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1. Summary 

Actual evapotranspiration (ETa), including surface evaporation and plant transpiration, is 

required to understand both hydrological and ecological processes between the land surface and 

the atmosphere. Reliable spatio-temporal distribution of ETa is crucial to demonstrate the 

hydrological status of complex landscapes for water resources planning and monitoring, efficient 

irrigation scheduling, and climate change research. Due to complex land-plant-atmosphere 

interactions and natural variability in topography, soil moisture, and vegetation type, estimation of 

ETa is the most challenging among all of the components of the hydrologic cycle, especially in 

regions where water is scarce or fluctuates seasonally. 

The continuously emerging availability of high-resolution satellite imagery at affordable 

prices, or even free of charge, has made water flux information derived from Remote Sensing (RS), 

specifically Evapotranspiration (ET), a reliable source for water accounting of agricultural water 

use over large areas (e.g., sub-national, national or basin level). 

In fact, remotely-sensed water-accounting products are currently getting implemented in 

various Ministries of the focus countries of the Near East and North Africa (NENA) Water Scarcity 

Initiative (WSI) and at the same time beneficiary of the Sida Project on “Implementing the 2030 

Agenda for water efficiency/productivity and water sustainability in NENA countries” 

(GCP/RNE/009/SWE). 

Some databases of ET at operational spatial and temporal scales are being made publicly 

available for several regions of the world, including the NENA Region. For Example; FAO Water 

Productivity Open-access portal (WaPOR), ET Ensemble (IHE-Delft), GloDET (Water for Food, 

Daugherty Global Institute, Nebraska) and OpenET (https://etdata.org/ under preparation); 

Simplified Surface Energy Balance (SSEB), USGS/NASA . Meanwhile local institutions also 

generate their own databases using models like SEBAL (Surface Energy Balance Algorithm for 

Land) or METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration). 

However, the weak point of all these databases is that they suffer from a general limited and 

scattered field validation and, more specifically, virtually no validation at all in the NENA Region. 

https://wle.cgiar.org/
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If water accounting has to provide the evidence base for a strategic planning of water resources, 

if large-scale crop water-productivity gaps needs to be benchmarked and monitored, if water 

conservation strategies have to be developed based on water consumptive limits, then RS ET 

determinations needs to carry over acceptable degree of accuracy. 

To define the accuracy of RS ET data, a comparison with field actual ET measurements is 

required. This comparison will not only serve to define the accuracy of RS ET data but also to 

provide the opportunity for calibrating and validating RS algorithms calculating ETa. 

The overarching objective is to establish and operate a Regional Network of specialized 

Institutions, within the five countries of reference, to conduct field measurements of actual ET, 

over selected crops and for at least two crop seasons, in order to evaluate the accuracy of existing 

RS based ET estimates. 

As this project is being implemented in Egypt, Jordan, Lebanon, Morocco, and Tunisia, some 

national institutions such as IAV and INGRAF generating ETa using well known energy balance 

system algorithms e.g., SEBAL (Surface Energy Balance Algorithm for Land), METRIC 

(Mapping Evapotranspiration at high Resolution with Internalized Calibration), SEBS (Surface 

Energy Balance System), unfortunately suffering from a general limitation of scattered field 

validation and, virtually no validation at all in the NENA Region. Therefore, the ETa measurements 

established from the CORDOVA stations network could effectively be used to validate the ETa in 

the field and to use the measured data to calibrate the remote sensed based estimations. 

The regional network has been established by setting up communications and agreements with 

participating countries. These agreements included the terms of references and field activities to 

be implemented. We have agreed with all partner is to unify the crop and method of measurement 

using CORDOVA system as standard protocol. Parallel to the standard protocol of ET 

measurement, double check with other protocols such as energy balance and lysimeter are also 

used to calibrate the CORDOVA station to make sure about the accuracy and reliability of 

collected data. 
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2. Introduction 

Actual evapotranspiration (ETa) is a major component of the water cycle. Estimating ETa of 

crops is critical for several applications in the management of water resources: to derive water 

productivity, to deploy water accounting, to strategically plan water resources, to operate 

irrigation, etc.  

With the continuous emerging of freely-available high-resolution satellite imageries, 

agricultural water management is offered the potential to obtain ETa from Remote Sensing (RS), 

and therefore addressing large areas and reducing enormously the costs of ETa determinations. 

However, the RS ETa determinations need to have a degree of accuracy (or uncertainty) 

commensurate to the scale (e.g. farm, national, basin, etc.) and type of application for which ETa 

data are used (e.g., irrigation scheduling, crop water productivity, national water accounting, basin-

level water allocation, etc.). 

To define the accuracy of RS ETa data, a comparison with field (or ground) crop ETa 

measurements is required. Moreover, this comparison will provide the opportunity for calibrating 

and validating RS algorithms calculating ETa. However, measuring field ETa is not an easy task 

and several methods exist, each one with its own degree of sophistication, skills requirement of 

the operator, area-sampling representativeness (single point, some m2, ha, etc.), accuracy and 

costs. A further not-easy task is the comparison itself, between ‘RS ETa’ and the ‘field ETa’, due 

to the mismatch between the ‘area-sampling representativeness’ of the field method and the 

‘ground resolution’ of the RS determination. 

ICARDA is in charge of coordinating, operating and backstopping the members of the NENA-

ETNet, and this report represents a “standard protocol” of methods and procedures of field ETa 

measurements that will be adopted by the members of the Regional Network.  It will serve as a 

guideline for the participating country managers, scientists, technicians and field operators 

involved in the Regional Network.  
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3. Actual evapotranspiration by satellite remote sensing 

Among the various energy budget components which are responsible for the water movement 

within the surface and Earth’s atmosphere, the comprehensive information of both latent (LE) and 

sensible (H) heat fluxes together with the soil moisture content, are pivotal to several various 

environmental and natural applications, as well as the observations of crop water requirement and 

consumption, growth and productivity of plants, along with development and management 

framework of irrigation networks (Brutsaert, 1982; Gowda et al., 2008; Su et al., 2005). The 

accuracy of the models used in weather forecasting can also be significantly improved by using 

the information of turbulent fluxes in the modelling of crucial atmospheric and hydrological 

process (Hwang and Choi, 2013). Furthermore, the quantitative and qualitative data on these 

parameters is exceedingly vital for scrutinizing of desertification and land degradation on a large 

scale (Ershadi et al., 2014a; Fisher et al., 2008). Since the water movement through land plant and 

atmosphere interaction is strongly linked with the land use changes, therefore planning and 

management of land use patterns are closely related for the sustainable water resources (Allen et 

al., 1998). There are several variations in the factors such as climate, human interventions along 

with the land use changes which strongly affect the water cycle. Thus, estimating the energy and 

water budget above plant’s canopies is very important for understanding the water cycles, as well 

to improve the accuracy and of models which could be deployed for quantifying and enhancing 

the agricultural productivity at regional scales (Singh et al., 2008; Teixeira et al., 2009). 

In developing countries which have entirely agriculture-based economies, frequent 

modifications in land use land cover (LULC) system are witnessed regulated with the rapidly 

growing populations. Two major categories in LULC changes are normally fall in modification 

and conversion whereas the conversion is the change from one land use category to another 

category, however, modification is the change, due to functional and physical attribute, within a 

category of land cover and use. These drastic changes in LULC framework has drastic impact on 

soil water and moisture contents, biodiversity and on the environment, which ultimately impacting 

the food and fibber production from the agricultural (Allen et al., 1998). That’s why a better 

understanding of impacts of changes in land cover on the movement of water cycle will also help 

https://wle.cgiar.org/
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policy makers to define approaches for minimizing the undesirable impacts of the future changes 

in land use and cover. 

