClus
	Performs the Gaussian mixture algorithm.

	Meta-analysis of QTL
	QTLClustInfo
	Summurizes the result of QTLClust for a given Meta-QTL model.

	Meta-analysis of QTL
	QTLTree
	Performs hierarchical agglomerative clustering on the QTL positions.

	Visualization
	MapView
	Creates an image of a chromosome with various displaying options.

	Visualization
	MMapView
	Creates an image of multiple chromosomes with various displaying options.

	Visualization
	MapView
	Creates an image of the QTL meta-analysis result with various displaying options.

	Utilities
	Xml2A
	Converts XML files into plain text ASCII files.

	Utilities
	A2Xml
	Converts plain text ASCII files into XML files.


Table 2.3: List of MetaQTL package available programs [15]
2.2.2  Meta-analysis of QTL: the workflow
Many public databases exist such as Gramene [16] and GrainGenes [17] that facilitate storing and retrieval of multiple crop species QTL data. Before the beginning of meta-analysis, it is required that particular information must be collected from databases and published literature, including population information (types, size…), genetic maps, QTL most likely position… These collected data are then to be used in the input data development as XML format using provided utilities. After the step of data collection and preparation, the next step in the meta-analysis workflow (Figure 2.8) is the integration of different experiments in order to create a consensus genetic map that is going to be used in downstream analysis. Then, after the construction of the consensus map, different collected QTL are to be projected into the map using a dynamic algorithm. The final step is the application of clustering algorithms able to estimate a metaQTL model that best explains the observed distribution of each collected QTL position using a variety of published choice criterion models [15]. 
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Figure 2.8: The general workflow of a meta-QTL analysis study
Projection step’s main goal is the the assembly of multiple maps information into one single reference map using specific calculations. Basically, the projection process is based on parameters such as common loci between homologous chromosomes and also a computed distance ratio between shared common markers. Maps projection workflow can be summarized in four steps: (1) First, homologous chromosomes between the two maps are to be detected (2) Identification of common shared loci or maker names (3) Calculation of distance ration (R) in each interval (4) Execution of genetic elements projection from input to reference map using appropriate distance ratio.

Meta-analysis of QTL remains an important task in refining published QTL information from different experiments addressing a same trait. The purpose of method developed by Goffine and Gerber [14] is the integration of QTL detected in independent experiments and associated with same trait or related traits, identifying QTL candidate models using a clustering procedure that predict its parameters from an Expectation-maximization method, and then choosing the best model that best fit the QTL arrangement using specific statistical criterion.
MetaQTL package implements two types of clustering strategies:
Gaussian mixture model clustering
A Gaussian mixture model (or GMM) is a statistical probabilistic model based on a density mixture, it is usually used to estimate using a parametric approach the distribution of random variables by modeling them as a sum of Gaussians (or kernels). It requires the determination of the variance, the average and amplitude of each kernel and then optimize these calculated parameters using a maximum likelihood criteria in order to detect the most probable distribution possible (Example in Figure 2.9). This procedure is often done via the utilization of an Expectation-maximization (EM) algorithm.
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Figure 2.9: Example of five clusters detection using a Gaussian mixture model (medium.com)
Hierarchical model clustering 

The hierarchical clustering approach aims to create a hierarchy of clusters and there exist two strategies of hierarchical clustering (Figure 2.10). The divisive method is based on the assignment of each observation to a single cluster and then split the cluster as long as the hierarchy moves down. The agglomerative method is based on the assignment of each observation to a single cluster, then merge two clusters if they showed calculated significant similarity 
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Figure 2.10: Hierarchical clustering: Agglomerative method(left) and divisive method (right) 
2.3  Ontology-based candidate gene mining

2.3.1  From the web discovery to the gene ontology
Semantic web concept has been innovated by Tim Berners-Lee (the creator of the web). It’s main idea is the transformation of traditional web which is addressed only to humans to the use of machine-readable data, so computers can process the information presented in order to involve the techniques of data extraction and mining in assisting human decision making. The extension of semantic web has led to the need for ontologies. An ontology is a tool that represents a structured set of terms, concepts and its relationships in a particular knowledge field. Via the use of ontologies, information could be sharable, inter-compatible and represented in a unified format. Also ontologies from different sources could be integrated allowing data integration and meanings assertion through the use of computational programs. In bioinformatics, ontologies can be used for example in defining concepts such as genetic elements and relationships between each others. 

The apparition of Next Generation Sequencing (NGS) technologies  and its increasing advances has made genomes sequencing much quicker and cheaper (Figure 2.11). Consequently, the number of sequenced genomes is rapidly increasing. These genomes have been (or need to be) annotated structurally allowing the detection of residing  genes models, variants and polymorphisms, and functionally to decipher the role of each element in the regulation of organisms. Gene ontology remains a key important factor in the exploration and retrieval of biologically meaningful knowledge and discoveries. 
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Figure 2.11: Genome sequencing price variation since the release of NGS technologies. [Source: www.genome.gov

 HYPERLINK ""
]
First of all, the Gene ontology is a collaborative project with aims to unify biological information and descriptions in different international databases, which can greatly facilitate information request queries and increase computational tools that use ontologies in an efficient manner. Each ontology represents a set of gene products GO terms-annotated structured in a directed acyclic graph (means that each term can have on or many parents, and zero or more children terms), these annotations can be captured from literature and curated by the GO Consortium, or automatically inferred using sequence similarity or keyword mapping.
The gene ontology includes three essential domains: Cellular component, molecular

function and biological process (details below). Every domain represents a structured set of gene products that can be described by its terms, and each term has its own description and relationships to other terms in the same or other domains (Example in Figure 2.12).
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Figure 2.12: Example of representation of the Gene Ontology tree for the GO term GO:0006950 [Source: geneontology.org – FTP site].
Cellular component: Involves different parts of the cell and its extracellular components such as reticulum, nucleus… 
Molecular function: describes the molecular activities of gene products, such as binding and catalysis. A molecular function can involve activities of singular gene product or interaction of many gene products.
Biological process: Series of molecular events that crucial in establishing functions of integrated living units. Examples of biological processes include cellular physiological process and signal transduction.

