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1 | INTRODUCTION

Grain legumes, including pea, chickpea, and lentil, are the primary
source of nutritional protein for approximately 30% of the
Micha,
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Abstract

Legumes represent the second most important family of crop plants after grasses,
accounting for approximately 27% of the world's crop production. Past domestication
processes resulted in a high degree of relatedness between modern varieties of
crops, leading to a narrower genetic base of cultivated germplasm prone to pests and
diseases. Crop wild relatives (CWRs) harbor genetic diversity tested by natural selec-
tion in a range of environments. To fully understand and exploit local adaptation in
CWR, studies in geographical centers of origin combining ecology, physiology, and
genetics are needed. With the advent of modern genomics and computation, com-
bined with systematic phenotyping, it is feasible to revisit wild accessions and land-
races and prioritize their use for breeding, providing sources of disease resistances;
tolerances of drought, heat, frost, and salinity abiotic stresses; nutrient densities
across major and minor elements; and food quality traits. Establishment of hybrid
populations with CWRs gives breeders a considerable benefit of a prebreeding tool
for identifying and harnessing wild alleles and provides extremely valuable long-term
resources. There is a need of further collecting and both ex situ and in situ conserva-
tion of CWR diversity of these taxa in the face of habitat loss and degradation and
climate change. In this review, we focus on three legume crops domesticated in the
Fertile Crescent, pea, chickpea, and lentil, and summarize the current state and

potential of their respective CWR taxa for crop improvement.
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Mozaffarian, 2014). In addition to feeding the human population,
legumes provide agroecosystems with important ecosystem services
such as nitrate capture and green manuring (Tribouillois, Cohan, &
Justes, 2016). Despite the importance of legumes in maintaining soil

Khatibzadeh, & fertility and helping meet the world's nutritional demands, legumes
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are still underutilized and considered neglected crops (Foyer
et al., 2016). Legumes did not benefit from the Green Revolution
phenomenon, which revolved around not only technological
advances but also on policy interventions and investment for major
staple food crops. This propelled a large-scale planting of major
cereals (rice, wheat, and maize) on the best agricultural land coupled
with larger amounts of agricultural inputs such as fertilizers. Con-
versely, legume yield potentials have been limited because of its rel-
egation to marginal lands where various abiotic stresses such as
water limitation, short growing seasons, and poor soils commonly
occur (de la Pena & Pueyo, 2012). Despite this, legumes represent
the second most important family of crop plants after Poaceae
(grass family), accounting for approximately 27% of the world's crop
production, which is dominated by the oilseeds soybean and
groundnut. Collectively, the grain legumes represent about three
times of groundnut production and one fourth of soybean produc-
tion. Dry pea currently ranks second after common bean as the
most widely grown grain legume in the world, with primary produc-
tion in temperate regions and global production of 16M tonnes at
8 Mha, followed by chickpea (14.7M tonnes, 14.5 Mha) and lentil
(7.5M tonnes, 6.5 Mha) (FAOSTAT, 2010). Without a rapid increase
in yield, the legume production gap is projected to increase to
10 million tons by 2050 (Joshi & Rao, 2017). As a result of these
production gaps, there is a rising awareness of the need to increase
pulse production to help ensure global food security (Food and Agri-
culture Organization [FAO], 2010; Godfray et al, 2010). Con-
founding the goal of increased production is climate change. Climate
change is already evident worldwide, with continuing increases in
levels of greenhouse gases and an associated rise in temperature,
very likely to reach at least 1.5°C and possibly 2°C or more above
preindustrial levels by 2050 (Ripple, Wolf, Newsome, Barnard, &
Moomaw, 2019). With accelerating climate change, increased abiotic
stresses are expected to challenge agriculture and food security
(Ripple et al., 2019). High temperature spikes, during crop growth
and especially for the most critical reproductive period, are expected
to exceed the range encountered during crop domestication, and
world temperature rise will be greater over land than sea
(Intergovernmental Panel on Climate Change, 2019). The novel
genetic variation needed to address this challenge may be available
from crop wild relatives (CWRs), among which are the direct pro-
genitor species (Dullo, Fiorini, & Thormann, 2015). These have a
much wider genetic diversity, which was only fractionally sampled
during domestication and selection of rare genes/mutations for
reduced seed dispersal (shattering), reduced seed dormancy, but
increased seed size, plant biomass, and harvest index. There is an
urgency to breed for climate-resilient crops, particularly for toler-
ances of heat, drought, and cold (Hatfield & Preuger, 2015). One
option that is currently emphasized is a more systematic and
targeted use of CWRs in crop improvement programs (Dempewolf
et al., 2017; Vincent et al., 2013). This has been supported by activi-
ties of Crop Trust (https://www.croptrust.org), Crop Wild Relative
Global Portal (http://www.cropwildrelatives.org/cwr) established by
Bioversity International and Crop Wild Relatives, and Climate

Change Adaptation (https://www.cwrdiversity.org). CWR contain a
wealth of genetically important traits due to their adaptation to a
diverse range of habitats and the fact that they have not passed
through the genetic bottlenecks of domestication. Further, CWR
have longer evolutionary history across more diverse environments
and today are found on uncultivated and often hostile soils in chal-
lenging environments (Maxted et al., 2015; Yadav, Hegde, Habibi,
Dia, & Verma, 2019). Dynamic response to climate change with
shifts in genetic structure such as increased earliness has been
shown in CWRs of wheat and of barley in Israel (Nevo et al., 2012).
Thus, the study of molecular ecology and conservation of these taxa
should be of high priority (Castafeda-Alvarez et al., 2016; Hey-
wood & Dulloo, 2006).

At the beginning of the 20th century, leading agronomists and
geneticists recognized the need to preserve and characterize the
genetic diversity of cultivated plants and their wild relatives. For
example, Russian scientist N.I. Vavilov led worldwide systematic col-
lection and classification of agricultural diversity for the Soviet State
(Vavilov, 1926 and reviewed in Hummer & Hancock, 2015;
Janick, 2015). Similar collections were made across much of the West-
ern world, with collection starting in the colonial period and becoming
more systematic around the time of Vavilov (e.g., Griesbach, 2013).
Since VaviloVv's era of collecting, crop genetic diversity has eroded, as
a result of subsequent breeding efforts and farmers' adoption of more
uniform varieties at the expense of locally adapted landraces in con-
junction with increased commercialization and market quality stan-
dards. The resulting elite cultivated varieties were very productive
relative to the unimproved landraces but further reduced the genetic
base. Most wild accessions and landraces were abandoned without
regard to their genetic value, which was often found in individual loca-
tions. Recent genetic and genomic analysis revealed dwindling genetic
diversity present in modern agriculture (Diamond, 2002; Gross &
Olsen, 2010). Domestication bottlenecks followed by the widespread
transition from subsistence to commercial agriculture have caused a
high degree of relatedness between crop varieties. This was further
pronounced in modern breeding programs, leading to a narrower
genetic base of cultivated germplasm prone to pests and diseases
(Gur & Zamir, 2004; Harlan, 1976; McCouch, 2004; Zamir, 2001).
After domestication, only favorable haplotypes were retained around
selected genes (e.g., for photoperiod adaptation of flowering), which
created regions with extremely low genetic diversity. To overcome
the narrowing of the genetic base, there is a need to identify benefi-
cial alleles that segregate in wild populations so that we can then use
this existing variation to improve elite cultivars.

Plant breeders recognized the potential value of landraces since
at least the early 20th century, but their sheer number and the
absence of a simple means to determine which landraces might hold
valuable genetic variation have severely limited their use. Now, with
the advent of modern genomics and computation, combined with sys-
tematic phenotyping, it is feasible to revisit wild accessions and land-
races and prioritize their use for specific agricultural purposes, for
example, disease resistance, drought tolerance, and nutrient density
(Tanksley & McCouch, 1997).
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In this review, we focus on three Fertile Crescent-originating
legume crops—pea, chickpea, and lentil—and summarize the current

state and potential of their respective CWRs for crop improvement.

2 | PEA
21 | Taxonomical delimitation, status of genebank
resources, and germplasm diversity

All Pisum species are diploid with 2n = 14, with the nuclear genome
size of cultivated pea estimated to be 1C = 4.4 to 4.8 pg DNA
corresponding to the haploid genome size (1C) of 4.45 Gb (Kreplak
et al., 2019). A large part of the genome comprises repetitive
sequences (reviewed in Smykal et al., 2012), with an estimate of
82.5% for the recently sequenced genome of Pisum sativum
cv. Cameor (Kreplak et al., 2019), although long-read-based chromo-
somal assemblies of Pisum are not yet available to accurately estimate
variation in genome size across the genus. Pisum L. is a small genus
with two (Kreplak et al., 2019) or three (Trneény et al., 2018) distin-
guished species; the P. sativum complex (cultivated P. sativum subsp.
sativum and wild subsp. elatius) is native to the Europe-Mediterranean
region and middle and northwest Asia, whereas Pisum fulvum is
restricted to the Middle East (Smykal et al., 2017). P. sativum subsp.
abyssinicum A. Braun (Berger, 1928; Maxted & Ambrose, 2001), or
classified as P. abyssinicum (Kosterin, 2017; Trnény et al., 2018), is
found only in cultivation (Ethiopia and Yemen) and was likely domesti-
cated independently of P. sativum, most likely being derived from a
distinct genetic stock of wild P. sativum subsp. elatius (Trnény
et al., 2018). From a taxonomical and phylogenetic perspective, Pisum
is paraphyletic and nested in Lathyrus and Vicia (Schaefer et al., 2012).