The key process of removing water from a watershed is evaporation and the process by which 

water removed from the crop or plant surface or any other living surface which contains water 

contents is known as transpiration. Thus, evapotranspiration (ET) is an important component of 

water cycle and primarily based on the combine process of both evaporation and transpiration. 

Being the single biggest flux of outgoing water from the Earth’s surface; the accurate ET 

characterization of ET is very crucial to advance our better understanding of a range of climatic, 

ecosystem and hydrological processes and is useful in various applications, e.g., monitoring of 

drought, water resource management, application of hydrological model, weather forecasts and 

improving the growth in agricultural system (Li et al., 2009; Senay et al., 2011). ET on regional 

basis is accounted for more than half of the rainfall while in semi-arid areas, it is nearly equal to 

rainfall . Thus, it is very crucial to acquire a deep understanding of the LULC and the hydrological 

cycle interactions by accurately quantifying the ET. However, it is the one of the most difficult 

water cycle components to map or characterize especially at large spatial scale varying from an 

irrigation scheme to a regional or continental level for strategic assessment of water resources 

management considering the impact of land use changes on those available water resources (Liaqat 

and Choi, 2015b; Liou and Kar, 2014; Wang and Dickinson, 2012). 

The field-based instruments which utilized for measurement of H, LE fluxes and soil moisture, 

provides certain advantages. There are also several conventional approaches exist such as Bowen 

ratio (BR), Weighing Lysimeter, and Eddy Covariance (EC) measurements which can be applied 

at point scale to any land use system for the measurement of energy budget fluxes (Gowda et al., 

2008; Kalma et al., 2008; Li et al., 2009). On the other hand, the employment of ground-based 

instruments is often costly, laborious and sometimes subjected to instrumentation error while only 

able to provide localized measurement of soil moisture and surface energy fluxes. Another major 

problem with all existing conventional approaches is that they either have the scientific limitation 

or could be very expansive to extend their quantification to large regional spatial and temporal 

scale especially in the regions with variability of climatic conditions. This is because these 

traditional techniques are more applicable over the homogeneous area where they provide the 

https://wle.cgiar.org/
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accurate measurement of ET. However, their accuracy also reported to be compromised due to 

land surface heterogeneity and complex hydrological process as well as the requirement of several 

land surface components limits their estimations of ET to large spatial scale (Byun et al., 2014). 

Integrated ancillary field knowledge with imageries of remote sensing is mostly able to give 

synoptic and repetitive views of essential components characterizing soil moisture, interaction of 

land and surface, and surface energy fluxes and for this purpose several approaches have been 

developed using the remote sensed data.  

In the past few decades, the advances in remote sensing has made it possible to figure out 

which system can provide spatially explicit information of surface fluxes on large spatio-temporal 

scale. To map ET patterns at meso and reginal scale on Earth’s surface, satellite remote sensing 

imaginary have offered promising source of data and the direct link establishes with the help of 

surface temperature between parameters of Earth energy balance and surface radiation (Allen et 

al., 2011; Byun et al., 2014; Gowda et al., 2013). Due to their ability to give synoptic and repetitive 

views on spatial scale without any disturbance and associability problem of the surveyed area, 

remote sensing approaches become attractive for retrieval of these crucial components (McCabe 

et al., 2011). Therefore, several approaches have been developed using freely and often available 

date from several types of remote sensing imageries whereas the methodologies of those 

approaches is mostly based on the combination ancillary atmosphere and surface measurements to 

estimate the surface energy and water budget components. The variation in soil moisture status 

and other surface water fluxes have been evident by combined use remote sensed data from thermal 

and optical infrared radiometers. Thermal infrared remote sensed data has been indicated as useful 

for analysing the biophysical characteristics of the landscape as well as modelling of the ecological 

processes in the landscape (Boegh et al., 2009). These techniques vary from purely numerical 

techniques to more physical-based techniques on the basis of equation of energy balance and 

knowledge acquired from the “scatter plot” relationships of vegetation indices or the crop metrics 

and surface radiant temperature estimations. These critical atmospheric and surface variables are 

fed as forcing parameters to simulate ET and surface fluxes based on the energy equilibrium 

equation. To retrieved land surface temperature (LST), atmospheric temperature and vegetation 

indices, the data embedded in thermal infrared, near infrared and visible band can be used while 

https://wle.cgiar.org/
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the remote sensing approach offers a continuous and large spatial scale coverage rather quick with 

in no time and in most cases free of cost. Land surface fluxes estimated with remote sensing offers 

the robust measurement from a resolution range from several km2 to few cm2 from certain satellites 

(Tasumi et al., 2005).  

Satellite remote sensing also offers the continuous spatial scale data for surface albedo, 

Normalized Difference Vegetation Index (NDVI), surface emissivity, radiometric surface 

temperature and Laef Area Index (LAI), most of them essential for approaches and models which 

partition the available energy. During past few decades, many efforts has been made to incorporate 

the surface temperature by remote sensing along with other crucial parameters e.g. albedo and VI 

into the ET modelling (Liaqat et al., 2016). As a result, many satellite-based ET models has been 

developed varying in mechanism, including input and output parameters and their advantages and 

limitations. Hence, for the better understanding of the computational mechanisms involved among 

different methodologies the rundowns and comparisons of distinctive remote sensing-based ET 

model is essential to choose a particular model for wider scientific application in the fields of water 

resources management. Few examples among the several approaches developed recently are 

reviewed and explained frequently by several studies; for example (Choi et al., 2011; Li et al., 

2006), The survey of progress in crop evapotranspiration modelling and estimation with focused 

on the particular aspects of irrigation interest has provided by (Ershadi et al., 2014b). 

Foundation to the evapotranspiration estimation was laid by Penman, (1948) who originated a 

relationship between outgoing water flux and the meteorological parameters. After that in 20’s 

century, a substantial development was made in process of evapotranspiration with energy balance 

concept. The conventional way to measure the ET requires the meteorological data for the 

numerical equations and model simulations. However, these approaches cannot effectively 

represent the ET at a large scale due to complexity in land cover and topography. At present the 

penman-Monteith equation is most commonly used method to estimate the ET, but this method is 

not applicable at regional scale due to heterogeneity and this is also regarded as point scale method 

which may be not practically able to estimate at large spatial scale. To address the reason of 

applicability over a much larger scale the remote sensing approaches have been developed to 

quantify the ET for shorter time duration.  

https://wle.cgiar.org/


 

 

 

 

10 

 

3.1. Algorithms for estimating actual evapotranspiration 

The remote sensing methods for estimating evapotranspiration are based on the concept of 

energy balance which used the principal parameters derived from the net radiation (Awan et al., 

2016; Choi et al., 2011; Liaqat and Choi, 2015a). Several energy balance algorithms have been 

developed in the recent advancement of satellite remote sensing which are being employed to 

quantify the crop water consumption. Although the developed algorithms have been tested in 

numerous ecosystems across the different parts of the globe by several scientist and reported their 

satisfactory performance but there is still some degree of uncertainties exist in computation of ET. 

The widely used single source surface energy balance algorithms has been reviewed in this report 

to pin point the merits and demerits of the famous methodologies in spatio-temporal quantification 

of land surface ET. 

3.1.1 SEBAL 

The Surface Energy Balance Algorithm for Land (SEBAL) was developed in the Netherlands 

by (Bastiaanssen, 2000; Bastiaanssen et al., 1998) which is a spatial scale image-processing model 

based on the residual of the surface energy balance for the quantification of ET across different 

land use system. The SEBAL was designed to estimate the all the components of energy budget at 

both local and regional scales by utilizing the minimum ground-based information, and yet is 

considered the most promising model currently available within the framework of similar 

approaches used to estimate ET. This model requires physical parameterization to use with the 

empirical relationships designed with its intermediate approach which require the digital image 

information gathered from the satellite remote sensing system measured in the visible, near-

infrared, and thermal infrared radiation, which is further converted to the land surface temperature 

and vegetation indices. The SEBAL model operates on each pixel basis in the imagery for the 

computation of first net radiation (Rn) from the balance of short and longwave radiation which 

was then further used to estimate the latent heat flux (LE) as a residual of the energy balance 

equation. 