2.3.2  Gene set enrichment analysis (GSEA)
Gene set enrichment analysis, also called functional enrichment analysis is a statistical method used to associate gene sets to phenotypic changes. It can be used to detect classes of genes that shows significant over-representation among a set of genes and given a background of prior gene ontology annotations. So consequently, the significant GO terms may have a strong relationship with particular phenotype. This method can lead to the identification of genes which are already known associated with the trait of the study, moreover it may lead to novel genes discovery.
Singular enrichment analysis is the gold standard of GSEA categories and it could be explained in three major steps (1) first GO annotation terms of a set of genes are compared to predefined background genes (2) then an enrichment p-value is calculated based on frequency expectation (3) and GO terms are ranked based on enrichment significance.
However its efficiency, GSEA methods gave insight to some limitations that are most related to GSEA’s main components, namely the normalized ES, correlation-weighted Kolmogorov Smirnov test, and the false discovery rate calculation. Other imitations involve in the dependency of GSEA’s results to the gene clustering algorithm and number of tested clusters. Many alternatives have been developed to minimize the effect of this limitations (Source: wikipedia.org/wiki/Gene_set_enrichment_analysis). 
As GSEA is a computational problem, softwares and statistical tools are required to perform GSEA analysis. Most of GSEA tools are web-based programs due to its lightweight ,  easy-to-use functionalities and biologist-friendly as it doesn’t require any informatics  knowledge such as command-line based tools. Table 2.4 below lists some of the most used GSEA web-based tools.
	Tool name
	Description 
	Website link

	PlantRegMap
	Hosts GO annotations for 165 plant species and allow performing GO enrichment analysis tool.
	plantregmap.cbi.pku.edu.cn

	MSigDB
	The Molecular Signatures Database includes a collection of multiple species GO annotation that can be used with most GSEA Software.
	software.broadinstitute.org


	Enrichr
	Enrichr is a gene set enrichment analysis tool for mammalian gene sets.
	amp.pharm.mssm.edu/Enrichr

	DAVID
	A well knwon database for annotation, visualization and integrated discovery, it provides a comprehensive set of functional annotation tools including GSEA tools
	david.ncifcrf.gov/home.jsp

	AmiGO 2
	The official Gene ontology consortium GO term enrichment tool, allowing species-specific enrichment analysis and focus on eukaryotes.
	amigo.geneontology.org/amigo

	agriGO
	agriGO is designed to automate the identification of enriched Gene Ontology (GO) terms in a list of gene identifiers and it is also a GO-related database. The agriGO specially focus on agricultural species.
	bioinfo.cau.edu.cn/agriGO



3.  Meta-analysis of QTL related to Fusarium head blight resistance trait in barley 

3.1  Introduction

Crops improvement remains nowadays of paramount importance to ensure an increasing human population [18]. Multiple breeding programmes have been lunched in order to contribute in the development of crops performance. In addition to its potential health benefits for being rich sources of vitamins and energy, cereal crops represent an important percentage of food production worldwide. 
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Figure 3.1: Hordeum vulgare (Barley), right figure shows FHB barley infection  (Source: Gramene.org)
In 2005, Hordeum vulgare (Barley) was ranked  the fourth in world cereal production (Source: Gramene.org). There exist different varieties of barley that can be morphologically classified. With a haploid genome size of around 5.3 Gbp in 7 chromosomes, barley can be considered as one of the largest diploid genomes sequenced to date (Source: plants.ensembl.org).
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Figure 3.2: Percentage contribution of barley to the world production in 2005 (Gramene.org)
The International Barley Genome Sequencing Consortium (IBSC) aims to provide accurate genomic resources of barley and accelerate crop improvement through the update of assembly versions and the  release of novel barley physical maps. Table 3.1 below provides information about the last released version  of  barley genome assembly.
	Assembly
	IBSC v2

	Database version
	93.3

	Base Pairs
	8,059,674,078

	Golden Path Length
	4,834,432,680

	Genebuild by
	IBSC_1.0

	Genebuild method
	Import

	Data source
	IBSC

	Coding genes
	39.843

	Non-coding genes
	3004

	Pseudogenes
	14

	Gene transcripts
	251,397


Table 3.1: Summary statistics on last the assembly version of barley genome sequence (Source: plants.ensembl.org)
Agricultural stresses could be divided into two major types, abiotic and biotic stresses. Improving resistance to biotic stresses is an important and challenging goal in agriculture. Fusarium head blight is a well known cereal biotic disease caused mainly by Fusarium graminearum fungi. The primary symptom of infection is bleaching of some (or entire spike if severe infections) of the florets in the head before maturity [19].
Many QTL experiments have reported genomic regions that are most likely associated with resistance to FHB in barley. These experiments have used different mapping parameters, for thus there exist a lack of homogeneity between different reported results. However the most part of studies haven’t been published (QTL data, genetic maps...) in public databases, an integration approach able to combine data from different sources could be taken in consideration as cure to make QTL discoveries more accurate. Meta-analysis is an approach that has been applied in multiple fields including medical and social sciences. In 2000, Goffinet and Gerber [14] have extended this methods to the implementation on QTL studies using a modified akaike criterion to assess the number of “real” QTL among a set of already detected QTLs. Meta-analysis of QTL have been applied in an important number of plants and traits such a QTL associated with tolerance to abiotic stresses in barley [20] published in 2012.
3.2  Methodology of the study