The primary gene pool for domesticated pea (Harlan & de
Wet, 1971) consists of the P. sativum/elatius complex (Smykal
et al., 2017; Trnény et al., 2018), although because of the existent
nuclear-cytoplasmic conflict (Bogdanova, Galieva, & Kosterin, 2009;
Novakova et al., 2019), there are some barriers to gene flow. A sec-
ondary gene pool (crosses with less success and lower fertility)
extends to the other species in the genus, P. fulvum and P. abyssinicum.
P. abyssinicum has never been found in the wild but has a distinct
diversity and karyotype (Trnény et al., 2018; Weeden, 2018). The ter-
tiary gene pool (with strong reproductive barriers between crop and
CWR) currently consists of Vavilovia formosa (Stev.) Fed. (Mikic¢
et al., 2013), which might be reconsidered to be within the secondary
pool, as shown by Golubev (1990).

Unfortunately, since 2000, there is no international genetic
resource center for pea. Previously, the genetic resource center for
pea was the International Center for Agricultural Research in Dry
Areas (ICARDA) in Aleppo, Syria. However, an inventory was made in
2013 and identified 98,947 accessions distributed over 28 genebanks,
composed of landraces (38%), commercial cultivars (34%), mutant or
genetic stocks (5%), and breeding lines (13%). Of these 98,947 acces-
sions, only 1,876 (2%) are wild pea relatives (Smykal et al., 2015;
Smykal, Coyne, Redden, & Maxted, 2013). Currently, the main pea

germplasm collections are held by INRAE France (8,839 accessions
with over 9,000 lines of TILLING mutants, http://florilege.arcad-
project.org/fr/crb/proteagineux/crb-proteagineux, http://urgv.evry.
inra.fr/UTILLdb); the Australian Grains Genebank (AGG; formerly
Australian Temperate Field Crops Collection, 7,432 accessions,
https://grdc.com.au); the Vavilov Institute, Russia (8,203 accessions,
of which 69 are wild P. sativum subsp. elatius, http://www.vir.nw.ru);
the US Department of Agriculture (USDA) (6,827 accessions, http://
ars-grin.gov); ICARDA (6,105 accessions); the Leibniz Institute of Plant
Genetics and Crop Plant Research, Germany (5,343 accessions,
https://www.ipk-gatersleben.de); Instituto Di Genetica Vegetale Italy
(4,558 accessions, http://www.igv.cnr.it); the Institute of Crop Sci-
ences, China (3,837 accessions, http://icgr.caas.net.cn/cgris); the
National Bureau of Plant Genetic Resources (NBPGR), India (3,609
accessions, http://www.nbpgr.ernet.in); and the John Innes Centre,
UK (3,006 accessions, of which 418 are wild pea accessions, https://

www.seedstor.ac.uk).

2.2 | Ecogeographical delimitation and its
implications for breeding use

Wild pea (P. sativum subsp. elatius) has a rather broad geographical
distribution, with populations scattered over a great area of the
Mediterranean basin and central Asia, with the greatest diversity in
the Near East (Turkey, Syria, Lebanon, and Israel), whereas the dis-
tribution of P. fulvum is mainly restricted to the Middle East
(Ladizinsky & Abbo, 2015; Smykal et al., 2017). Population genetics
and spatial genetic modeling approaches were used to disentangle
the relative roles of geographic and climatic factors in shaping the
population's genetic structure of P. sativum subsp. elatius represen-
ted by 187 individuals from 14 populations across the northern part
of the Fertile Crescent. Genetic distances between wild pea
populations were correlated with geographic but not environmental
(climatic) distances and support a mixed mating system with pre-
dominant self-pollination. Niche modeling with future climatic pro-
jections showed a local decline in habitats suitable for wild pea,
making a strong case for further collection and ex situ conservation
(Smykal et al., 2018).

Despite environmental distance not being responsible for wild
pea population structure, seed dormancy studies have shown pheno-
typic variation correlated with environmental conditions, including
rainfall patterns (Hradilova et al., 2019). As in other native Mediterra-
nean plants and legume species with physical dormancy barriers,
seeds germinate mostly in autumn, after experiencing a hot and dry
summer season. As a result, established seedlings benefit from avail-
able soil moisture and are ready for early spring growth, avoiding
increased temperatures during flowering and terminal drought during
seed filling. Thus, the temperature is the most prominent environmen-
tal factor regulating seed dormancy and germination (Probert, 2000).
However, in many regions of wild pea's distribution, winter is not
favorable for the onset of flowering. Consequently, mechanisms of

sensing day length have evolved to indicate the time of the year
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suitable for flowering. Therefore, most if not all CWR progenitors of
Mediterranean and Middle East origin, including pea, lentil, and chick-
pea, are long-day plants, requiring certain threshold in order to initiate
flowering (Weller et al., 2012) whereas less is known about the vernal-
ization requirement of the wild (Highkin, 1956;

Wellensiek, 1973).

species

23 |
variation

Pea wild relatives as a source of novel

Pea diversity held in genebanks has been extensively studied over
the past two decades (reviewed in Smykal et al., 2015), with research
focusing mainly on cultivated pea diversity. The Genotyping-by-
sequencing method was applied (Holdsworth et al., 2017) to a set of
431 P. sativum including 11 P. sativum subsp. elatius, two
P. abyssinicum, and 25 P. fulvum accessions and the 13k single nucle-
otide polymorphism (SNP) assay of mapped genes (Tayeh et al,
2015) on 917 samples, including 50 wild accessions (Siol
et al., 2017). The largest samples analyzed so far (3,020 and 4,200
accessions) were dominated by cultivated types and had relatively
few (45) markers (retrotransposon-based insertion polymorphisms,
Jing et al., 2010, Jing et al,, 2012, Smykal et al., 2011). Genome-wide
next-generation sequencing techniques have been used recently to
study the diversity of wild peas (Smykal et al., 2017; Trnény
et al., 2018). A recent study, which included 143 P. sativum subsp.
elatius and 18 P. fulvum accessions, showed that although diversity is
present among cultivated and wild material (Ellis, 2011; Jing
et al., 2007; Jing et al., 2010; Jing et al., 2012; Holdsworth
et al, 2017; Smykal et al, 2011), wild material provides distinct
genetic diversity (Ellis, 2011; Smykal et al., 2011). Smykal et al. (2017)
conducted a comprehensive analysis of wild P. sativum subsp. elatius
by using 409 P. sativum subsp. elatius and 106 P. fulvum accessions
and extracted environmental variables. This study showed that
P. fulvum has a distinct and only partially overlapping environmental
niche. P. fulvum grows in restricted regions of Middle East, some-
times sympatrically with P. sativum subsp. elatius (Ladizinsky &
Abbo, 2015). The spatial diversity of the ecological niche patterns
reveals not only the species diversity center of the Near East but also
the predicted centers of Northern Africa and on the coast of Turkey
and the Southern Aegean islands (Smykal et al., 2017).

Archeological evidence supports the cultivation of pea spreading
from the Fertile Crescent westwards through the Danube valley into
ancient Greece, Rome, and Europe. During the same period, pea also
moved eastward to Persia (now Iran and Afghanistan), India, and
China (Chimwamurombe & Khulbe, 2011; Makasheva, 1979). These
separate expansions might explain the novel diversity of Afghan
type and Chinese landrace peas (Smykal et al, 2011; Zong
et al, 2009) either through drift or through natural selection in
diverse environments (Li, Redden, Zong, Berger, & Bennett, 2013).
Similarly, human selection for early flowering, as drought escaping
phenotype, might have acted on the cultivated Ethiopian pea
(P. abyssinicum).

2.3.1 | Pea wild relatives as sources of resistance
to biotic stresses

Long before plants were domesticated and grown as monocultures,
plant pathogens were coevolving with wild plants growing in mixed-
species communities. Evolution has continued to occur within domes-
ticated plants growing as selected genotypes in denser populations
than in the wild. The use of genetic resistance is considered to be the
most effective and sustainable strategy to control plant pathogens in
agricultural practice. Domestication of wild plants led to crop distribu-
tion away from their original centers (Vavilov, 1926), and their patho-
gens followed this distribution (Turcotte, Araki, Karp, Poveda, &
Whitehead, 2014). In addition to abiotic stresses, plant pathogens are
a major constraint to agriculture and threaten global food security.
Moreover, ongoing climate change could accelerate temporal and spa-
tial disease spread and severity.