The SEBAL model used a generic equation proposed for the estimation of soil heat flux (G) 

that is applicable to all sorts of soil type and land use cover (Bastiaanssen, 2000; Bastiaanssen et 

https://wle.cgiar.org/
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al., 1998). This model has justified its performance not only at field scale showing an accuracy of 

85% and 95% at daily and seasonal scales, respectively in several ecosystem worldwide but also 

on catchment as well on regional scale (Ahmad et al., 2005; Awan et al., 2016). In all of the models 

which are based on energy budget equation, the most difficult part is the estimation of sensible 

heat flux (H) which involves the complex solutions of various parameters to solve the residual 

energy balance. In general, to compute the sensible heat flux, the SEBAL model used two different 

condition for the air temperature located at two different height levels, such as h1 a height which 

should be close to the surface while the h2 which is usually an upper height depending upon the 

crop and meteorological condition of the area. The SEBAL model then consider homogeneous 

meteorological and land surface conditions to determine the value of temperature gradient dT for 

each pixel in the image by assuming the existence of a linear relationship between dT and the 

radiometric surface temperature Ts such as given below: 

                   𝑑𝑇 = 𝑎𝑇𝑠 + 𝑏          (1) 

where dT is the near-surface air temperature difference, “a” and “b” are empirical coefficients 

obtained from the so-called “anchor” pixels for a given satellite image and Ts is the radiometric 

surface temperature (Teixeira et al., 2009). Generally, the two extreme anchor pixels i.e., most wet 

and most dry pixels in entire area of study represent conditions of extreme evaporative behaviour 

within the image. For example, at a “wet (cold)” pixel, the most of the available energy (Rn – G) 

is assumed to be consumed by the evaporation consequently dT assumed to be near zero (dTwet = 

0) which results zero the sensible heat flux (H) for that corresponding pixel. On the other hand, 

evaporation is close to zero at a “dry (hot)” pixel where all the available energy is essentially 

adapted into the sensible heat. The aerodynamic theory for the two extreme anchor pixel conditions 

is then utilized by the model to compute the near surface air-temperature difference, dT (Teixeira 

et al., 2009) as follows: 

                                                      𝑑𝑇𝑑𝑟𝑦 =
𝐻𝑑𝑟𝑦 ×𝑟𝑎 𝑑𝑟𝑦

𝜌𝑎𝑖𝑟 𝑑𝑟𝑦  𝐶𝑝
                                      (2) 

where Hdry (sensible heat flux for the dry anchor pixel W·m−2) and is equal to (Rn − G). 

https://wle.cgiar.org/
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The coefficients “a” and “b” in Equation (1) can be effectively assessed, once the surface-air 

temperature differences for both the extreme condition (i.e., hot and cold anchor pixels) is 

determined. These coefficients “a” and “b”, are then utilized in an iterative setup in the model to 

develop a linear gradient of the surface-air temperature difference dT for each pixel of the image 

by using land surface temperature in Equation (2). In SEBAL model, the hot pixel is chosen from 

an image pixel which is representing an area with least vegetation or displays high surface 

temperature, while the cold pixel is generally choose from a pixel located in well-watered crop 

conditions assuming no stress conditions. With the user defined extreme anchor pixels, the sensible 

heat flux is usually calculated iteratively with corrected roughness length for the stability, while 

this procedure also required an extrapolation of wind speed from ground level to a height of about 

100 to 200 m. Usually, the identification of wet pixels are easily spotted over an area of well-

watered surfaces or over a relatively large, calm water surface, whereas recognizing the dry pixels 

is the foremost vital perspective in SEBAL. Apart from the reasonably well accuracy of the 

SEBAL model, its overall known to be very contextual in terms of anchor pixel selection as 

reported in a recent study (Singh et al., 2008; Timmermans et al., 2007), as they stated that some 

time depending upon short area of interest the non-existence of extreme condition may not fully 

justify the assumption of the model which are required to trigger the SEBAL model appropriately. 

The major focal points of SEBAL for the quantification of land surface fluxes from the thermal 

remote sensing information are (1) least utilize of supporting ground-based meteorological and 

land use information; (2) programmed inside correction of uncertainties in the image dataset, 

which avoids strict rectification of atmospheric impacts on surface temperature; and (3) inner 

calibration, which is usually performed by the model internally for each processed image. Other 

than its several points of interest, it has a few disadvantages as well. Major drawbacks of this 

approach are that (1) to decide demonstrate parameters a and b which are requirement of the 

subjective identification of extreme hot/dry and wet/cool pixels inside the image are required 

(Bastiaanssen, 2000; Bastiaanssen et al., 1998; Timmermans et al., 2007). Any errors in the 

selection of extraordinary anchor pixel which could be induced by the inefficient expert of the 

model, variation in the domain size of the area of interest, or by the varying spatial resolution of 

the satellite sensor may also largely compromise the resulting estimations of H flux and ET from 

https://wle.cgiar.org/
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the SEBAL (Bastiaanssen et al., 1998); (2) based on the digital elevation model of the area, a few 

alterations are also need to incorporate in the model to consider the lapse rate adjusted for the land 

surface temperature and wind speed (Awan and Ismaeel, 2014); (3) Evaluated H is significantly 

influenced by the errors or mistakes induced in the surface-air temperature difference or 

uncertainties in computation of surface temperature measurements from the remote sensing data 

could largely affect the estimation of sensible heat flux and consequently the final map of ET; and 

(4) there is also need to carefully incorporate the effect of radiometer viewing angle which can 

trigger variation by several degrees in land surface temperature estimations.  

3.1.2 METRIC 

Mapping evapotranspiration at high Resolution with Internalized Calibration (METRIC) is an 

energy balance model and a variant of SEBAL. The ground based meteorological information is 

used to estimate the reference ET in integration with the original SEBAL model to derive the actual 

ET in METRIC model. Overall, METRIC is a comprehensive image processing model which 

derive the actual ET as a residual of the energy budget on the Earth’s surface over homogeneous 

as well as on complicated surfaces. The underlying fundamental concept of METRIC model is 

based on using the satellite remote sensing data of thermal infrared, visible and near-infrared 

spectral region along with ground based meteorological measurements of wind speed and air 

temperature along with land use information to estimate the evaporating moisture contents as 

indicated by the (Allen et al., 1998; Allen et al., 2007). Similar to SEBAL model, the computation 

of sensible and latent heat flux also based on the selection of two extreme anchor pixel which is 

usually observed in the processing image in order to define the boundary conditions of energy 

budget for that particular image. The METRIC model used an internal calibration which removes 

the need of atmospheric correction of the satellite data such as reflectance and surface temperature 

measurements which are required for other similar type of models (Allen et al., 2007). The major 

benefits of these internal calibration are that the impact of biases which are normally contributed 

from the remote sensing data for the assessment of aerodynamic or surface roughness is reduced.   

For the internal calibration the wet and dry anchor pixel are manually selected from the 

underlying image which are used to describe the linear temperature gradient above land surface 
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condition. Similar to SEBAL the dry anchor pixel is typically representing the dry bare agriculture 

field where ET is normally 0 providing all available energy to the sensible heat flux. However, 

this model differed from SEBAL in terms that wet pixel is considered usually from a well-irrigated 

field where ET = reference ET value of a standardized alfalfa crop having no stress and unlimited 

water condition.  