3.2.1  Meta-analysis of QTL workflow
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3.2.2  Ontology-based candidate gene prioritization workflow
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3.3  Methods and materials

3.3.1  Data collection and database development
	Input
	Collected QTL and genetic data 

	Output
	XML database

	Used tool(s)
	Gramene database, MetaQTL package (MetaDB program)


In 2003 two QTL studies  have been published reporting genomic regions associated with Fusarium head blight resistance in barley. Table 3.2 illustrates summary information including the parental lines, the type and size of population and mapping statistical function used in each QTL experiments.
	Experiment 
	Parents
	Type of population
	Size of population
	Marker used
	Mapping function
	Reference

	NCSL_2003
	Zhedar2xND9712xFoster

	SF3

	75

	123 AFLP, 53 RFLP, 29 SSR and 7 RGA
	kosambi

	[21]

	UMN_2003
	FredricksonxStander
	RI1
	130

	143 markers (85 RFLP, 57 SSR, and 1 morphological)
	kosambi

	[22]


Table 3.2: QTL experiments related to FHB in barley (Source: Gramene.org)
Gramene QTL database (archive.gramene.org/qtl/) has been used to extract the QTL information and genetic map data sets for each experiment. In order to get only results on QTL associated with FHB in barley, filters such as “Trait.name = fusarium head blight” and “species = Hordeume vulgare” have were used to limit results entries. 
44 QTLs associated with FHB in barley distributed on different chromosomes have been collected. Each collected QTL is characterized by its map name, name, group, most likely position, confidence interval (start and end) and the proportion of phonotypic variance (R²). If a QTL’s confidence interval wasn’t reported, Darvasi and Soller’s [23] approach has been used to estimate a 95% CI, where N represents the used population’s size and R² is proportion of phonotypic variance.

C.I = 530/(N*R²)
Also the genetic maps that correspond to each experiment have been downloaded from Gramene’s FTP website. The total map distances were 1,330.8 cM and 1170 cM  for NCSL_2003 and UMN_2003 experiments respectively.
Once the database of plain text files representing genetic maps, QTL data and summary information about used experiments has been created, MetaQTL package was used to check data format and summarizes database’s contents into a set of XML files using MetaDB command as below. It is important to know that only XML files have been used in downstream analysis.
java org.metaqtl.main.MetaDB \  -e experiments.txt -t ontology.txt -m genetic-data -q qtl-data -o xmldb
3.3.2  Data quality control

	Input
	XML database

	Output
	Basic statistics + connectivity statistics

	Used tool(s)
	MetaQTL package (infoMap program)


Data quality control here means that chromosome connectivity and marker order consistency between different maps must be maintained before perform the integration to build a consensus map. In other words, a consensus chromosome can not be built without the existence of a path of minimum number of common markers that connect the same chromosome in different maps (Figure 3.3), also markers order must be conserved between different maps. 
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Figure 3.3: Example of marker comparison between two genetic maps. The first marker sequence involve two inversed markers (in red), the second marker sequence involve three markers in right order (in blue)
In order to increase the chance of connectivity between genetic maps, a barley reference genetic map (more than 700 markers) has been downloaded from Gramene database and integrated in the study. 
The command InfoMap of MetaQTL java package was used as below to calculate some descriptive statistics between marker maps and level of connectivity between the same chromosome map in different experiments.
$ java org.metaql.main.InfoMap −m xml −o meta−map/ infomap −t 2
It is important to note that we have set the -t option to 2, in order to take in consideration only markers that are common in at least two mapping experiments.

3.3.3  Consensus map construction 
	Input
	XML database (after applying quality control)

	Output
	Consensus genetic map

	Used tool(s)
	MetaQTL package (ConsMap program), Weighted least square algorithm


After performing the quality control, genetic maps are ready to be integrated and form a consensus map. To do so, ConsMap program of MetaQTL package has been choosed to build the consensus map as it implements a Weighted least square strategy which can integrate all input genetic maps in only one single step unlike the other method which is based on an iterative projection and needs “input maps number – 1” steps to construct the consensus map. 
$ java org.main.ConsMap \ −m xml -r xmldb/barley_reference.xml −o meta−map/consensus
ConsMap program has been executed as above where -m option represents the XML database and -r represents barley reference genetic map.
3.3.4  QTL projection
	Input
	QTL maps (reference) + consensus map (target)

	Output
	Consensus map with QTL being projected

	Used tool(s)
	MetaQTL package (QTLproj program), dynamic programming


After constructing the consensus genetic map, collected QTL  are ready to be projected. In order to execute the QTL projection, MetaQTL package also implements a dynamic algorithm to better optimize the projection procedure. QTLproj program efficiency is dependent to the existence of common markers and interval distance consistency between the original and genetic map (Figure 3.4).
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Figure 3.4: Principle of QTL projection
However, QTLproj program has been executed as below and the command’s parameters Ratio and p-value have been kept as default where Ratio=0.25 and p-value=0.5.
$ java org.main.metaqtl.QTLProj −m meta−map/ consensus map . Xml \ −q xml −o meta−q t l / consensus --verbose
3.3.5  Meta-analysis of QTL
	Input
	Consensus map

	Output
	Predicted metaQTL model + choice criteria scores

	Used tool(s)
	MetaQTL package (QTLClust program), Gaussian mixture model


The meta-analysis of QTL aim is to detect “real  QTL” among those reported in different mapping experiments. This procedure is mainly based on the clustering of QTL into sub-clusters using statistical models according to most likelihood, and the determination of the clustering model that better fit the input QTL distribution using particular criterion scores. Consequently, the QTLs which belong to a same sub-group will form a single consensus QTL entitled “meta-QTL”. It is important to note that only regions with two overlapped QTLs or more could be included in the clustering procedure. MetaQTL package implements a Gaussian mixture model which uses a Expectation-maximization approach to predict its parameters. In order to execute the clustering, the command QTLClust could be used as fellow: 