Several large studies that examine quantitative disease reactions
have been published (Infantino, Porta-Puglia, & Singh, 1996; Sillero
et al.,, 2006; Tivoli et al., 2006). Most attention has been given to
P. fulvum as a donor of bruchid resistance (Byrne, Hardie, Khan,
Speijers, & Yan, 2008; Clemente et al., 2015) and source of novel
powdery mildew resistance (Esen et al., 2019; Fondevilla, Rubiales,
2008;
Rubiales, 2007). Resistance to pea bruchid weevil was identified in

Moreno, & Torres, Fondevilla, Torres, Moreno, &
P. fulvum (Hardie et al., 1995), with a pod and seed resistance mecha-
nism being implicated (Clemente et al., 2015; Fernandez &
Rubiales, 2019), and was introduced it into -cultivated pea
(Aryamanesh et al, 2012, 2014; Byrne et al., 2008; Clemente
et al., 2015). Further detected resistances are listed in Table 1. Three
single resistance genes, named erl, er2, and Er3, have been reported
so far in pea and its wild relatives (Fondevilla & Rubiales, 2012) to pro-
vide incomplete resistance to powdery mildew caused by Erysiphe pisi.
Of these, erl was identified as an MLO gene (Humphry et al., 2011;
Rispail & Rubiales, 2016). A combination of knowledge of pea germ-
plasm diversity with that of the elF4E gene for virus resistance (Ashby,
Stevenson, Jarvis, Lawson, & Maule, 2011) and screening of nearly
3,000 accessions with known geographical origin including of wild
Pisum sp. led to the identification of novel alleles of resistance
(Kone¢na et al., 2014). These data highlight the importance of Ethio-
pian, Central Asia, and Chinese regions as secondary centers of pea

diversity, corresponding with the diversity of the pathogen.

2.3.2 | Pea wild relatives as sources of tolerance to
abiotic stresses

Besides harboring potential as a source of resistance to biotic stresses,
wild pea might provide a source of tolerance to various abiotic factors.
One of them is cold tolerance and possibility to develop winter pea,
using the flowering locus Hr implicated to influence winter frost toler-
ance (Lejeune-Hénaut et al., 2008). The majority of cultivated pea
accessions from higher latitudes have a quantitative long-day

response and are grown as a spring crop, whereas the obligate or
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TABLE 1

References

Proposed research strategy

Present status

Trait of interest

Wild relative

Crop

Vandenberg, 2017b; Sita et

al., 2017;

Kumari et al., 2017;

Omar et al., 2019

salinity

Agronomic traits

Gorim & Vandenberg, 2019, Gorim &

QTL and GWAS mapping

Days to flower, flowers per peduncle,

Vandenberg, 2017a. Gupta &

leaflets per plant, plant height, seeds
per plant, seed yield, root length

Sharma, 2006; Yuan et al., 2017

and diameter, nodulation, flowering

light response

Domestication traits

QTL and GWAS mapping

Pod dehiscence, seed dormancy

RNAseq analysis

near-obligate requirement for long-day winter cropping cycles has
been retained in some forage cultivars (Weller et al., 2009, 2012).
Potential drought tolerance traits in CWR include leaf waxiness found
in P. sativum, root architecture, and Rhizobial associations. P. fulvum
also exhibits lower drought susceptibility and could potentially be a
source for drought tolerance (Naim-Feil et al., 2017). There are
uninvestigated possibilities to explore wild peas from extreme envi-
ronments in Central Asia and arid Middle East for abiotic stress toler-
ances based on environmental parameters and prioritization of

accessions for controlled environment studies.

2.3.3 | Other traits explored in wild pea

Positive seed yield and seed yield components were identified in
P. fulvum (Miki¢ et al., 2013). Further, Miki¢ et al. (2013) identified
two P. sativum subsp. elatius with pronounced reduced trypsin inhibi-
tor activity (TIA) in seeds. Legume seeds often contain various anti-
nutritional factors, such as protease inhibitors; however, many of
these have been reduced or eliminated during the domestication pro-
cess (Smykal et al., 2018). Despite wild pea having antinutritional fac-
tors, Clemente et al. (2015) identified a wild pea accession (P. sativum
subsp. elatius) as a double null mutant for the two closely linked genes
encoding the TI1 and TI2 seed protease inhibitors. These results dem-
onstrate wild pea as a potential crop improvement resource for

increasing the nutritional value of pea.

3 | CHICKPEA

3.1 | Taxonomical delimitation, genebank
resources, and germplasm diversity

The genus Cicer has a relatively rare Rand flora distribution (Pokorny
et al., 2015), with basal species in the Canary Islands and Atlas Moun-
tains of North Africa (Cicer canariensis) and the highlands of Ethiopia
(Cicer cuneatum) and the majority of the genus in southwest and cen-
tral Asia. Cultivated chickpea, Cicer arietinum, is in a clade of annual
species from predominantly Mediterranean climates, whereas most of
the rest of the genus are perennial species from colder climates in
Anatolia, the (Javadi,
Wojciechowski, & Yamaguchi, 2007). Six annual species, namely, Cicer

Caucus region, and Central Asia
atlanticum, Cicer echinospermum, Cicer floribundum, Cicer graecum,
Cicer isauricum, and Cicer reticulatum, are categorized as rare (R) and
were included in the 1997 World Conservation Union (International
Union for Conservation of Nature, IUCN) List of Threatened Plants
(Walter & Gillett, 1998). The genome of cultivated chickpea
(C. arietinum, kabuli type CDC Frontiers and desi type ICC4958) and
the wild progenitor (C. reticulatum) have been sequenced (Bajaj
et al, 2015; Gupta et al, 2016; Parween et al., 2015; Varshney
et al., 2013), along with resequencing of 429 accessions of elite varie-
ties and landraces (Varshney et al., 2019). These results and previous

work (Penmetsa et al., 2016) suggested that the kabuli type was
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derived more recently from desi type and has lower diversity. The
genetic diversity of 1,385 of recent field-collected C. reticulatum sam-
ples were analyzed for genetic structure as well as relationship to the
environment (von Wettberg et al., 2018).

The primary gene pool of cultivated chickpea is C. reticulatum,
which is fully compatible with cultivated chickpea. The secondary
genepool is C. echinospermum, where recent work has shown that
populations of C. echinospermum vary in their compatibility with culti-
vated chickpea (Kahraman et al., 2017). The tertiary genepool con-
tains other annual species from the Northern Fertile Crescent,
Ethiopia, and Afghanistan including Cicer pinnatifidum, Cicer bijugum,
Cicer chorassanicum, Cicer judaicum, Cicer yamashitae, and C. cuneatum
(reviewed in Smykal et al., 2015). Some studies have suggested some
of these species can be crossed with cultivated chickpea using
extreme measures such as embryo rescue (Badami, Mallikarjuna, &
Moss, 1997), although efforts to replicate these efforts have mostly
failed. An effort to rescue a single cross of C. pinnatifidum into culti-
vated chickpea is currently underway at PAU in Rajastan (Dr. Sarvjeet
Singh, personal communication). The more distantly related perennial
Cicer species constitute a quaternary gene pool extending over a very
wide ecogeographic range but are currently not accessible to culti-
vated chickpea (van der Maeson et al., 2007).

Chickpea germplasm is curated by ICARDA and the International
Crops Research Institute for the Semi-Arid Tropics (ICRISAT) centers,
both having mandates for chickpea, respectively, for Kabuli large seed
and for Desi small seed types. The ICRISAT has the largest collection:
19,959 accessions (http://www.icrisat.org, https://www.genesys-pgr.
org) of cultivated chickpea and 308 accessions of 18 wild Cicer species
from 60 countries. Other major gene banks holding chickpea germ-
plasm include the NBPGR (16,881 accessions, http://www.nbpgr.
ernet.in), New Delhi, India; ICARDA (13,818 accessions, http://www.
icarda.org, https://www.genesys-pgr.org), Rabat, Morocco; AGG
(8,655 accessions, https://grdc.com.au), Horsham, Victoria; and West-
ern Regional Plant Introduction Station (WRPIS), USDA-Agricultural
Research Service (USDA-ARS) (6,789 accessions, https://www.ars-
grin.gov), Pullman, and VIR, Russia (2,091 accessions, http://www.vir.
nw.ru) (Plekhanova et al., 2017). Most accessions within these collec-
tions are cultivated material. Furthermore, much of the wild material
in international collections has been duplicated, and the true number
of independent accessions from the primary and secondary gene
pools is shockingly small, with only 18 unique accessions of
C. reticulatum and 10 of C. echinospermum (Berger, Abbo, &
Turner, 2003). As described below, a recent international collabora-
tion has expanded by over 10-fold available wild relative collections
of both C. reticulatum and C. echinospermum (von Wettberg
et al., 2018).