However, a recent study (Allen et al., 2011; Allen et al., 2013; Awan et al., 2016) questioned 

the context-dependency of these models (i.e, METRIC and SEBAL), as the fundamental existence 

of extreme anchor pixel conditions may not necessarily exit in a particular image which are 

required to force those models. Thus, the quantified ET from these contextual models may have 

large uncertainties if the extreme condition is not properly set. Considering this limitation, the 

developers have improved the methodologies of these models over time, such as an automated 

selection of extreme conditions have been introduced basis on extent of area of interest, climatic 

parameters, spatial resolution and underlying land use conditions. Furthermore, the proper 

selection of automatic pixel in METRIC model helps in accommodating the varying effect of 

fractional vegetation cover on the ET extremes (Liaqat and Choi, 2015a). 

The METRIC model has been successfully tested over several hetero- homogeneous land 

surface across different parts of the globe and studies have been reporting the model performance 

with reasonable accuracy. Santos implemented the METRIC by integrating with a water balance 

model in Spain in order to provide the significant improvements in the irrigation scheduling(Santos 

et al., 2008). Liaqat and Choi (2015a) compared the estimated ET with the lysimeter measurements 

in the semi-arid region of US and pointed out the high potential for successful ET estimates of 

both SEBAL/METRIC models. 

3.1.3 SEBS 

The Surface Energy Balance System (SEBS) is another well-known energy budget model 

which was developed by Su et al. (2005). SEBS is modified version of SEBI and used to estimate 

the turbulent land surface fluxes by combining the routinely available meteorological data and 

satellite remote sensing information. The main bases of the SEBS are to drive the evaporative 

fraction based on energy balance at limiting cases by calculating the roughness length for heat 
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transfer as well as by computations of other land surface physical parameters (Ershadi et al., 

2014b). Like other energy budget models, the SEBS model define two (wet and dry) limiting 

boundary conditions but without contextual identification, such as at dry limit the latent heat flux 

is assumed to be zero where sensible heat flux values reach to its maximum point (i.e., Hdry = Rn − 

G) and can be estimated by using equation (3). However, at the wet limit, the evaporation is limited 

only by the available energy depending upon the particular atmospheric and land surface condition, 

and ET reached to its potential rate (LEwet), with minimum value for the sensible heat flux, Hwet 

(equation 4) The sensible heat flux at both boundary condition can be expressed as follows: 

                                                           𝐻𝑑𝑟𝑦 = 𝑅𝑛 − 𝐺                                              (3)  

                                                 𝐻𝑤𝑒𝑡 =
(𝑅𝑛−𝐺)𝛾

(𝛾+∆)
−

𝜌𝐶𝑝(𝑒𝑠𝑎𝑡−𝑒)

𝑟𝑎(𝛾+∆)
                     (4)  

where ra is dependent on the Obukhov length, which in turn is a function of the friction velocity 

and sensible heat flux. Then, the relative evaporative fraction (EFr) and evaporative fraction (EF) 

can be expressed as: 

                                                   𝐸𝐹𝑟 =
𝐻𝑑𝑟𝑦−𝐻

𝐻𝑑𝑟𝑦− 𝐻𝑤𝑒𝑡
                                            (5)  

                                                  𝐸𝐹 =
𝐸𝐹𝑟 × 𝐿𝐸𝑤𝑒𝑡

𝑅𝑛− 𝐺
                                           (6)  

The SEBS model made a distinction between the PBL/Atmospheric Boundary Layer (ABL) and 

the Atmospheric Surface Layer (ASL) by utilizing similarity theory. Such distinction is made to 

take the ABL height is used as a reference of potential air temperature to calculate the turbulent 

heat fluxes where the discrepancy is created to account the difference between surface temperature 

and potential air temperature. The SEBS model used the ground-based meteorological 

measurements and remote sensing derived land surface parameters as the forcing inputs. SEBS 

performance has been reported reasonably well over several land use surface across the globe.   

Jia et al. [81] validated the SEBS performance by comparing the estimated sensible heat flux which 

was estimated by using ground data from a Numerical Weather Prediction and remote sensing data 

from ATSR with large aperture scintillometers. Liaqat et al. (2015) compared the performance of 

SEBS estimated heat fluxes and ET with eddy covariance measurements situated in four different 

types of land use in Northeast Asia as well as the results from SEBS and METRIC were compared. 
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However, the absolute errors in the potential air temperature and in estimates of land surface 

temperature can largely contribute to the potential errors in the estimation of sensible heat flux due 

to a lack of internal calibration in SEBS (Liaqat et al., 2015). Overall, the results from the above 

studies showed the usefulness of SEBS in estimating the land surface fluxes in varying land use 

conditions. Daily, monthly, and annual estimation of evaporation in a semi-arid environment have 

been done by SEBS. Furthermore, the easy to operate assumption of SEBS allow its application 

for both field scale and regional scale application under different atmospheric stability regimes 

with as high accuracy as 10%–15%  compared to that of in-situ measurements but mostly for the 

high ranged of 0.5 to 0.9 values of evaporative fraction as shown by Su (2002). 

Main advantages of the SEBS include: (1) to reduce the uncertainty involved in surface 

temperature or meteorological variables by considering the limiting boundary condition to 

implement the energy budget equation; (2) instead of using a constant value, SEBS include modern 

approach to incorporate the roughness height for heat transfer; (3) characterizing actual surface 

heat fluxes without any prior information of extreme conditions; and (4) the comprehensive 

formulation considering the surface resistance related parameters. It is worth mentioning that 

SEBS has been broadly applied to several different ecosystem mainly by focusing on the coarse 

scale spatial resolution of 1 km information obtained from thermal band of MODIS data. Since the 

solution of turbulent heat fluxes involves relatively complex formulation that require several 

parameters both derived from the remote sensing information which may cause more or less 

inconsistencies in SEBS application  

3.1.4 Uncertainties in Remote Sensing data and ET Retrieval Algorithms  

Problems in Surface Temperature & Emissivity: Various remote sensing approaches that 

are used to derive surface temperature use Thermal Infrared (TIR) radiation data. For the 

estimation of surface temperature, the atmospheric and surface emissivity corrections will 

therefore affect the data quality provided by remote sensing. Two surface temperature correction 

methods, namely direct and indirect methods, could be applied. The direct method uses 

atmospheric sounding combined with the radiative transfer model; however, the indirect method 

uses only remote sensed observations. Typical uncertainties approximately in the range of 1–3 K 
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happens due to atmospheric correction. Emissivity is the other critical component, which can lead 

to significant error. Both surface emissivity and directional infrared temperature are usually based 

on various spectral resolution which may help to reduce the errors to some extent and this is one 

of the most promising way to obtain such data (Byun et al., 2014). 

Satellite Coverage Uncertainties: As satellites provides the several spatial resolution 

imageries which usually have the low temporal frequency, simultaneously acquiring the imagery 

of high spatial and temporal resolution is very difficult. TIR methods is biased towards the clear 

sky conditions due to the impediments created by clouds in obtaining continuous satellite imagery. 

In operation application this method can be impractical due to the larger time in obtaining the 

satellite imagery and ET estimation. This issue could be solved by coupling models and gap filling 

methods (Ershadi et al., 2013). 

Errors in Solar Parameters Estimation: Individual parameters estimations of energy 

(Rn˗˗G) caused uncertainties in the both long and short-wave components estimation and ignores 

diurnal variation and phase difference between each diurnal cycle of parameters. Furthermore, 

total Rn flux is only considered in SEB models, but there are no relative fractions for direct and 

diffuse radiation as well as no considerations for diffuse and direct radiation difference. Because 

of bulk use of vegetation, the impacts of increased diffuse radiation than direct radiation must be 

considered (Campos et al., 2013). A sufficient difference in ET measurement is highly expected if 

such differences are ignored in water use efficiency. 