$ java org.main.metaqtl.QTLClust −q meta−qtl / consensus map.xml \ −k 10 −c 1 −o meta−qtl /meta-analysis1 --verbose
Here “-k 10” means that models starting from K=1 to K=10 are to be considered in meta-analysis, estimating their parameters using four different criteria AIC, AICc, AIC3 and BIC.
· AIC = -2L( X̂ , Σ; Θ [K] ) + 2 ν (Ref4)
· AICc = -2L( X̂ , Σ; Θ [K] ) + 2 ν + (2 ν ( ν + 1 )/q − ν − 1) (Ref4)
· AIC3 = -2L( X̂ , Σ; Θ [K] ) + 3 ν (Ref4)
· BIC = -2L( X̂ , Σ; Θ) + ν log(q) (Ref4)
· EIC ≈ AIC - K + 1 (Ref4)
where ν = 2K - 1 and represents the number of free parameters of the model, and q the number of QTL in each chromosome [15].
Finally the best QTL model that fit each chromosome has been selected based on the scores of used choice criteria and calculated weight of evidence, also information relative to each predicted MetaQTL such as position, confidence interval and number of original QTLs have been extracted.
3.4  Results and discussion

3.4.1  Data quality control
InfoMap command’s results provided summary statistics on genetic maps such as number of markers in each map, also the average number of markers and average interval marker distance in each chromosome (Table 3.3)

	Chromosome
	Number of markers
	Average number of markers
	Average interval marker distance

	1
	NCSL=32
UMN=15
Barley_reference=87
	44.67
	4.31

	2
	NCSL=45
UMN=42 
Barley_reference=160 
	82.33
	3.85

	3
	NCSL=31
UMN=23 
Barley_reference=53 
	35.67
	5.67

	4
	NCSL=16
UMN=19
Barley_reference=58 
	31.00
	8.09

	5
	NCSL=33 
UMN=24
Barley_reference=137
	64.67
	5.94

	6
	NCSL=47
UMN=22
Barley_reference=80
	49.67
	4.77

	7
	NCSL=28 
UMN=23 
Barley_reference=127 
	59.33
	5.41


Table 3.3: InfoMap basic statistics information 
Table 3.4 below summarizes information on common markers number between different mapping experiments in each chromosome or linkage group, number of genetic maps comparisons which exceed one common marker sequence and results of connected attribute. InfoMap command’s results showed the existence of common markers that link genetic maps in each chromosome, however none of common marker sequence exceeded a single common sequence which means absence of marker inversions and consistency of markers order. All chromosome’s connected attribute are equal to “TRUE” except the chromosome 1 due to a lack of important number of common markers (3 common markers). It is important to note that the fact that “connected” is equal to true means that a path of common markers which connects different maps relative to a same chromosome. 
	Chromosome
	Number of common marker
	Number of  comparisons exceeding one common sequence
	Connected attribute

	1
	3(0.08)
	0
	FALSE

	2
	7(0.07)
	0
	TRUE

	3
	7(0.07)
	0
	TRUE

	4
	5(0.08)
	0
	TRUE

	5
	7(0.06)
	0
	TRUE

	6
	4(0.02)
	0
	TRUE

	7
	8(0.04)
	0
	TRUE


Table 3.4: List of common markers and connected attribute’s value between different maps in each chromosome
In other words, a consensus map of the chromosome can be build in next step of the meta-analysis workflow which aims to the creation of a consensus map of each chromosome. Consequently, chromosome 1 (highlighted in red) has been discarded from the study.

3.4.2  Meta-analysis of QTL
Table 3.5 below shows different criteria estimates after applying a Gaussian mixture model to cluster the observed QTL. It represents AIC, AICc, AIC3, BIC and AWE criteria scores on different number of k estimated (QTL model). The values between brackets represent the weights of evidence which can be interpreted as the probability that model K is in fact the best model for the data. The more the criterion’s score is less, the more the model is more likely to be the model that best fit the chromosome’s QTL distribution. 
	Chrom
	Model (K=n)
	AIC
	AICc
	AIC3
	BIC
	AWE

	2
	K=1
	3143.68 (0)
	3143.9 (0)
	3144.68 (0)
	3144.67 (0)
	3150.67 (0)

	
	K=2
	780.99 (0)
	782.49 (0)
	783.99 (0)
	783.98 (0)
	774.53 (0)

	
	K=3
	428.14 (0)
	432.42 (0)
	433.14 (0)
	433.12 (0)
	419.91 (0)

	
	K=4
	223.17 (0)
	232.5 (0)
	230.17 (0)
	230.14 (0)
	224.71 (0)

	
	K=5
	194.65 (0.39)
	207.8 (0.9)
	203.65 (0.71)
	203.61 (0.71)
	201.67 (0.99)

	
	K=6
	194.9 (0.35)
	227.9 (0)
	205.9 (0.23)
	205.85 (0.23)
	210.87 (0.01)

	
	K=7
	195.8 (0.22)
	256.46 (0)
	208.8 (0.05)
	208.74 (0.05)
	222.19 (0)

	
	K=8
	199.8 (0.03)
	319.8 (0)
	214.8 (0)
	214.73 (0)
	240.17 (0)

	
	K=9
	203.8 (0)
	509.8 (0.08)
	220.8 (0)
	220.73 (0)
	258.15 (0)

	
	K=10
	207.8 (0)
	212.65.8 (0)
	226.8 (0)
	226.72 (0)
	276.14 (0)

	3
	K=1
	1065.93 (0)
	1067.26 (0)
	1066.93 (0)
	1065.54 (0)
	1070.15 (0)

	
	K=2
	86.16 (0)
	110.16 (0)
	89.16 (0)
	84.99 (0)
	93.81 (0)