3.2 | Ecogeographical delimitation and its
implications for breeding use

The compatible wild relatives of chickpea have a very narrow geo-

graphical and ecological range, which has been hypothesized to

contribute to the lack of genetic diversity in cultivated chickpea
(Abbo, Berger, & Turner, 2003). Both C. reticulatum and C. echi-
nospermum are limited to a few provinces of Southeastern Turkey
(Berger et al., 2003). It is possible that they also occur in similar habi-
tats in Iran or Iraq, although verification of this is not currently possi-
ble. C. reticulatum and C. echinospermum rarely co-occur, except for a
few likely hybrid populations in the Euphrates valley north of Cermik
(Berger, personal observation) but do have adjacent distributions.
C. echinospermum typically occurs on more basaltic substrates at lower
elevations in open pastures and disturbed meadows with lower tree
cover than for C. reticulatum, which occurs more frequently on sand-
stone or granitic substrates in mixed pastures and some disturbed
habitats (von Wettberg et al., 2018). Taxa in the tertiary gene pool
have somewhat ecologically and geographically broader distributions.
C. pinnatifidum, in particular, occurs in drier habitats in southeastern

Turkey.

33 |
variation

Chickpea wild relatives as a source of novel

Of the Middle Eastern founder legumes, the primary and secondary
wild relatives of chickpea are perhaps best collected, based on a
recent collection reported in von Wettberg et al. (2018). Beyond the
reported collection in von Wettberg et al., Berger and colleagues have
expanded the collection across the entire SE Anatolia, from Kahraman
Maras in the west to Hakkari in the east and Malatya and Lake Van in
the north, simultaneously widening the rainfall, elevation, and temper-
ature range. Because accurate GPS data exists for these collection
sites, there is an opportunity to download historic climatic data over
the last 25 years from websites such as “worldclim” for an
ecogeographic analysis of critical climatic variables and prioritizing of
accessions for particular abiotic stress tolerances. Collection notes
may also identify sites with shallow rocky soils for which root traits
are important (von Wettberg et al., 2018). There are now >700 acces-
sions residing in Aegean Agricultural Research Institute (AARI) and, to
a lesser degree, AGG, USDA, and ICARDA covering the following spe-
cies: C. bijugum (21 accessions, five collection sites), C. echinospermum
(184 accessions, 15 collection sites), C. pinnatifidum (66 accessions,
11 collection sites), and C. reticulatum (453 accessions, 39 collection
sites). Approximately 250 more accessions will be added after seed
multiplication is complete. Distribution of the primary and secondary
species is sufficiently broad that both taxa are likely stable, despite
ongoing habitat conversion to more intensive agriculture in South-
eastern Turkey (Figure 1).

Despite their narrow distribution, the annual wild Cicer species
have great potential for chickpea improvement through base broad-
ening (von Wettberg et al., 2018) and by providing adaptive traits
lost in the cultigen. This has long been recognized, as attested by a
series of publications listing resistance to Ascochyta, Fusarium, leaf
miner, bruchids, cyst nematode, and vegetative cold based on screen-
ing trials by ICARDA (Singh, Malhotra, & Saxena, 1990; Singh,
Malhotra, & Saxena, 1995; Singh & Ocampo, 1997; Singh,


http://www.icrisat.org
https://www.genesys-pgr.org
https://www.genesys-pgr.org
http://www.nbpgr.ernet.in
http://www.nbpgr.ernet.in
http://www.icarda.org
http://www.icarda.org
https://www.genesys-pgr.org
https://grdc.com.au
https://www.ars-grin.gov
https://www.ars-grin.gov
http://www.vir.nw.ru
http://www.vir.nw.ru
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FIGURE 1 Spatial distribution of available accessions of chickpea, lentil, and pea progenitors in the Middle East region. The map was created

in ArcGIS Desktop 10.6 (esri.com) using Natural Earth data (naturalearthdata.com)

FIGURE 2 Chickpea, lentil, and pea progenitors in natural habitat. (a) Pisum sativum subsp. elatius, (b) Lens culinaris subsp. orientalis, (c) typical

habitat of wild pea, chickpea, and lentil in southeastern Turkey, (d) Cicer reticulatum, (e) Lens culinaris subsp. orientalis, and (f) C. reticulatum in
cultivation upon autumn sowing (photographed on 15 May 2015 at Harran University Experimental Station, Turkey)
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Robertson, & Ocampo, 1998). However, given that the global Cicer
collection at that time was extremely limited, particularly among the
primary and secondary gene pool relatives, it was impossible to ade-
quately define the value of the wild species as a source of adaptive
traits (Berger et al., 2003). This is important because in many cases,
this work showed that the tertiary gene pool species might have
more to offer than those that were readily crossable with chickpea. If
this were true, then chickpea improvement through wild introgres-
sion would be complicated. However, given that the evaluation of
C. reticulatum and C. echinospermum was based on very few truly
independent accessions, this argument was not very sound, and we
were hopeful that wider collection would change this situation. For
example, ongoing characterization of our new collection shows that
the yield potential of wild chickpea (C. reticulatum) in culture is
shown in Figure 2. In contrast to two to four branches as found in
natural habitat (Figure 2d), in cultivation, it can be several dozen
(Figure 2e).

Because wild and domestic Cicer have very contrasting evolution-
ary trajectories, there are good reasons to expect different adaptive
traits among the wild species. Whereas domestic chickpea avoided
cold winters both in time and space, moving south and east to warmer
climates in South Asia in the Bronze and Iron Ages and returning to
the Mediterranean as a spring-sown crop, its wild progenitors have
remained as Mediterranean winter annuals since their origin (Abbo
et al.,, 2003; Redden & Berger, 2007). Hard-seeded wild Cicer typically
emerges with the autumn opening rains and will continue to do so
throughout the growing season depending on rainfall and population
dormancy. By contrast, domestic chickpea is typically sown late on
comparatively fixed dates as a spring crop in much of the Mediterra-
nean. The wild Cicer species, particularly C. reticulatum, have a long
growing season in their native SE Anatolian habitat, persisting far lon-
ger than a sympatric wild lentil, pea, and cereals and typically maturing
later than domestic chickpea.

These contrasting lifecycles subject domestic and wild Cicer to
different selection pressures that are likely to have important adaptive
ramifications that may be exploited for chickpea improvement. For
example, there is no robust reproductive chilling (Berger, 2007; Berger
et al., 2012) or vegetative cold tolerance in domestic chickpea relative
to wild Cicer (Singh et al., 1990; Singh et al., 1995), whereas heat tol-
erance is relatively common (Devasirvatham, Tan, Gaur, Raju, &
Trethowan, 2012). Wild versus domestic differences are also evident
in phenology. Chickpea evolution has selected for regionally appropri-
ate phenology regulation that varies according to the changing envi-
ronmental signals (temperature, photoperiod) perceived across the
global production environment (Berger et al., 2011). These responses
differ in wild Cicer, where vernalization and photoperiod responses
become much more important (Berger, Buck, Henzell, & Turner, 2005;
Sharma & Upadhyaya, 2015). Indeed, recent work in our labs (Kozlov
et al,, 2019; J. Berger, unpublished) demonstrates that wild Cicer spe-
cies have a much more flexible phenology regulation than domestic
chickpea and that responses to vernalization, photoperiod, and tem-
perature all interact. These differing behaviors suggest that wild ver-

sus domesticate differences are likely to emerge in responses to both

biotic and abiotic stresses, as the current round of phenotyping
attests (details below).

3.3.1 | Chickpea wild relatives as a source of
resistance to biotic stresses

The leading biotic stresses for chickpea include Ascochyta blight, Phy-
tophthora root rot, Botrytis blight, and Fusarium wilt, among others.
The annual wild Cicer species have long been recognized as a promis-
ing source of resistance or tolerance to a range of important biotic
stresses (Fusarium wilt, leaf miner, bruchids, and nematodes) (Singh
et al., 1998). However, the narrowness of the world's wild Cicer collec-
tion at that time made it impossible to evaluate whether this resis-
tance (Singh et al., 1998) was prescriptive of the species as a whole or
merely a symptom of a limited collection (Berger et al., 2003). For
example, C. reticulatum was rated as highly susceptible to Ascochyta
blight and C. echinospermum as moderately susceptible to susceptible
(Singh et al., 1998), but these scores were based solely on the evalua-
tion of material derived from 18 and 10 independent accessions,
respectively. Making matters worse, five of these 18 independent
C. reticulatum accessions were collected from the Savur region,
recently identified as a single megapopulation (von Wettberg
et al, 2018). To address this constraint, the newly collected germ-
plasm described above is currently being evaluated for a wide range
of biotic resistance in Australia (Ascochyta blight, Phytophthora,
Pratylenchus thornei, and Pratylenchus neglectus tolerance; Reen, Mum-
ford, & Thompson, 2019) and Turkey (Fusarium, P. thornei, and P. neg-
lectus tolerance).