Land Surface Variables: Uncertainties need to be corrected in the radiance estimation which 

is caused atmosphere effects. Despite significance advances, for the accurate measurement of ET 

there is still needs to improve the accuracy of some remotely sensed land surface parameters e.g. 

LAI, VI, plant height and surface temperature, etc. The estimation of the aerodynamic resistance 

(ra) requires stability corrections, along with sufficient values for zero displacement level and 

roughness lengths. To recover the surface temperature the angular observation effect is more 

critical and prominent on heterogeneous surfaces as compared to homogenous well-watered and 

dense vegetative surfaces. Different radiation will be received when the sensor vision changes 
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from one angle to another due to the different type of vegetation and soil in field (Singh and Irmak, 

2011; Sugita and Brutsaert, 1991) 

Inconsistency of RS Models and Near-Surface Meteorological Variables: Different models 

are utilized for different characteristics of land surface. But still there is no universal model, which 

can be used worldwide, without any change or improvement to measure ET to form the satellite 

data, regardless of changes in earth characteristics in terrain and climate. 

Frequently needed Meteorological data at near surface height or PBL height in most of ET 

models and are acquired, using spatial interpolation on local meteorological stations data, at a 

satellite pixel. Due to large differences in terrain and climate conditions in the area to be studies 

irregularly located meteorological stations and accuracy of interpolation methods must be 

improved. 

3.2 Actual evapotranspiration databases 

Many hydro-meteorological applications such as irrigation scheduling, crop water productivity 

estimation, allocation of water resource, and drought predictions require the accurate 

quantification of reliable ET estimation (Khan et al., 2018). However, due to the involvement of 

complexed land surfaces and environmental conditions, sensitive climate feedback, as well as their 

large unpredictability in both time and space usually cause extensive qualitative and quantitative 

inconsistencies in the ET quantification (Ghilain et al., 2011). Substantial effort has been made in 

the last one to two decades to generate multi-level regional to global scale ET datasets by gathering 

the information from recent advancements in satellite remote sensing technologies and 

conventional ground-based information (Ghilain et al., 2011). Although there are several available 

global actual ET products , the most generally available datasets with operational applications and 

larger coverage are MODerate resolution Imaging Spectroradiometer (MODIS) i.e., MOD16 AET 

(Mu et al., 2007) with eight-day, monthly and yearly temporal and 1 km spatial resolution, Global 

Land Evaporation and Amsterdam Model (GLEAM) 25 km daily AET products (Miralles et al., 

2010), Wapor ET dataset (Blatchford et al., 2019) at 30m to 250 m spatial and monthly and annual 

temporal resolution, and Global Land Data Assimilation System (GLDAS) having 25 km AET 
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products at 3 hourly and monthly temporal resolution (Rodell et al., 2004). The further details of 

these ET products are provided below: 

3.2.1 WaPOR 

The Water Productivity through Open access of remotely sensed (WaPOR) derived data 

being published through the Food and Agriculture Organization of the United Nations (FAO-UN) 

(https://wapor.apps.fao.org/catalog/WAPOR_2/1), as a major output of the project: ‘Using 

Remote Sensing in support of solutions to reduce agricultural water productivity gaps’, funded 

by the Government of The Netherlands. The major aims of the WaPOR dataset is to provide 

“Free Access Water Productivity System “, for the countries such as Africa and the Middle 

East which are facing acute water crisis in recent years. The WaPOR database is a 

comprehensive database that provides information on biomass production (for food 

production) and evapotranspiration (for water consumption) for Africa and the Near East in 

near real time covering the period 1 January 2009 to date. The major products include, water 

productivity, biomass production, net primary productivity, precipitation, NDVI, land cover 

classification as well as evapotranspiration and its components. 

As described in (Bastiaanssen, 2000), the method to calculate ET for the WaPOR product 

is based on the ETLook model which deals the E and T as separate components. This method 

utilizes the remote sensing as the primary input datasets which is forced through the Penman-

Monteith (P-M) equation (Monteith, 1965). The P-M method employed frequently measured 

meteorological information such as air temperature, vapour pressure solar radiation, and wind 

speed for the estimation of total evaporation and transpiration over larger areas. The main 

concepts of the ETLook model lies in solving the two parallel Penman-Monteith equations as 

seen in Figure 1 below. The ETLook model framework treats two different approaches; first it 

coupled the soil with the subsoil or rootzone soil moisture content to derive the transpiration 

while the evaporation is estimated by coupling the soil moisture content available in the top 

soil surface. However, this model also deals with the interception to account for the amount of 

https://wle.cgiar.org/
https://wapor.apps.fao.org/catalog/WAPOR_2/1


 

 

 

 

20 

 

rainfall which is intercepted by the leaves or use the energy to directly evaporate from the plant 

surface and not usually not available for the transpiration.   

“The WaPOR portal delivers open access to three different spatial data layers related to 

land and water use for agricultural production and allows for direct data queries, time series 

analyses, area statistics and data download of key variables to estimate water and land 

productivity gaps in irrigated and rain fed agriculture”. One of the most vital products of the 

WaPOR system is to provide the actual ET information, which is available at a spatial resolution 

of 250 m pixel size with s temporal resolution varying from an annual, monthly and 10-days for 

the 2009–2016 period using the ETLook algorithm (http://www.fao.org/in-action/remote-sensing-

for-water-productivity/wapor/). There are not many studies have been published to evaluate these 

products over the Middle East and Africa since the public availability of WaPOR dataset (i.e., 

2017), however, there is strong and urgent need to conduct such studies considering the large 

uncertainties of ET estimates over these dry environments. This would be a useful alternative to 

study the water productivity gaps as an alternative to the current methodologies. 

Figure 1: Schematic showing the partition of evaporation and transpiration in ETLook model 
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3.2.2 MOD16 Actual Evapotranspiration (AET) product 

MOD16 is a land surface global terrestrial AET which was developed by Mu et al. (2007) 

through an improved remote sensing-based Penman-Monteith algorithm originally provided by 

Cleugh et al. (2007). The MOD16 global ET product considers the transpiration from the 

vegetation structure as well as represents all evaporation from soil and wet surfaces.  

It is important to note that the original MOD16 algorithm was used to ignore the ground heat 

flux, intercepted evaporation from plant canopies and the night-time ET values and estimate actual 

ET for only daytime fluxes (Mu et al., 2007). The MOD16 algorithm was improved (Mu et al., 

2011) further by “(i) the sum of day and night-time components of ET were incorporated to 

estimate the final daily ET product, (ii) vegetation cover fraction formulation in the model was 

simplified, (iii) ET calculation were updated by including specifically the ground heat flux 

especially for the tundra biome, (iv) applying an improved method to estimate stomatal 

conductance estimations were improved by applying the aerodynamic resistance and boundary 

layer resistance, (v) canopy water loss from the wet and dry surface was estimated separately, and 

(vi) saturated wet and moist surface were divided in order to incorporate potential and actual 

evaporation from the saturated and moist surface, respectively (Mu et al., 2013).” 

MODIS albedo product (MCD43B2/MCD43B3), LAI/fPAR (MOD15A2), global 1-km2 

MODIS land cover (MOD12Q1) (Friedl et al., 2010) in conjunction with the and NASA’s MERRA 

Global Modeling and Assimilation Office (GMAO) daily meteorological reanalysis dataset are the 

primary inputs used in the MOD16 algorithm (Mu et al., 2007). The standard outputs of the 

MOD16 algorithm include 8 days, monthly, and annual scale latent heat flux (LE), Potential LE, 

and PET (Kim et al., 2012) with spatial resolution of 500 m to 100 m and are available from 2000 

to present (http://www.ntsg.umt.edu/project/mod16). 