	
	K=3
	39.76 (0.49)
	39.76 (0.49)
	44.76 (0.51)
	37.8 (0.47)
	51.35 (0.48)


	
	K=4
	43.76 (0.07)
	43.76 (0.07)
	50.76 (0.03)
	41.02 (0.09)
	63.79 (0)

	
	K=5
	39.95 (0.44)
	39.95 (0.44)
	44.95 (0.46)
	38.00 (0.43)
	51.2 (0.52)

	6
	K=1
	337.8 (0)
	338.47 (0)
	338.8 (0)
	337.88 (0)
	342.96 (0)

	
	K=2
	169.29 (0)
	175.29 (0)
	172.29 (0) 
	169.52 (0)
	174.18 (0)

	
	K=3
	91.92 (0)
	121.92 (0) 
	96.92 (0)
	92.31 (0)
	100.41 (0.01)

	
	K=4
	74.46 (0.75)
	74.46 (0.75) 
	81.46 (0.86)
	75.01 (0.76)
	90.55 (0.9)

	
	K=5
	78.46 (0.1)
	78.46 (0.1) 
	87.46 (0.04)
	79.17 (0.1) 
	104.87 (0)

	
	K=6
	82.46 (0.01)
	82.46 (0.01)
	93.46 (0)
	83.33 (0.01)
	119.19 (0)

	
	K=7
	86.46 (0)
	86.46 (0)
	99.46 (0)
	87.49 (0)
	133.5 (0)

	
	K=8
	77.94 (0.13)
	77.94 (0.13)
	85.94 (0.09)
	78.58 (0.13)
	95.00 (0.1)


Table 3.5: Scores of choice criteria models in predicting QTL clusters
Clearly, it can be concluded that different choice criteria  showed a perfect agreement in predicting the QTL model that most fit each chromosome (highlighted in red). As results k=5, k=3, k=4 have been the predicted clusters for chromosome 2, 3 and 6 respectively. Otherwise, no results have been found in other chromosomes (chromosome 4, 5 and 7).
12 meta-QTL (consensus QTL) have been predicted in total. Table 3.6 lists the detailed results of the detected metaQTL such as its position, confidence interval…
	metaQTL
	Position (cM)
	Weight
	Distance to next QTL
	95% CI
	Number of original QTLs

	mQTL.C2.1
	19.81
	0.05
	9.61
	11.53
	1

	mQTL.C2.2
	69.21
	0.2
	3.16
	8.25
	5

	mQTL.C2.3
	92.42
	0.29
	3.02
	7.86
	6


	mQTL.C2.4
	113.71
	0.11
	5.2
	6.83
	6

	mQTL.C2.5
	139.79
	0.35
	-
	0.3
	7

	mQTL.C3.1
	60.8
	0.2
	8.89
	3.63
	1

	mQTL.C3.2
	106.49
	0.6
	4.54
	10.03
	3

	mQTL.C3.3
	131.51
	0.2
	-
	4.86
	1

	mQTL.C6.1
	17.5
	0.37
	4.69
	13.82
	3

	mQTL.C6.2
	52.64
	0.13
	4.79
	10.01
	2

	mQTL.C6.3
	65.58
	0.13
	5.28
	2.43
	1

	mQTL.C6.4
	97.55
	0.37
	-
	11.77
	3


Table 3.6: Results of detected metaQTLs
Confirmation of confidence intervals reduction after meta-analysis
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In order to confirm confidence after the execution of meta-analysis of QTL, box and whiskers plots have been created (Figure 3.5) using confidence intervals values before and after executing meta-analysis. The spreads of distribution, the mean values and inter-quartiles of both plots have been compared.  
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Figure 3.5: Box and whiskers plots of confidence intervals distribution before (left) and after (right) executing meta-analysis
From the box and whiskers plots above it can be concluded that the confidence intervals distribution after meta-analysis spreads between a value of 0 cM and 14 cM, which is lower comparing to the spread before meta-analysis (between 2 cM and 62 cM approximately). Also the median of confidence intervals values has been decreased from 13 cM approximately to 8cM, which means that confidence intervals after meta-analysis are on average lower than confidence intervals before executing meta-analysis. Also the interquartile range of confidence intervals values before meta-analysis (9.5 cM approximately) is larger comparing to the interquartile range after meta-analysis (7 cM approximately), which means that consistency has been increased after meta-analysis execution.

4.  Meta-analysis of QTL and ontology-based candidate gene prioritization of flowering-time related traits in maize 

4.1  Methods and materials

4.1.1  Datasets source
MetaQTL package provided public QTL data related to 18 experiments on flowering-time related traits in maize and a demonstration meta-analysis study has been conducted on chromosome 8 only. Published maize QTL are associated with four different traits: days to pollen shed, silking date, plant height and leaf number (Table 4.1). Each experiment is characterized by its genetic map, list of detected QTL and some basic information relative to the mapping population, population size used, statistical method… An XML database was constructed integrating input mapping experiments data using MetaDB command of MetaQTL package.
	Trait
	Acronym
	Number of QTL

	Days to pollen shed
	DPS
	100

	Silking date
	SD
	72

	Plant height
	HT
	112

	Leaf number
	LN
	12

	
	Total
	296


Table 4.1: List of flowering-time related traits and relative number of QTL
4.1.2  Meta-analysis of QTL
	Input
	XML QTL database

	Output
	Predicted metaQTL model + choice criteria scores

	Used tool(s)
	MetaQTL package (infoMap, ConsMap, QTLproj, QTLClust)