Although these activities are ongoing and largely unpublished and
have not yet contributed to new cultivar release, there is a history of
(Singh &
Ocampo, 1997). C. echinospermum, in particular, has been used as a

wild Cicer exploitation in chickpea improvement
source for Ascochyta resistance, particularly in the Australian breeding
program (Knights, Southwell, Schwinghamer, & Harden, 2008). Many
Australian lines bear a signature of introgression from C. echi-

nospermum as a result of this.

3.3.2 | Chickpea wild relatives as a source of
tolerance to abiotic stresses

As outlined previously, the contrasting evolutionary trajectories and
life histories of wild and domestic Cicer exposed these species to dif-
ferent climatic stresses at different periods in their lifecycle. Early
attempts by ICARDA to convert Mediterranean chickpea from a
spring to winter crop demonstrated little tolerance to vegetative cold
in domestic chickpea and determined the following ranking: C. bijugum
> C. reticulatum = C. echinospermum > C. pinnatifidum > C. yamashitae
> C. chorassanicum = C. arietinum > C. judaicum > C. cuneatum (Singh
et al,, 1990; Singh et al., 1995). However, this cold tolerance evalua-
tion was based on the same limited collection discussed previously

and was extremely unbalanced, comparing 5,515 chickpea accessions
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to n < 6 for C. echinospermum, C. chorassanicum, C. cuneatum, and
C. yamashitae (Singh et al., 1990). Subsequent work with a wider
range of domestic material confirmed these trends and was equally
unbalanced (Singh et al., 1995).

In the relatively mild Australian winters, chickpea has a Mediterra-
nean winter annual lifecycle and is often exposed to chilling tempera-
tures at flowering that can delay podset for >1 month (Berger
et al., 2004; Clarke & Siddique, 2004). An evaluation of global chick-
pea genetic resources from contrasting reproductive phase tempera-
ture habitats showed no reproductive chilling tolerance in the cultigen
but promising tolerance among wild Cicer (Berger, 2007; Berger
et al., 2012). However, this evaluation was subject to the same con-
straints as the earlier ICARDA work and was equally unbalanced.

Recent evaluation of the new, much wider Cicer collection in Tur-
key and southern Australia has identified a wide range of C. echi-
nospermum and C. reticulatum accessions that can set pods earlier and
at lower temperatures than the domestic checks. This material is also
being evaluated for short- and long-term water use and water deficit
response using mini-lyimeters and is showing markedly different
behavior than domestic chickpea. The same applies to regulation of
phenology, where variation in flowering response (Kozlov et al., 2019)
may be useful for adapting chickpea to new systems niches, such as
the development of a vernalization responsive winter chickpea for use
in cold areas.

Spatially accurate GPS data exist for the recently collected C. echi-
nospermum and C. reticulatum accessions (von Wettberg et al., 2018),
plus from the expanded collection. This would enable identification of
key climatic variables associated with these sites and prioritization of
accessions as potential sources of heat, cold, and drought stresses, in
both the vegetative and reproductive growth phases (Li et al., 2013).
It also allows natural sites to be prioritized for in situ preservation,
such as the lowest and highest elevation sites, or those on particular
substrates, or those with unique rhizobial associates (e.g., Greenlon
etal., 2019).

4 | LENTIL
4.1 | Taxonomical delimitation, genebank
resources, and germplasm diversity

Lentil is a self-pollinated diploid species (2n = 2x = 14) with a genome
size of approximately 4 Gbp (reviewed in Kumar, Rajendran, Kumar,
Hamwieh, & Baum, 2015). Taxonomic classification of the genus Lens
Miller has gone through several modifications, initially with five spe-
cies, Lens culinaris, Lens orientalis, Lens ervoides, Lens nigricans, and Lens
montbretii (Cubero, 1981), to the present seven species/subspecies,
L. culinaris ssp. culinaris, L. culinaris ssp. orientalis, L. culinaris ssp.
tomentosus, L. culinaris ssp. odemensis, L. ervoides, Lens lamottei, and
L. nigricans (Ferguson, Maxted, Slageren, & Robertson, 2000). Despite
the taxonomic reclassifications, all studies indicated L. culinaris ssp.
orientalis as the most closely related wild progenitor of L. culinaris ssp.

culinaris. Cubero, Perez de la Varga, and Fratini (2009) and Smykal

et al. (2015) have provided useful reviews on lentil phylogeny, origin,
domestication, and spread. On the basis of origin and spread, morpho-
logical, cytological, and cytogenetic observation, and more recently on
isozyme and molecular studies, the genus now consists of seven taxa

split into four species:

L. culinaris Medikus

a ssp. culinaris

b ssp. orientalis (Boiss.) Ponert

¢ ssp. tomentosus (Ladiz.) M.E. Ferguson et al.,
d ssp. odemensis (Ladiz.) M. E. Ferguson et al.,
2 L. ervoides (Brign.) Grande

3 L. nigricans (M. Bieb.) Godr.

4 L. lamottei Czefr.

Cubero et al. (2009) observed hybridization barriers to support
the seven taxa delimitation in the genus Lens. L. culinaris and
L. orientalis belong to the primary gene pool, whereas L. odemensis
belongs to the secondary gene pool because of its crossability with
the cultivated lentil, although success depends on the parents
involved. L. nigricans and L. ervoides belong to the tertiary gene pool
but can become part of the secondary gene pool by means of embryo
rescue (Tullu, Bett, Banniza, Vail, & Vandenberg, 2013). Alo, Furman,
Akhunov, Dvorak, and Gepts (2011) reported that L. nigricans and
L. ervoides are well-defined species at the DNA sequence level and
L. culinaris subsp. odemensis, L. culinaris subsp. tomentosus, and
L. lamottei may constitute a single taxon. Therefore, further hybridiza-
tion studies are needed to position Lens tomentosus and L. lamottei in
the secondary or tertiary gene pool. Using a two-enzyme GBS
approach, Wong et al. (2015) have recently grouped seven taxa into
four gene pools, namely, L. culinaris in primary, L. orientalis in second-
ary, L. tomentosus and L. lamottei in tertiary, and Lens odemensis,
L. ervoides, and L. nigricans in quaternary gene pools. More recent
work using an exome capture array is consistent with these results
(Ogutcen, Ramsay, von Wettberg, & Bett, 2018). A genome sequenc-
ing project is ongoing, with a complete genomes available for
L. culinaris in version 1.X (http://knowpulse.usask.ca) and draft long-
read genomes for L. lamottei, L. odemensis, and L. orientalis (X, Bett
et al, in preparation).

As far as the crossability of wild Lens taxa is concerned, L. orientalis
and L. odemensis are crossable with cultivated lentil (Abbo &
Ladizinsky, 1991, 1994; Fratini & Ruiz, 2006; Fratini, Ruiz, & Perez de
la Vega, 2004; Ladizinsky, Braun, Goshen, & Muehlbauer, 1984;
Muehlbauer et al., 2006), although the fertility of the hybrids depends
on the chromosome arrangement of the wild parent. Crosses are pos-
sible between L. culinaris and the remaining species, but they are char-
acterized by a high frequency of hybrid embryo abortion, albino
seedlings, and hybrid sterility. L. nigricans and L. ervoides are not read-
ily crossable with L. culinaris because of hybrid embryo breakdown
(Abbo & Ladizinsky, 1991, 1994; Gupta & Sharma, 2005). However,
embryo rescue allowed for the transfer of anthracnose resistance
from L. ervoides to L. culinaris (Fiala, Tullu, Banniza, Séguin-Swartz, &

Vandenberg, 2009), and recombinant inbred lines (RILs) have been
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developed (Tullu et al., 2013). Only four crosses have not resulted in
hybrids to date: L orientalis x L. ervoides and L. orientalis x L. nigricans
(Ladizinsky et al., 1984), L. tomentosus x L. lamottei (Van Oss, Aron, &
Ladizinsky, 1997), and L. culinaris ssp. odemensis x L. ervoides
(Ladizinsky et al., 1984), though viable hybrids have been reported
between cultivated species and L ervoides, L. odemensis, and L. nigricans
with the use of gibberellic acid (GA3) (Ahmad, Fautrier, McNeil,
Burritt, & Hill, 1995). Fratini and Ruiz (2006) developed an efficient
protocol to recover lentil embryos, which yielded hybrids of cultivated
species with L. odemensis, L ervoides, and L. nigricans. Tullu et al.
(2011) have successfully crossed L. culinaris with L. tomentosus.