3.2.3 GLEAM Actual Evapotranspiration Product  

GLEAM (www.gleam.eu) is a sophisticated land surface model that generate global actual ET 

product by using only satellite forcing data (Mastrocicco et al., 2010). The GLEAM ET datasets 

make a distinction between soil evaporation, open water evaporation, transpiration from short and 

tall vegetation, snow sublimation, and interception losses from various crop covers. Interception 
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loss is independently calculated based on The Gash analytical model using precipitation as forcing 

datasets is being considered in GLEAM to independently estimates the interception losses 

(Mastrocicco et al., 2010). While the P-T method (1972) is used to estimate the other remaining 

evaporation components (i.e. evaporation, sublimation, and transpiration). This is worth 

mentioning that unlike the P-M method, the P-T method does not incorporate parameterization of 

aerodynamic and stomatal resistance. Different independent satellites data are used as forcing 

inputs of GLEAM to  generate global AET dataset with a spatial resolution of a quarter degree 

covering the period from January 1st, 1980 to December 31st, 2011 and are freely available at VU 

university Amsterdam Geoservices website (http://geoservices.falw.vu.nl) (Yang et al., 2015). The 

micrometeorological flux measurements at 43 FLUXNET global network covering various 

climatic and land surface conditions were used to validate the GLEAM ET product at regional to 

global scale (Miralles et al., 2010).  

3.2.4 Global Land Data Assimilation System (GLDAS) 

GLDAS (https://ldas.gsfc.nasa.gov/gldas/) data is produced by using the advanced and 

sophisticated land surface modelling and data assimilation methodologies which takes the 

combination of satellite and ground-based measurements to produce land surface states and an 

available field of fluxes (Rodell et al., 2004). GLDAS is running multiple land surface models 

Variable infiltration capacity (VIC) and (LSMs) such as Noah, Mosaic, Community land model 

(CLM). These LSMs models delivers the global fluxes in coarse and fine spatial (0.25°, 0.01°) and 

temporal (3-hourly and monthly) resolution by integrating a huge number of observational 

datasets. The NASA’s Hydrology Data and Information Services Center 

(http://disc.sci.gsfc.nasa.gov/hydrology) exhaustively describe the information of different models 

and their forcing dataset.  

3.3 Surface energy balance algorithm (SEBAL) for ET 

The SEBAL model was selected to derive the evapotranspiration which has the distinguished 

capacity to provide ET at the high spatial resolution which is useful to map the crop water 

productivity across any basin with high accuracy. There are several developments made to this 
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model which has led its implementation in such a way that is effective, reproducible and 

reliable for the quantification of ET with higher accuracy, as discussed earlier in this report.  

The SEBAL model has been applied for the ET quantification and extensively validated under 

several varying conditions across the globe in several countries (Awan et al., 2016; Bastiaanssen, 

2000; Bastiaanssen et al., 1998; Singh et al., 2008; Timmermans et al., 2007). These studies 

compared their experimental results with the estimated fluxes from the SEBAL and confirm the 

robustness of the model formulation. The model has also been tested with remote sensing 

information from different satellites having a combination of high-temporal resolution such as 

Landsat7 ETM+/ASTER as well as high-spatial resolution such as NOAA AVHRR/MODIS to 

assess evapotranspiration rates at daily, monthly seasonal and annual scales with least ground-

based weather information (Awan et al., 2016; Bastiaanssen, 2000). 

3.3.1 Theory 

SEBAL computes heat and water vapour transport for each pixel by solving the resistance for 

momentum with a complete radiation and energy balance model. Evapotranspiration is computed 

by means of instantaneous latent heat flux, λET, (W m−2), and which is computed pixel-by-pixel 

basis for the time of satellite overpass as the residual of the surface energy balance equation: 

                                                 λET =  (Rn −  G −  H)           (7) 

where Rn is net radiation (W m−2), G is the soil heat flux (W m−2), and H is the sensible heat flux 

(W m−2). Net radiation is computed from the land surface radiation balance as:  

                        𝑅𝑛 =  (1 −  𝛼) 𝑅𝑆𝑖𝑛 +  𝑅𝐿𝑖𝑛 −  𝑅𝐿𝑜𝑢𝑡 − (1 −  𝜀0)𝑅𝐿𝑖𝑛               (8) 

where RSin is the incoming short-wave solar radiation, RLin and RLout are incoming and outgoing 

long-wave radiation (W m−2), ε0 is the land surface emissivity, α is the surface short-wave albedo.  

These all parameters are calculated by the land surface parameterization schemes though 

implementing the standard algorithms. 
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Soil heat flux (G) is calculated by using the net radiation and a few other land surface physical 

parameters, such as surface temperature, albedo, and normalized difference vegetation index 

(NDVI) through an empirical relationship function defined by Bastiaanssen (2000):  

 𝐺/𝑅𝑛 =  𝑇𝑠/𝛼(0.0038𝛼 +  0.0074𝛼2)(1 −  0.98𝑁𝐷𝑉𝐼4)           (9) 

where Ts is surface temperature in K. 

Sensible heat flux which is difficult to compute due to the interrelationship of surface 

roughness and temperature gradient. Bastiaanssen (2000) given the standard expression for 

sensible heat flux computation as following:  

                                                               𝐻 = 𝜌𝐶𝑝
𝑑𝑇

𝑟𝑎ℎ
                           (10) 

Where ρ is the air density (kg m−3) which is a function of atmospheric pressure, Cp is the dT 

is the near surface temperature difference (K), specific heat capacity of air (≈1004 J kg−1 K−1), rah 

is the aerodynamic resistance to heat transport (s m−1). 

As described earlier, the SEBAL model introduce a linear relationship among the surface 

temperature Ts and dT which is iteratively calibrated on the basis of information from two extreme 

boundary conditions which are pre-located within the image itself whereas the dT values can be 

iteratively computed using the known sensible heat flux for both extreme conditions as expressed 

in equation (1). 

The coefficients “a” and “b” in Equation (1) can be effectively assessed, once the surface-air 

temperature differences for both the extreme condition (i.e., hot and cold anchor pixels) is 

determined. These coefficients “a” and “b”, are then utilized in an iterative setup in the model to 

develop a linear gradient of the surface-air temperature difference dT for each pixel of the image 

by using land surface temperature in Equation (1). In SEBAL model, the hot pixel is chosen from 

an image pixel which is representing an area with least vegetation or displays high surface 

temperature, while the cold pixel is generally choose from a pixel located in well-watered crop 

conditions assuming no stress conditions. With the user defined extreme anchor pixels, the sensible 

heat flux is usually calculated iteratively with corrected roughness length for the stability, while 

this procedure also required an extrapolation of wind speed from ground level to a height of about 
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100 to 200 m. Usually, the identification of wet pixels are easily spotted over an area of well-

watered surfaces or over a relatively large, calm water surface, whereas recognizing the dry pixels 

is the foremost vital perspective in SEBAL. The instantaneous latent heat flux, λET, which is 

computed as the residual term of the energy budget is further used to estimate the instantaneous 

evaporative fraction Λ: 

                                                     Λ =
λET

λET+H
=  

λET

𝑅𝑛− 𝐺0
        (11) 

When the atmospheric moisture conditions are in equilibrium with the soil moisture conditions, 

the instantaneous evaporative fraction Λ expresses the ratio of the actual to the crop evaporative 

demand. As demonstrated by the several previous studies (Singh et al., 2008; Teixeira et al., 2009) 

that the Λ values are almost remains constant within daytime hours, thus allowing the use of as a 

temporal integration of ET over larger timescale. For timescales of 1 day or longer, G can be 

ignored and the net available energy (Rn − G) reduces to the net radiation (Rn). At daily timescales, 

ET24 (mm d−1) can be computed as:                         

                                                   ET24 =
86400 × 103

λρ𝑤
Λ𝑅𝑛24              (12) 

where: Rn24 (W m−2) is the 24 h averaged net radiation, λ (J kg−1) is the latent heat of vaporization, 

and ρw (kg m−3) is the density of water. The monthly and seasonal ET values were estimated by 

linear interpolating the daily ET values for the period in between two consecutive images. 