Before integrating the genetic maps, it is necessary to check different chromosome maps connectivity to ensure that a consensus map of every chromosome can be created, and also verify markers order consistency and remove inverted markers. To do so, InfoMap command has been executed on input genetic data representing maize’s ten chromosomes. Table below shows summary results of infoMap command. In case of detected markers inversions, only markers that have low occurrence have been discarded from the study.
	Chromosome
	Number of  comparisons exceeding one common sequence
	Connected

	1
	11
	TRUE

	2
	03
	TRUE

	3
	00
	TRUE

	4
	01
	TRUE

	5
	09
	TRUE

	6
	00
	TRUE

	7
	01
	TRUE

	8
	00
	TRUE

	9
	00
	TRUE


	10
	00
	TRUE


Table: List of pairwise map comparisons and connected attribute’s value of each chromosome
Many marker inversions have been detected especially in chromosome 1 and chromosome 5. In order to regulate the problem of markers inconsistency, 19 inverted markers with low occurrence (threshold = 2) were discarded from different genetic maps. In order to apply markers removal changes, the command MetaDB has been runned back to recreate the XML databse. 
The consensus map was created using a Weighted least square strategy which is implemented in ConsMap command. In order to increase the accuracy of the consensus map construction, a maize reference genetic map has been downloaded from the MaizeGDB web site and converted into XML representation, so it can be compared with the generated consensus map. 102 inversed markers with the reference map have been detected, and 46 singleton ones have been discarded from the study in order to rebuild the final version of the consensus map (Table 4.2).
	Chromosome
	Created consensus map density
	Number of inversed markers comparing to reference map

	1
	175
	12 (8)

	2
	137
	19 (9)

	3
	118
	18 (6)

	4
	118
	14 (8)

	5
	126
	6 (3)

	6
	119
	11 (5)

	7
	109
	9 (3)

	8
	153
	8 (1)

	9
	98
	5 (3)

	10
	-
	-

	Total
	1153
	102 (46)


Table 4.2: Consensus VS. reference maps comparison. Between brackets the number of singleton markers among the detected inversions in each chromosome.
In total 102 inversed markers with the reference map have been detected, and 46 singleton ones have been discarded from the study in order to rebuild the final version of the consensus map. 
After the consensus map being built, all the observed QTL data from different experiments were projected using QTLproj of MetaQTL package, which implements a dynamic algorithm to find the optimal position of each QTL in the target map (consensus map).

Finally a meta-analysis of QTL was executed using a Gaussian mixture model clustering to detect QTL clusters that will represent the consensus QTL  or meta-QTL.
4.1.3  Genome version integration
	Input
	MetaQTL maps + GO structural/functional annotations + Anchors file

	Output
	Genes ID flanking detected MetaQTL regions

	Used tool(s)
	BiomercatorV4. software + Maize Genome Database


A maize genome version that corresponds to a structural annotation, a functional annotation and anchors between the genetic maps and the sequence was downloaded from the maize sequence database FTP site, and integrated into BiomercaotorV4. The physical location (start and end) of each detected metaQTL has been predicted and the list of flanking genes (GO annotated) was exported in GFF3 format using the GO representation analysis utilities of BiomercatorV4 (Figure 4.1).
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Figure 4.1:  The GO representation analysis utilities interface of BiomercatorV4

4.1.4  Gene set enrichment analysis
	Input
	Genes ID flanking detected MetaQTL regions

	Output
	Predicted GO enriched terms

	Used tool(s)
	Linux bash, AgriGO tool


First, the exported lists of genes were processed using linux commands and merged in order to prepare the input data for next analysis, namely gene set enrichment analysis (GSEA) which focuses on the identification of classes (groups of genes) that are over-represented, and may strongly have association with our trait of interest. After processing, the gene list was uploaded to agriGo which is a web-based tool and database for gene ontology analysis and GSEA with a special focus on agricultural species (35 species including 280 datatypes). As our input list is compared with the previously computed background, the GSEA was executed using Fisher and hypergeometric methods. The GSEA was executed using parameters:
Statistical method: Fisher and hypergeometric 
Multi-test adjustment method: Yekutieli (FDRunder dependency)
Significance level: 0.05 (default)
Minimum number of mapping entries: 5 (default)
Gene ontology type: Complete GO
It is important to note that only terms under the cut-off of the significant level will be highlighted, and emphasized in analysis results. The minimum number of mapping entries parameter means that GO annotations that do not appear in at least the selected number of entries will not be shown.
4.2  Results
4.2.1  Meta-analysis of QTL
Table 4.3 below summarizes the QTL clustering results of 10 maize chromosomes using five different criterion models (AIC,AICc,AIC3,BIC,AWE). The values between brackets represent the weights of evidence which can be interpreted as the probability that model K is in fact the best model for the data.

	Chrom
	AIC
	AICc
	AIC3
	BIC
	AWE

	1
	7(0.45)
	7 (0.93)
	8 (0.41)
	8 (0.42)
	7 (0.97)

	2
	6 (0.85)
	6 (-)
	6 (0.93)
	6 (0.96)
	6 (0.47)

	3
	5 (0.45)
	5 (0.87)
	5 (0.73)
	5 (0.81)
	5 (1.0)

	4
	4 (0.85)
	4 (0.42)
	4 (0.91)
	4 (0.90)
	4 (0.63)

	5
	5 (0.62)
	5 (-)
	5 (0.84)
	5 (0.82)
	5 (0.93)

	6
	4 (0.77)
	4 (-)
	4 (0.91)
	4 (0.84)
	4 (1.0)

	7
	4 (0.86)
	4 (-)
	4 (0.95)
	4 (0.91)
	4 (1.0)

	8
	5 (0.86)
	5 (0.98)
	5 (0.95)
	5 (0.97)
	5 (1.0)

	9
	5 (0.65)
	3 (0.35)
	5 (0.42)
	5 (0.5)
	3 (0.90)