Globally, the ex situ collection of lentils is reported at 58,405 held
in various national and international genebanks with a sizeable num-
ber of duplicates (FAO, 2010). At present, ICARDA genebank con-
serves a collection of 14,577 Lens accessions, which include 11,203
landraces, 602 wild accessions, and 2,755 breeding lines (https://
www.genesys-pgr.org, Table 2). Despite being the largest collection,
there are major germplasm gaps at species and genotype levels, and a
continuum is very much required to fill these gaps in wild gene pool
from the unrepresented areas of diversity in the genebank. The other
larger lentil germplasm collections comprise the European Coopera-
tive Programme for Plant Genetic Resources (ECPGR) (4,598 acces-
sions, https://www.ecpgr.cgiar.org), the NBPGR, New Delhi, India
(7,712 accessions, http://www.nbpgr.ernet.in), AGG, Horsham,
Australia (5,254 accessions, https://grdc.com.au), USDA-ARS (3,187
accessions), and Vavilov Institute, Russia (2,556 accessions, http://
WWW.Vir.nw.ru).

ICARDA has characterized 11,165 accessions of lentils for vari-
ous morphological and phenological traits to date. This was possible
because of the formation of core, mini-core, and Focused Identifica-
tion of Germplasm Strategy (FIGS) sets of lentil germplasm, which
have been a very useful for systematic evaluation. Significant varia-
tion has been reported for vyield traits (Erskine, 1983; Erskine,

TABLE 2  Genetic resources conserved at ICARDA
No. of
Number of countries

Name of taxon accessions of collection

Lens culinaris ssp. culinaris 13,958

Landraces 11,203 78

Breeding lines (ICARDA) 2,755

Wild species 602

Lens culinaris ssp. orientalis 263 15

Lens culinaris ssp. 21 2
tomentosus

Lens culinaris ssp. 66 5
odemensis

Lens ervoides 174 16

Lens nigricans 68

Lens lamottei 10

Abbreviation: ICARDA, International Center for Agricultural Research in
Dry Areas.

Adham, & Holly, 1989; Kumar et al., 2014), response in flowering to
temperature and photoperiod (Erskine et al, 1994; Erskine, Ellis,
Summerfield, Roberts, & Hussain, 1990), winter-hardiness, iron defi-
ciency chlorosis and boron imbalances (Srivastava, Bhandari, Yadav,
Joshi, & Erskine, 2000), drought and heat tolerance (Hamdi &
Erskine, 1996), herbicide tolerance (Sharma et al., 2018), Orobanche
tolerance (Fernandez-Aparicio, Sillero, & Rubiales, 2009), and resis-
tance to fungal diseases and viruses (Erskine, Saxena, &
Saxena, 1993; Kumari et al., 2017). Kumar et al. (2014) recorded
useful genetic variability for days to 50% flowering, secondary bra-
nches, number of pods, biological yield, grain yield, and 100-seed
weight in the indigenous lentils. Significant genetic variability was
observed for micronutrients in lentil germplasm (Kumar, Thavarajah,
Kumar, Sarker, & Singh, 2018). Within the cultivated lentil, the
adaptation among landraces is primarily driven by crop phenology
(Erskine et al., 1989). Genotypic characterization studies of lentil
genetic resources have clearly shown distinct clusters of cultivated
and wild germplasm (Alo et al., 2011; Ferguson, Robertson, Ford-
Lloyd, Newbury, & Maxted, 1998; Hamwieh, Udupa, Sarker, Jung, &
Baum, 2009). A recent study using single nucleotide polymorphisms
(SNPs) showed that lentil landraces clustered primarily on the basis
of ecogeographical origin into three distinct clusters: South Asia
(subtropical savannah), Mediterranean, and northern temperate
(Khazaei et al., 2016). Exome capture methodology was developed
and applied to a panel of cultivated and wild lentils, in order to
reduce the large genome size of the lentil genome (Ogutcen
et al, 2018). High-density interspecific maps have been developed
for a cross between L. culinaris and L. odemensis (Polanco
et al,, 2019).

4.2 | Ecogeographical delimitation

The cultivated lentils were divided into two subspecies by
Barulina (1930) and two races by Cubero (1981), the large-seeded
macrosperma and small-seeded microsperma. Alo et al. (2011)
detected the divergence, following domestication, of the domesti-
cated gene pool into overlapping large-seeded (macrosperma) and
small-seeded (microsperma) groups. Within the cultivated lentils, the
extreme specificity of adaptation to ecogeographies limits the scope
of the direct introduction of exotic landraces. South Asian landraces
are generally early maturing small-seeded red lentils, and the West
Asian landraces are late maturing large-seeded mostly yellow lentils.
To widen the genetic base of lentil, ICARDA's breeding program has
used parents of diverse origins to combine traits contributing to
yield, appropriate phenology, adaptation to major biotic and abiotic
stresses, and market preferred traits by manipulating photoperiod
and temperature under controlled conditions. Derivatives from
crosses between South and West Asian parents have generally
shown higher yields mainly because of larger seed size introduced
from the West Asian parents in the typically short duration back-
ground of South Asian genotypes (Shrestha, Siddique, Turner,
Turner, & Berger, 2005).
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The distribution of all CWR overlaps in Turkey (Figure 1) then
differ geographically (Davies, Lulsdorf, & Ahmad, 2007; Singh
et al., 2014); L. c. ssp. orientalis extends throughout the Fertile Cres-
cent (Syria, Lebanon, Jordan, Israel and Cyprus), then north to Arme-
nia, Azerbaijan, Russia, and the Czech Republic and east to Iran,
Turkmenistan, Uzbekistan, and Tajikistan, with open to partly shaded
habitats on stony calcareous to basalt soils at 500-1,700 m. L. c.
ssp. odemensis has limited additional distribution in Syria, Palestine,
and lIsrael, in open grassy habitats, on shallow calcareous soils in
pine groves in Turkey, or on basaltic gravel, at 700-1,400 m. L. c.
ssp. tomentosus is found in Turkey and Syria. L. ervoides is found in
Syria, Jordan, and Palestine, then westwards to Italy, Croatia, and
Montenegro and north to Armenia, Azerbaijan, Ukraine, and Russia,
in shady/partly shady habitats with trees and shrubs. L. nigricans
occurs in Syria also, then west to Greece, Italy, France, Spain, Mon-
tenegro, and Croatia, north to Ukraine and Crimea, and east to Bah-
rain in open or partially shaded stony habitats on limestone and
granitic soils and on abandoned plantations, terraces, and settle-
ments, up to 1.200 m. L. lamottei has a limited distribution in Spain
and France.

43 |
variation

Lentil wild relatives as a source of novel

Wild species are valuable sources of novel variation for yield traits
and resistance to biotic and abiotic stresses. For example, L. ervoides
has been identified as a good source of growth habit, biomass pro-
duction, and seed traits (Fiala et al., 2009; Tullu et al., 2011; Tullu
et al., 2013). Useful genetic variability for crop duration, secondary
branches, number of pods, biological yield, grain yield, and seed size
has been reported in wild relatives of lentil (Kumar et al., 2014;
Kumar, Imtiaz, Aditya, & Gupta, 2011; Singh et al., 2013). Genes for
yield traits like seed size and number of seeds and pods have been
observed in L. lamottei and L. culinaris ssp. orientalis (Ferguson
et al,, 1998; Gupta & Sharma, 2006). Variation in root traits, including
nodulation and root distribution in soil differences, were discovered
in wild Lens taxon (L. orientalis, L. tomentosus, L. odemensis, L. lamottei,
L. ervoides) that may be useful for breeding increased biomass or
seed production (Gorim & Vandenberg, 2017a). ldentification of
novel sources of extra earliness from a wild accession, ILWL118, hav-
ing less than 90 days maturity has resulted in the development of
extra early breeding lines. Singh et al. (2014) evaluated the global
wild Lens taxa originating from 27 countries under diverse
agroclimatic conditions in India for three cropping seasons,
uncovering substantial variation for almost all yield attributing traits
including multiple disease resistance in the wild species, L. nigricans
and L. ervoides accessions. Examination of seed quality traits in wild
Lens documented variation in raffinose family oligosaccharides (RFO),
raffinose, and verbascose, with higher concentrations in seeds of wild
genotypes (Tahir, Baga, Vandenberg, & Chibbar, 2012) and higher
seed mineral nutrient concentrations (Gupta et al, 2016; Kumar,
Thavarajah, et al., 2018).

43.1 | Lentil wild relatives as a source of
resistance to biotic stresses

Screening of CWR of lentil has resulted in identification of
resistance/tolerance for key stresses including Ascochyta blight,
Stemphylium bight, rust, Fusarium wilt, Sitona weevil, bruchids, Oro-

banche, powdery mildew, and Anthracnose (Table 1).