3.3.2 Image Acquisition 

The key parameters in SEBAL formulation, includes albedo, Land Surface temperature (LST) 

and vegetation index, for portioning the available energy between vegetation and soil. The 

Moderate‐resolution Imaging Spectroradiometer (MODIS) is one of the complex programs which 

use the sensors of two satellites (Aqua and Terra) to give a detailed series of global observations 

in infrared and visible spectrum of ocean, land and atmosphere of earth. Terra earth observation 

system (EOS) was launched in 1999 and it passes around 10:30 A.M. over the region to be studies. 

The MODIS is available and downloaded in different versions and the latest version 5 (V005) from 

the NASSA online web portal (https://reverb.echo.nasa.gov/reverb) which is available from 2014 
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and used in this study of the measurement of ETa globally. SEBAL model requires the MODIS 

imagery including the surface reflectance (SF), surface emissivity (EMM), LST, and vegetation 

indices (VI). All data sets have 8 days temporal resolution except LST data, because during the 

short time period the land surface properties does not change, which instantaneously collected with 

daily time period at overpass time of satellite. 

To provide the Normalized Difference Vegetation Index (NDVI), Vegetation index (VI) 

products is scaled by multiplying with 0.0001. The undisputed key indicator of ET flux is NDVI 

(Allen et al., 2011; Liaqat et al., 2014; Su, 2002). To create the 8 days 250 NDVI layers the two 

16-day data sets of NDVI (MYD13and MOD13) starts from day 1 and day 9 were used. Therefore, 

for the period 2014-2019, the other products of MODIS were obtained and reprojected to 8-day 

scale. The average surface emissivity was estimated by taking average of Em_31 (from band 31) 

and Em_32 (from band 32) and then scaled with minimum Em up to +0.49 by 0.002. Also surface 

reflectance (bands 1–7) were computed from the products of the daily land surface reflectance and 

then scaled by 0.0001. The surface albedo was computed using the Liang's method from the seven 

surface reflectance bands. To cover the period from 2014 to 2019 over the Nile data area, total 638 

sets of MODIS images was reprojected. 

3.3.3 Meteorological Data 

GLDAS (https://ldas.gsfc.nasa.gov/gldas/) data is produced by using the advanced and 

sophisticated land surface modelling and data assimilation methodologies which takes the 

combination of satellite and ground-based measurements to produce land surface states and an 

available field of fluxes (Rodell et al., 2004). GLDAS is running multiple land surface models 

Variable infiltration capacity (VIC) and (LSMs) such as Noah, Mosaic, Community land model 

(CLM). These LSMs models delivers the global fluxes in coarse and fine spatial (0.25°, 0.01°) and 

temporal (3-hourly and monthly) resolution by integrating a huge number of observational 

datasets. The NASA’s Hydrology Data and Information Services Center 

(http://disc.sci.gsfc.nasa.gov/hydrology) exhaustively describe the information of different models 

and their forcing dataset. The GLDAS data simulated from the Noah 2.7.1 model contains a series 

of land surface parameters at a spatial resolution of 0.25o with 3-hour time step information. To 
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force the SEBAL algorithm, meteorological variables including specific humidity (kgkg-1), wind 

speed (ms-1), pressure (Pa), downward longwave and incident shortwave radiation (Wm-2) were 

extracted from GLDAS (Rodell et al., 2004). 

3.3.4 Validation of ET 

SEBAL first estimates the instantaneous energy fluxes retrieved at sensor overpass times and 

then latter it is converted to diurnal values of energy fluxes which are practically more useful. 

Thus, the systematic model biases in flux components were analysed by comparing them with 

ground-based flux tower measurements. To achieve this, in situ flux tower measurements obtained 

during 10:30 am to 12:00 pm were averaged in the time domain to obtain the average fluxes around 

sensor overpass times. This is because MODIS sensors onboard Terra satellite passed over the 

study area mostly between 11:00 am to 12 pm local time. To determine the error and evaluate the 

performances of the SEBAL model in terms of surface energy flux, ground based observations 

were compared with estimated flux measurements before further forcing for diurnal scale ET 

calculations at both study sites, which had different vegetation characteristics. Agreement between 

the estimated and measured results was assessed in terms of bias, RMSE, and coefficient of 

determination (R2), where 0 < R2≤ 1.0, with greater R2 values specifying better model agreement. 

The RMSE is a synthetic indicator of absolute model uncertainty and represents a measure of 

overall, or mean deviation between estimated and measured variables.  
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where E and O represent the estimated and observed (measured) variables, respectively, and n is 

the number of samples.  
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3.3.5 Results 

For the validation and accuracy assessment of models we compared estimates with 

observations by extracting pixel values of spatially estimated evapotranspiration from SEBAL 

corresponding to the geographical locations of in situ flux tower. The graphical representation of 

statistical results shown in Figure 2 reveals that SEBAL estimations were reasonably well 

correlated with flux tower ETa, yielding high coefficient of determinations (R2) of 0.87 with 

improved slope values that are close to 1:1 while RMSE values of 0.49 mm/day and bias of 0.13 

mm/day.  

 

 

Figure 2: The accuracy comparison between SEBAL estimated and flux tower measured actual 

evapotranspiration (ETa) 
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These results agree with the previous findings (Awan et al., 2016; Bastiaanssen, 2000). 

However, this small difference is acceptable, considering the uncertainty embedded in surface 

measurements, as well as the scale difference between the MODIS 1 km pixel size and point scale 

meteorological measurements. The bias error was determined by subtracting the ETA of flux tower 

from the SEBS ETa. When the direction of the error was considered, the results showed that the 

SEBAL algorithm slightly overestimated the daily ETa respectively. 

The daily ETa values estimated from the SEBAL were scaled up to monthly values for the year 

of 2018. The monthly variations in ETa for the entire Nile delta shown in Figure 3 below. In 

general, the monthly ETa appeared larger during the period of May to August, with mean minimum 

and maximum values of 33 mm and 232 mm, while during December and July minimum and 

maximum values of 9 mm and 87 mm observed, respectively. From hydrometeorological 

perspective, the high magnitude ETa values in these hot months are attributed to several factors 

such as high atmospheric water demands, increased irrigation for replenishment of soil moisture, 

and precipitation which ensured soil moisture at optimal conditions. The highest monthly ETa 

values are in July and August month, in which ETa values reaches upto 300 mm approximately all 

over the Nile delta region. In general, the highest average monthly values of ETa has been observed 

on north side of the Nile delta region. 

Figure 4 presents, the annual variability of the SEBAL estimated ETa for entire area. The 

variation in annual ETa were relatively small, however in general the highest average annual 

values of ETa has been observed on north side of the Nile delta region, as represented in Figure 4. 