	10
	4 (0.72)
	4 (0.98)
	4 (0.88)
	4 (0.88)
	4 (0.96)


Table 4.3: Summary of meta-analysis results represented by the model predicted by each criterion on each chromosome. Between brackets the weight of evidence of each predicted model.
It can be concluded that the majority of choice criterion results of QTL clusters were in agreement except for chromosome 1 and 9 that have two predicted best models. Note that we have 5 model choice criterion, so we can chose the best model according to its frequency (The one that has higher occurrence among the prediction models). The weights of evidence of each model were also considered as a choice parameter. 
In total, 49 meta-QTL have been detected, ranging from 4 to 7 meta-QTL for each chromosome. Information such as position, weight, number of original QTL have been retrieved.
Confirmation of confidence intervals reduction after meta-analysis
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In order to confirm confidence after the execution of meta-analysis of QTL, box and whiskers plots have been created (Figure 4.2) using confidence intervals values before and after executing meta-analysis. The spreads of distribution, the mean values and inter-quartiles of both plots have been compared.  
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Figure 4.2: Box and whiskers plots of confidence intervals distribution before (left) and after (right) executing meta-analysis

From the box and whiskers plots above it can be concluded that the confidence intervals distribution after meta-analysis spreads between a value of 5 cM and 53 cM, which is lower comparing to the spread before meta-analysis (between 5 cM and 97 cM approximately). Also the median of confidence intervals values has been decreased from 25 cM approximately to 12.5 cM, which means that confidence intervals after meta-analysis are on average lower than confidence intervals before executing meta-analysis. Also the interquartile range of confidence intervals values before meta-analysis (23 cM approximately) is larger comparing to the interquartile range after meta-analysis (10 cM approximately), which means that consistency has been increased after meta-analysis execution.
4.2.2  Gene set enrichment analysis
Table 4.4 shows results of projection of the maize genome version on the consensus created map with projected metaQTL. We focused on the detected metaQTL confidence interval regions, converted the genetic location to a physical one and retrieved the genes (GO annotated) flanking each confidence interval in GFF3 file format.
	MetaQTL
	Genetic interval (cM)
	Corresponding physical location in genome sequence (kbp)
	Number of flanking genes in the region