4.3.2 | Lentil wild relatives as a source of tolerance
to abiotic stresses

Wild relatives of lentil also offer drought tolerance in L. nigricans,
L. odemensis, and L ervoides (Gupta & Sharma, 2006; Hamdi &
Erskine, 1996) and cold tolerance in L. culinaris ssp. orientalis
(Hamdi, Kismenoglu, & Erskine, 1996). Hamdi and Erskine (1996)
evaluated Lens CWR accessions (L. orientalis, L. odemensis,
L. nigricans, and L. ervoides) over 2 years in a low rainfall environ-
ment with a supplementary irrigation treatment. Grain yield and the
drought tolerance index were not correlated with the aridity of
accession origins. CWR phenology was of little importance com-
pared with the high correlation in domestic accessions of earliness
and drought tolerance. Thus, other traits were important for CWR
survival. Screening of 100 accessions of L. culinaris subsp. orientalis
under hydroponic culture at 120-mM NaCl concentration resulted
in the identification of several donors for salinity tolerance (Singh
et al.,, 2017). Importantly, flowering and growth responses of wild
Lens to light quality have also been studied (Yuan, Saha, Vanden-
berg, & Bett, 2017).

In extensive studies of lentii CWR in India, Gupta and
Sharma (2006) found L. nigricans to show the most drought tolerance.
Many environments for L. orientalis across Syria, Jordan, Tajikistan,
Turkmenistan, and Azerbaijan have low rainfall and may provide
sources of drought tolerance. A study illustrating the potential of lentil
CWRs in relation to root traits showed significant differences for root
traits and fine root distribution between and within species, the pro-
portion of root biomass partitioned into each soil layer and number of
nodules (Gorim & Vandenberg, 2017b). They evaluated five lentil
CWR and cultivars indoors in soil filled tubes with two levels of water
stress compared with an unstressed treatment. CWR stress tolerance
strategies included delayed flowering, reduced transpiration, reduced
plant height, and deep roots, with some genotypes having more than
one strategy. Some genotypes of L. orientalis and L. odemensis with
deep rooting exhibited comparative stress tolerance with delayed
flowering allowing more root exploration of deeper soil, although with
reduced pod number and seed yield. L. tomentosus had a reduced tran-
spiration rate. High biomass did not result in increased yield in most
cases. Accessions from the primary gene pool had the least water
extraction in severe drought but had lower relative growth rates than
accessions from the secondary and tertiary gene pools. One L. lamottei
accession, which evolved in a frost-prone area, had a high level of tri-
chomes on leaves and stems and was the only accession with tri-
chomes on pods (Gorim & Vandenberg, 2017b). CWR had wide
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variation within and between species in drought tolerance
mechanisms.

Omar, Ghoulam, Abdellah, and Sahri (2019) examined drought tol-
erance in crosses of elite lentil varieties with CWR. Tolerance was
associated with pubescent leaves, cell membrane stability, relative leaf
water content, increased root:shoot ratio, and reduced wilting, tran-
spiration, and canopy temperature. Tolerant segregants are being
advanced for trait fixation. Sanderson, Caron, Shen, Liu, and
Bett (2019), with a focus on drought tolerance and disease resistance,
studied RILs of crosses of lentil cultivars with L. orientalis, L. odemensis,
and L ervoides in the ICARDA lentil prebreeding project. This aims to
develop genetic maps and markers for lentil and CWR for the transfer
of key drought traits into breeding programs for drought tolerance.

Lentil CWR have yet to be screened for heat tolerance. Heat
stress tolerance has been only been reported in cultivated lentils (Sita
et al., 2017). Singh et al. (2019) used genome-wide transcription to
identify heat responsive genes in the regulatory system of lentil culti-
vars. However, more analysis of heat tolerance mechanisms is
required to elucidate heat tolerance. With the assumption that CWR
are adapted to their environment of collection (Baute, Dempewolf, &
Reisenberg, 2015) and that the reproductive period occurs in May-
June, sources of heat tolerance in L. orientalis may occur in Turkmeni-
stan especially, as well as Tajikistan and northern Syria. An alternative
to large-scale field testing is the prioritization of accessions according
to the climatic history of their origin. GPS data exists for lentil CWR
collected at known locations, opening up the opportunity to download
25 years of historical weather data and analyze vectors across sites
for heat, drought, and frost stresses. Sites with extreme distributions
for these stresses can be found, providing identification of candidate
CWR accessions for stress tolerances with the use of FIGS type priori-
tization (Street et al., 2008).

5 | HOWTOEFFECTIVELY USE THE
DIVERSITY OF CWRs?

Conventionally, breeders have used CWR in their breeding schemes
typically as sources of resistance to various biotic and abiotic stresses
(e.g., Hajjar & Hodgkin, 2007). However, this inevitably led to the
occurrence of undesired wild type traits, which have been removed or
through  the (Meyer &
Purugganan, 2013). In many cases, these undesired traits are domi-

altered domestication ~ process
nant and polygenic and consequently challenging to select against.
Thus, these undesired traits need to be removed via repeated back-
crosses of elite crop genotypes accompanied by trait (such as resis-
tance) testing, a process that can be facilitated by the use of
molecular markers either for the trait or background selection. This
process takes time and resources and needs to be done repeatedly on
the case by case basis. To make this process more efficient and appli-
cable, the development of series of introgression lines has been pro-
posed (e.g., Tanksley & McCouch, 1997) and initiated in all three
Fertile Crescent pulse legumes. The development of introgression

lines creates backcrossed lines stabilized by selfing, which are also

thoroughly phenotyped and genotyped, providing a “library” of lines
with various fragments of CWR parent introgressed into a cultivated
background (Prohens et al., 2017). In some cases, the fertility of
crosses between a crop and its progenitor or more distant relatives is
Ellstrand, &
Rieseberg, 2012; Meyer & Purugganan, 2013). This incompatibility, in

reduced (Dempewolf, Hodgins, Rummell,
some cases, is caused by karyotype differences or genomic
rearrangement, which might reduce the ease with which recombinants
can be found. Such chromosomal segments are challenging to break
up by crosses (Tanksley & Nelson, 1996).

There are now genetic procedures to identify CWR with adapta-
tion to local abiotic stresses. Application of population genomic scans
can detect loci with exceptionally high population Fst values, possibly
indicating loci with divergent selection for local adaptation (Baute
et al., 2015). Newer methods without the biases of Fst have emerged
or associations of SNPs with climatic variables and are available with
detect

(e.g., Baypass, bayscan, bayenv2, Bedassle, and Gradient forests)

improving power to SNP-environment  associations
(Fitzpatrick & Keller, 2015). Identification of outlier markers can be
facilitated using high throughput sequencing methods for genetic
mapping and identification of candidate genes. Alleles adapted to spe-
cific abiotic stresses may be associated with such environments, a
means of prioritizing CWR accessions for genetic analysis and intro-
gression into elite crop cultivars (Baute et al., 2015; Sanderson
et al.,, 2019).

The establishment of a series of introgression lines (ILs) was suc-
cessfully pioneered in wheat (Valkoun, 2001) and tomato (Gur &
Zamir, 2004; Zamir, 2001). Sets of ILs with chromosomal segments
(chromosome segment substitution lines, CSSLs) can be tested for
various traits and exploited further by crosses into a desirable genetic
background. Recently, mass-scale systematic development of such
introgressed lines (“introgressiomics”) was proposed (Prohens
et al., 2017; Warschefsky, Penmetsa, Cook, & von Wettberg, 2014).
The prerequisite to an effective selection of adapted material is the
existence of sufficiently precisely georeferenced samples. This infor-
mation allows not only to extract information on the environment but
also to conduct ecological modeling of species occurrence, gap analy-
sis of potential sampling, and conservation of CWRs (Castafeda-A
Ivarez et al., 2016). Akin to advances in genomics, there is also pro-
gress in remote sensing technologies. Geographic information systems
(GISs) can provide information on the patterns of terrestrial environ-
mental variation representing topography, ecoclimatological, and soil
properties. When coupled with genomics, these data sets offer oppor-
tunity to search for adaptive selection, which can also be used in
breeding programs.