The mean yearly ETa values estimated by SEBAL were varied from 991 to 1036 mm / year for 

the entire study region, with a standard deviation value of approximately 322 to 345 mm /year 

during the period of 2014 to 2019. Frequency histogram of annual ETa demonstrating spatial 

variability with mean and standard deviation values has been shown in Figure 5. Histrogram for 

average annual ETa shows that the maximum and minimum annual mean ETa are 991 (± 322) 

mm/ year and 1036 (± 336) mm/ year in 2017 and 2016, respectively, which shows relatively small 

variation of annual ETa. 
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Figure 3: Spatial variations in monthly ETa estimated by the SEBAL approach (cont’d) 
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Figure 3: Spatial variations in monthly ETa estimated by the SEBAL approach  
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Figure 4: Spatial variations in annual ETa estimated by the SEBAL approach 
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Figure 5: Frequency histogram of annual ETa demonstrating spatial variability with mean and 

standard deviation values 
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3.4 Biomass estimates by remote sensing 

Crop biomass is one of the key indicators not only in crop condition monitoring, but also in 

crop production estimation. With the development of technology, it is feasible to estimate crop 

biomass at large scales with remote sensing.  

3.4.1 Theory 

One of the key indicators of agro-ecosystems, is known as above-ground biomass (AGB), 

which is usually used as a key component in estimating water use efficiency as well as predicting 

crop production (Jin et al., 2018; Nair et al., 2013). Accurate, rapid and economical quantification 

of AGB is of great significance as it always remains one of the basic factor to research agro-

ecosystem processes (Walter et al., 2018), to assess the performance of agricultural practices , and 

to estimate global market risk (Basso et al., 2016). The main data source for large-area AGB 

estimation is currently utilized from various remote sensing sources (Basso et al., 2016) which is 

an significant data source that could be widely used to quantify the field to regional scale AGB.  

Among several developed methods to quantify AGB by means of satellite remote sensing data, 

whereas the empirical relationships between NDVI and AGB is developed and this method is the 

most common among the hydrologic community. The common problem in various methods which 

used NDVI and AGB empirical or statistical relationships is that those methods have the 

correlation coefficients values ranging from moderate to low due to their strong empirical character 

(Jin et al., 2018; Walter et al., 2018). To collect AGB in the field, most of those empirical 

approaches require extensive field measurement programs, which is not only expensive or 

laborious but also practically difficult to consider at large regional scale. There is an extensive 

literature which represents that the biomass production model proposed by Monteith (1972) based 

on leaf development and solar radiation has potential to acquire AGB at large scale with reasonably 

high accuracy and this method can be used in combination with the satellite imagery.  

The SEBAL estimated actual ET and satellite derived NDVI values were used to produce the 

ABG, for each pixel of the satellite images. The fraction of absorbed photosynthetically active 

radiation (fPAR) = absorbed PAR (APAR)/total PAR (PAR), the SEBAL estimated evaporative 

fraction (Λ) and constant light use efficiency (LUE) values were used to achieve the purpose. The 
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NDVI image of the area was used to estimate the fPAR as shown in Equation (16) (Gobbo et al., 

2019): 

                                       𝑓𝑃𝐴𝑅 =  −0.161 + 1.257 × 𝑁𝐷𝑉𝐼       (16) 

                                         𝐴𝐵𝐺 =  𝐿𝑈𝐸 ×  𝛬 ×  𝑓𝑃𝐴𝑅 ×  0.84        (17) 

 

An average value of light use efficiency factor was set at 4 g/MJ (Vermote et al., 1997). The 

total above groundmass (ABG) production applying multiplying the ABG values obtained in 

equation (18) to 0.77 (Gobbo et al., 2019).  

3.4.2 Results of estimated biomass 

The above ground biomass (ABG) was estimated by using the equation and variability in ABG 

on yearly basis has been presenting in the Figure 6 below. Spatial variation of ABG values ranges 

from the 0 to 40 t/ha for the entire area while variations among yearly biomass estimations were 

relatively large but the variations capturing at the small field scale were relatively low. This is 

because of the low-resolution image used from the MODIS. In order to get field scale field scale 

productivity, the high-resolution image should be utilized.  

Moreover, the biomass generally showed an increasing trend from south to the north in the 

region which is probably due to the high proximity of available water in those areas. Average 

biomass for the area was ~ 15 (T/ha) with a variation of ~7 (T/ha), while the spatial mapping 

showed the evidence that biomass production was decreased with increase in number of years such 

that lowest biomass production was observed during the year of 2017. 

Maps shows that biomass production is highest at north side of the Nile delta region. There is 

relatively small variation in biomass production annually. The maximum and minimum annual 

biomass production in Nile delta region for period 2014-2019 was 8 (T/ha) to 23 (T/ha), which 

also suggest that there is need to incorporate the advanced interventions in the regions where 

biomass production is less than the average values in order to increase the water productivity and 

utilize the available water resources in best possible manner.  
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Figure 6: Spatial variations in above ground biomass (ABG) covering the period 2014-2019 
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3.5 Water productivity estimates by remote sensing 

For evaluating the agriculture water management, the key indicator to relate crop production 

to water use is water productivity. Worldwide largest consumer of fresh water in the world is 

irrigation, which facing the huge pressure due to food demand, climate change, water use 

competition within sectors. Water productivity (WP) signifies the benefits (in $ / ha), or fresh crops 

(in kg / ha) produced per unit of water consumed or applied (in kg / m3). As actual 

evapotranspiration (ET) also include non-irrigation water such as soil moisture changes, capillary 

rise and rainfall, therefore it is recommended to analyse the CWP in terms actual ET (Gobbo et 

al., 2019; Grosso et al., 2018). Sustainable agriculture needs to increase water productivity by with 

water, producing more food. Remote sensing-aided water productivity evaluation helps to evaluate 

the improvement potential and pinpoint the bright or hot spots. 

Agricultural water productivity is the economic value of production or physical mass 

production (e.g., grain yield, biomass) to water delivered or used for the production (Molden, 

1997). How the system converts water into services and goods can be measured by WP (equation 

18).  Water productivity (WP) can be derived by using the following equation: 

                                    𝑊𝑃 (𝑘𝑔 𝑚3⁄ ) =
𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑜𝑚 𝑤𝑎𝑡𝑒𝑟 𝑢𝑠𝑒(𝑘𝑔 𝑚⁄ 2

)

𝑤𝑎𝑡𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 (𝑚3 𝑚2⁄ )
      (18) 

Output derived from water use including products, e.g., crop yield, biomass, fish, and livestock 

production which are all can be measure in economic values (e.g., dollars) or can be measure in 

unit of kilogram. Water input can be irrigation, available water, net inflow, gross inflow and actual 

evapotranspiration. In this study the crop productivity use as nominator and use of water per unit 

area as denominator, which are estimated by remote sensing approach using ground information. 

The water productivity for the Nile delta was estimated by using the above ground biomass 

and actual evapotranspiration products and the results of WP for the period of 2014-2019 has been 

represented in the Figure 7 below. Spatial variation of WP values ranges from the 0 to 4 kg/m3 for 

the entire area while variations among yearly WP estimations were relatively large. It is also 

worthy to note that field scale variations could not be captured due to the low-resolution images 

used from the MODIS. The high-resolution image should be utilized to obtain the field scale water 

productivity. 
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Figure 7: Spatial variations in water productivity covering the period 2014-2019 
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Moreover, the WP generally showed an increasing trend from east to the west in the region 

(Figure 7) which is probably due to the high proximity of available water close to the sea. Average 

WP for the area was ~ 1.62 (kg/m3) with a variation by means of standard deviation ~0.5 (kg/m3) 

while the spatial mapping showed the evidence that WP was decreased with increase in number of 

years such that lowest WP was observed during the year of 2016 (Figure 8). The variability by the 

histogram values provided below shows that water productivity in the region mostly positioned 

from 1 to 2.5 kg /m3 which is good indicator of utilization of available water resources. However, 

the spatial mapping results suggest that there is significant scope of increasing water productivity 

in the areas with its minimum values < 1 kg /m3 without increasing the allocation of water and/or 

cropland resources in order to feed the expanding population in the coming years.  

 

Figure 8: Frequency histogram of water productivity for the year 2016 demonstrating 

spatial variability with mean and standard deviation values 
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