	MQTL.C1.1
	21.11 - 32.29
	23104 - 35660
	283

	MQTL.C1.2
	47.60 - 56.20
	53239 - 62782
	199

	MQTL.C1.3
	83.22 - 92.28
	93922 - 103967
	112

	MQTL.C1.4
	121.18 - 127.56
	136112 - 143645
	58

	MQTL.C1.5
	142.39 - 151.75
	160220 - 170265
	122

	MQTL.C1.6
	166.23 - 177.60
	187342 - 199898
	300

	MQTL.C1.7
	229.62 - 242.50
	259165 - 272725
	328

	MQTL.C2.1
	0.06 - 7.94
	0000 - 8693
	392

	MQTL.C2.2
	20.19 - 40.77
	22522 - 45833
	573

	MQTL.C2.3
	50.58 - 64.55
	57292 - 73096
	178

	MQTL.C2.4
	75.14 - 83.14
	84950 - 93642
	57


	MQTL.C2.5
	88.87 - 97.72
	100754 - 110632
	110

	MQTL.C2.6
	123.43 - 152.01
	140266 - 172270
	488

	MQTL.C3.1
	44.21 - 53.95
	49523 - 60356
	140

	MQTL.C3.2
	68.51 - 76.15
	76606 – 84731
	37

	MQTL.C3.3
	89.75 - 95.99
	100594 - 107558
	46

	MQTL.C3.4
	117.78 - 130.54
	131933 - 145861
	255

	MQTL.C3.5
	165.55 - 169.18
	185712 - 189581
	122

	MQTL.C4.1
	50.17 - 66.14
	63588 - 83711
	242

	MQTL.C4.2
	85.78 - 98.82
	108663 - 125164
	141

	MQTL.C4.3
	109.55 - 115.98
	139250 - 146896
	98

	MQTL.C4.4
	121.47 - 158.11
	154141 - 200423
	1160

	MQTL.C5.1
	19.42 - 24.20
	20689 - 25782
	111

	MQTL.C5.2
	69.98 - 83.80
	75166 - 90054
	235

	MQTL.C5.3
	93.8 - 97.87
	100948 - 104579
	16

	MQTL.C5.4
	123.95 - 140.37
	133629 - 151059
	224

	MQTL.C5.5
	145.39 - 206.56
	156868 - 217873
	1734

	MQTL.C6.1
	20.15 - 43.17
	19455 - 41166
	250

	MQTL.C6.2
	76.70 - 88.05
	74155 - 84869
	155

	MQTL.C6.3
	119.71 - 133.55
	115321 - 128573
	278

	MQTL.C6.4
	155.16 - 156.64
	149719 - 151129
	48

	MQTL.C7.1
	55.19 - 62.31
	55681 - 62457
	25

	MQTL.C7.2
	75.91 - 84.35
	76598 - 84552
	70

	MQTL.C7.3
	108.99 - 125.37
	110183 - 126681
	259

	MQTL.C7.4
	147.81 - 170.89
	148777 - 172346
	791

	MQTL.C8.2
	61.58 - 68.30
	58891 - 65044
	82

	MQTL.C8.3
	82.42 - 86.14
	78814 - 82037
	41

	MQTL.C8.4
	113.94 - 123.56
	108992 - 118075
	157

	MQTL.C8.5
	156.19 - 177.86
	149718 - 170227
	754

	MQTL.C9.1
	12.04 - 26.35
	11495 - 25080
	374

	MQTL.C9.2
	44.91 - 63.74
	42845 - 60872
	193

	MQTL.C9.3
	70.09 - 75.41
	67142 - 71844
	40

	MQTL.C9.4
	126.67 - 179.88
	111554 - 126707
	320

	MQTL.C9.5
	126.56 - 163.03
	121482 - 156489
	1086

	MQTL10.1
	18.48 - 36.77
	18023 - 36296
	192

	MQTL10.2
	69.21 - 74.37
	69337 - 74093
	75

	MQTL10.3
	86.48 - 98.32
	86609 - 98374
	198

	MQTL10.4
	109.53 - 118.00
	109889 - 118149
	165


Table 4.4: Results of maize genome version integration 
As our input genes list is compared to the previously computed background, two methods Fisher and hypergeometric were used for GSEA execution. After comparison of the different outputs, methods showed consistency of results. The graphical images below
(Figure 4.3; Figure 4.4) are GO hierarchical images containing all statistically significant terms of different gene ontologies. The nodes are classified into ten levels which are associated with corresponding specific colors. The smaller the term’s q-value (value of the multiple-test-adjusted p-value), the more it is statistically significant, and the more its appropriate  node is darker and redder. Inside each node of the significant term, the information includes: GO term, q-value, GO description, item number mapping the GO in the query list and background, and total number of query list and background.
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Figure 4.3: GO hierarchical image of statistically significant terms detected in the biological process ontology
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Figure 4.4: GO hierarchical image of statistically significant terms in the molecular function ontology
The biological process ontology showed many significant GO terms with different levels. A very high significance (level 9) has been detected in “cellular nitrogen compound metabolic process” (GO:0034641), also three average level (level 4 to 7) significant terms have been detected: “cellular carbohydrate metabolic process” (GO:0044262), “macromolecule modification” (GO:0043412) and “protein modification process” (GO:0006464). The molecular function ontology showed high significance (level 7) in association with “transferase activity” (GO:0016740), also an average significance (level 5) with “protein tyrosine kinase activity” (GO:0004713), and five significant terms (level 1 to 3) have been detected. No significant terms have been detected in relation with “Cellular Component“ ontology. Table 4.5 summarizes information about the detected 16 significant GO terms.

	Go term
	Ontology
	Description
	Input/ Reference
	P-value
	q-value

	GO:0034641
	P
	Cellular nitrogen compound metabolic process
	163/373

	1.9e-15
	7.5e-12

	GO:0043412
	P
	Macromolecule modification
	519/2069
	1.7e-06
	0.0017

	GO:0006464
	P
	Protein modification process
	508/2013
	1.3e-06
	0.0017

	GO:0044262
	P
	Cellular carbohydrate metabolic process
	155/493
	1.3e-06
	0.0017

	GO:0044267
	P
	Cellular protein metabolic process
	828/3535
	1e-05
	0.008

	GO:0008152
	P
	Metabolic process
	2597/12161
	2.9e-05
	0.019

	GO:0006468
	P
	Protein amino acid phosphorylation
	382/1528
	5.5e-05
	0.027

	GO:0044237
	P
	Cellular metabolic process
	1974/9105
	4.9e-05
	0.027

	GO:0044238
	P
	Primary metabolic process
	2176/1013
	0.0001
	0.046

	GO:0016740
	F
	Transferase activity
	885/3613
	7.7e-09
	2.2e-05

	GO:0004713
	F
	Protein tyrosine kinase activity
	351/1313
	9.6e-07
	0.0014

	GO:0003824
	F
	Catalytic activity
	2428/11249
	5.6e-06
	0.0053

	GO:0004674
	F
	Protein serine/ theronine kinase activity
	369/1430
	7.9e-06
	0.0055

	GO:0016301
	F
	Kinase activity
	474/1909
	1.2e-05
	0.0068

	GO:0016773
	F
	Phosphotransferase activity, alcohol group as acceptor
	453/1824
	1.9e-05
	0.008

	GO:0004672
	F
	Protein kinase activity
	391/1552
	2.6e-05
	0.01


Table 4.5: List of 16 most detected significant GO terms
5.  Overall conclusion and future work

Studies with aim to detect QTL regions are more and more increasing which make public databases full of data. Data availability is and public dataset sharing represent an important factor to ensure a successful integration of different results studies. However data sharing concept is rarely applied and research centers choose to keep their data private. We believe that data integration approaches such as meta-analysis method can greatly help in conducting such studies by providing ready-to-use programs that implement state-of-the-art statistical models capable of establishing consensus information and applying clustering algorithms with the goal to increase accuracy o detection and narrowing down confidence intervals for better control of candidate gene analysis.
Nowadays positional cloning of identified QTL demands expensive resources and long time. Thanks to the advance made in computational genomics tools, statistical inferred information can play a vital alternative role through association studies of candidate genes. Candidate gene analysis efficiency is really dependent to accuracy and exactitude of QTL confidence intervals detection which make meta-anlysis and QTL integration an important approach for an increased study’s quality resolution.   
With the availability of genomes sequence resources and structural/functional annotations, it was possible in our maize study to use bioinformatics tools in order to retrieve genes flanking each QTL region and apply further analysis such as gene enrichment analysis in order to extract useful information and meanings. For this reason we believe that gene ontology annotations and bioinformatics tools able to deal with ontology-based information can ensure promising future to phenotype-genotype linkage discoveries.
This thesis has also highlighted some important points that need to be studied and developed in depth in order to continue the advance in this field. However the effort done to develop methods and strategies that can deal with QTL limitations, the field stills orphan computationally due to the lack of research groups and computational scientists that are interested in innovating more tools and softwares with diverse functionalities and more implemented models. As a first attempt toward advance, it would be interesting to integrate different computational tools into a global meta-analysis framework. To do so, Further developments are needed to combine onto a consensus model the different scale of meta-analysis and candidate gene mining: from data collection to candidate genes retrieval and analysis.
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