Transgressive segregants for agronomically important traits have
been mined from lentil-wide crosses (Kumar et al, 2014; Singh
et al., 2013). A recent development in lentil improvement efforts has
been the successful hybridization of the cultivated lentil with L ervoides
using embryo rescue (Tullu et al., 2013) and the introgression of resis-
(Bucak, Bett, Banniza, &
Vandenberg, 2014) and anthracnose (Tullu et al., 2011). Similarly, for-
eign genes were introgressed for resistance to Ascochyta blight,

tance to Orobanche crenata
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anthracnose, cold (Fiala et al., 2009), and Stemphylium blight (Podder,
Banniza, & Vandenberg, 2013) into cultivated lentil. More recently,
crossing of cultivated species with L. tomentosus followed by ovule
culture has resulted in the development of several prebreeding lines
carrying diversity for flower color, seed coat, and cotyledon color
(Suvorova, 2014). The genetic base of cultivated germplasm of lentil,
especially improved varieties, is based on repeated use of a handful of
germplasms. Pedigree analysis of lentil varieties released in India con-
firmed the extensive and repetitive use of a few genotypes as one of
the parents in hybridization (Kumar et al., 2004). An early flowering
exotic line Precoz (ILL 4605) has been utilized extensively to tailor
plant architecture having vigorous growth, medium maturity, large
seeds, and cold tolerance, particularly for the Indo-Gangetic plains
(Kumar et al., 2014). During domestication and directed breeding,
many alleles were inadvertently left behind in landraces and wild spe-
cies; the introgression of these lost alleles using innovative breeding
tools could bolster modern improved germplasms. For example, rapid
cycling can be used to advance lines quickly as shown in an F, popula-
tion derived from a cross between L. culinaris Medik. and L. ervoides
(Lulsdorf & Banniza, 2018). Past research shows marked genetic vari-
ability for desired traits among landraces and wild lentils. Use of germ-
plasm in lentil breeding has been restricted mainly because of
difficulties in access to exotic germplasm, extreme regional specificity
of adaptation, a large number of uncharacterized accessions, linkage
drags, and the perception that wide crosses would disturb favorable
combinations in cultivated germplasm and result in inferior
recombinants.

Collections of CSSLs derived from crosses of cultivated pea (P. sat-
ivum) with two wild species (P. fulvum and P. sativum subsp. elatius)
were developed (Zablatzka & Smykal, 2015). Utilization of Cicer wild
relative diversity for abiotic stress resistance has lagged behind, a
common trend across breeding programs (Hajjar & Hodgkin, 2007).
However, there is likely drought, heat, and cold resistance in chickpea
CWR. Variation in flowering time may be particularly useful, as has
been shown by Kozlov et al. (2019). A recent international collabora-
tion has built a large introgression resource from the newly expanded
collection of wild diversity (von Wettberg et al., 2018). Advanced
introgression lines, currently in F4 to Fg4 stages, have been developed,
using 20 C. reticulatum and six C. echinospermum parents into five dif-
ferent cultivated accessions (Shin et al, 2019; von Wettberg
et al, 2018).

The studies of CWR for drought and heat tolerances are still get-
ting underway, and expressions are yet to be confirmed in elite
genetic backgrounds. Wider genetic variance for the tolerance of abi-
otic stresses is expected in lentil CWR compared with the domestic
gene pool (Singh et al., 2018), in line with results in chickpea
(Porceddu & Damania, 2015; Redden et al., 2019). The review of lentil
CWR by Singh et al. (2018) noted that CWR had a rich diversity of
useful disease and insect resistances, tolerances to abiotic stresses of
drought, heat, and salinity, and desirable traits for high grain yield.
However, strategies are needed to avoid linkage drag of undesirable
traits when backcrossing to elite genotypes. Highly saturated genetic

maps are needed for identification of genetic markers closely linked to

these traits, to enable marker assisted selection (MAS) for efficient
backcrossing. Genetic mapping of lentil and CWR is in progress, and
application of MAS for the exploitation of lentil CWR can be expected
in the future (Varshney, Nayak, Gregory, May, & Jackson, 2009).

Additionally, there are other morphological traits modified during
domestication, such as seed or plant tissue composition that are far
less studied, especially in legumes. Different accumulation of nutri-
ents, such as microelements, was recently shown in comparative anal-
ysis of wild and cultivated Phaseolus species (Schier et al., 2019). A
recent study showed decrease carotenoids in crops compared with
respective progenitors (Fernandez-Marin et al., 2014). In some spe-
cies, polyunsaturated fatty acids (linolenic acid especially), a-tocoph-
erol, and y-tocopherol decreased following domestication. Extensive
variation for different minerals including Na, K, P, Ca, Mg, Fe, Zn, Cu,
and Mn was observed in wild annual lentil core collection (Kumari
et al., 2018). Similarly, changes in the content of polyphenols in the
root extracts and root tissues were observed in wild (L. ervoides) com-
pared with cultivated (L. culinaris) lentil genotypes in response to
Aphanomyces euteiches infection (Bazghaleh, Prashar, Purves, &
Vandenberg, 2018).

6 | ANEED FORFURTHER COLLECTION
AND IN SITE ASSESSMENT

CWREs, like other plant species, have evolved in relation to their given
environment and habitat. As a result, CWRs have experienced selec-
tion resulting in adaptation to a given habitat, reflected by allelic com-
position across the genome (Piperno, 2017). However, more studies
should be conducted in the geographic centers of origin to test
hypotheses on how abiotic, biotic, and selective human forces have
altered domesticated plants during domestication and subsequent
diversification (Chen, Shapiro, Benrey, & Cibrian-Jaramillo, 2017;
Perez-Jaramillo, Mendes, & Raaijmakers, 2016). The role of ecological
factors especially in the centers of crop origin has received rather little
attention. As proposed by Chen et al. (2017) geographically explicit
hypotheses are needed to understand in situ crop diversification. At
first, human-mediated migration of crops influenced the genetic struc-
turing of crop populations. Second, domesticated cultivars experi-
enced novel selective pressures imposed by new environments and
the cultural preferences of different indigenous peoples. In a study of
wild and domesticated Phaseolus vulgaris, the differences in specific
root length were associated with divergence in rhizobacterial commu-
nity composition (Pérez-Jaramillo et al., 2017). In relation to microbial
root communities, there is a widely unexplored issue of root exudates
that differ between wild relatives and respective crops, and evidence
shows a direct relationship to stresses resistance such as drought or
phosphorus acquisition (Preece & Pefiuelas, 2019). It was shown that
wild progenitors were more adapted for success in agricultural condi-
tions than other nondomesticated species. For example, the roots of
progenitors, including those of chickpea, lentil, and pea, are thicker
and less dense indicative of adaptation to fertile soils (Gorim &
Vandenberg, 2017a; Martin-Robles et al., 2019). Crops have about
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50% higher yields than respective progenitors, realized by higher bio-
mass and seed size, while reducing pod material. However, there was
no difference in the number of seeds per plant (Preece et al., 2017).

Additionally, we believe that the greatest need with these taxa is
to harness the diversity present in wild relatives. Although introgres-
sion populations have been built from wild-cultivated crosses in all
three species, we see considerable power in building the large Nested
Association Mapping (NAM)-styled introgression populations that
have recently been built for chickpea (von Wettberg et al., 2018).
Large introgression populations can be outstanding resources for gene
identification of traits that segregate in wild populations and give
breeders a considerable benefit on the prebreeding task of harnessing
wild alleles (Tanksley & McCouch, 1997; Warschefsky et al., 2014).
These hybrid populations, particularly if carefully phenotyped in multi-
ple locations, can be extremely valuable long-term resources. Ensuring
that these resources are widely available, in the context of the
benefit-sharing mandate of the International Treaty and Plant Genetic
Resources and Nagoya Protocol, will be critical to ensuring the wide-
spread value of these plant genetic resources.

Lastly, we also believe that there are benefits to further collecting
of CWR diversity of these taxa, particularly in more remote regions of
Southeastern Turkey, in the Caucasus mountains, in Central Asia and
into the Eastern Fertile Crescent for all three taxa, and in Spain for
Lens species in the secondary and tertiary gene pools. This includes ex
situ conservation (Castafieda-Alvarez et al., 2016; Maxted, Kell, Ford-
Lloyd, Dulloo, & Toledo, 2012). Furthermore, in situ preservation of
these taxa remains critical (https://www.cwrdiversity.org). The north-
ern Fertile Crescent has seen enormous upheaval from civil conflicts,
dam building, mining, agricultural land-use change, and climate
change. CWRs for all taxa receive almost no protection in the region.
Given the importance of crops from this region, beyond the three
founder legumes, preservation of this natural reservoir of adaptation
is among the most important conservation challenges we face.

For effective in situ conservation, both local leadership and inter-
national partnerships will be needed. Recent work on in situ conserva-
tion has developed a range of principles and some organization. Ideas
such as preserving locations with high overlap of CWR taxa, as well as
sites with unique characteristics, are important. Setting up preserves
to allow migration in response to climate change will also be neces-
sary. However, the social aspects of in situ preservation will likely be
more challenging. Funding may be essential and may be one role that
international partners can play. However, given declining trends for
support for science, particularly for conservation, we may need to be
creative to find ways to be optimistic. Political will for preservation
must come from local communities and cannot be imposed fairly or
effectively by outsiders. In the face of ongoing civil strife, conserva-
tion becomes a very low priority. We hope that illustrating the value
of CWRs helps build support for CWR conservation, as their value will

not diminish over time.
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