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Abstract Irrigation demands fluctuate in response to weather variations and a range of irrigation man-
agement decisions, which creates challenges for water supply system operators. This paper develops a
method for real-time ensemble forecasting of irrigation demand and applies it to irrigation command areas
of various sizes for lead times of 1 to 5 days. The ensemble forecasts are based on a deterministic time series
model coupled with ensemble representations of the various inputs to that model. Forecast inputs include
past flow, precipitation, and potential evapotranspiration. These inputs are variously derived from flow
observations from a modernized irrigation delivery system; short-term weather forecasts derived from
numerical weather prediction models and observed weather data available from automatic weather
stations. The predictive performance for the ensemble spread of irrigation demand was quantified using
rank histograms, the mean continuous rank probability score (CRPS), the mean CRPS reliability and the
temporal mean of the ensemble root mean squared error (MRMSE). The mean forecast was evaluated using
root mean squared error (RMSE), Nash–Sutcliffe model efficiency (NSE) and bias. The NSE values for evalua-
tion periods ranged between 0.96 (1 day lead time, whole study area) and 0.42 (5 days lead time, smallest
command area). Rank histograms and comparison of MRMSE, mean CRPS, mean CRPS reliability and RMSE
indicated that the ensemble spread is generally a reliable representation of the forecast uncertainty for
short lead times but underestimates the uncertainty for long lead times.

1. Introduction

Short-term system scale irrigation demand forecasts are extremely useful for system operators to make irri-
gation water distribution decisions, but they are subject to uncertainties resulting from input parameters
and model structure. Parameter and structural uncertainties are inherent in models, as models try to sim-
plify the complex reality. Input uncertainties are also important as inputs are subject to measurement, esti-
mation or prediction uncertainties. From the irrigation demand forecasting prospective, uncertainties in the
irrigation demand forecasts can result from observation, estimation or prediction uncertainties in biophysi-
cal (crop-soil-climate interaction), behavioral (farmers and system operators attitude that influencing man-
agement decisions) and supply (supply source, seasonal allocation, permanent entitlement) factors [Zaman
et al., 2007]; as well as from the respective parameter uncertainties, depending on the specific models used.
This research makes ensemble forecasts of irrigation demand using a multivariate time-series model of
short-term (up to 5 days) daily irrigation demand forced by observed demands and observed and forecast
weather integrating measurement errors, estimation errors, and weather forecast uncertainty.

Past research has used sophisticated and highly complex modelling architectures such as process-based
(conceptual) and data-driven (statistical) approaches [Alfonso et al., 2011; Pulido-Calvo and Gutierrez-Estrada,
2009] to derive irrigation demand forecasts. Typically, process-based approaches have been used at field
scale and data-driven approaches have been used at system scale. Few of these studies have attempted to
estimate irrigation demand forecast uncertainties. Studies at the system scale have mainly used data-based
deterministic models to forecast irrigation demand [Pulido-Calvo and Gutierrez-Estrada, 2009; Pulido-Calvo
et al., 2007; Pulido-Calvo et al., 2003]. A few of these studies have considered uncertainty, mainly focusing
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on parameter uncertainties. Both bootstrap methods [Ticlavilca et al., 2011] and Bayesian techniques
[Alfonso et al., 2011] have been used to investigate the irrigation demand forecast uncertainties resulting
from model parameters. Also, some univariate time series models based on previous irrigation flows
[Pulido-Calvo and Gutierrez-Estrada, 2009; Pulido-Calvo et al., 2003, 2007] have captured the combined uncer-
tainty from inputs and model structure by including the associated error model to represent the random
error component in the irrigation demand forecasts.

Many models have used short-term weather forecasts to make irrigation decisions, especially precipitation
[Azhar and Perera, 2011; Cai et al., 2011; Gowing and Ejieji, 2001; Wang and Cai, 2009; Wilks and Wolfe, 1998],
temperature [Ticlavilca et al., 2011; Wilks and Wolfe, 1998] and evapotranspiration [Alfonso et al., 2011; Tian
and Martinez, 2014]. Weather forecasts have often been considered for field scale and a few studies that we
are aware of have incorporated weather forecasts at the system scale [Tian and Martinez, 2014]. Field scale
models have often used weather forecasts for irrigation scheduling (i.e., predict timing and its volume) and
weather forecast uncertainties were manifest mainly in variations of the irrigation timing [Cai et al., 2011;
Gowing and Ejieji, 2001; Wang and Cai, 2009; Wilks and Wolfe, 1998]. These models only used limited forecast
information as the quality of the available weather forecast at that time was poor at longer lead times
(greater than 3 days lead times) [Gowing and Ejieji, 2001]. This was seen as a major impediment at the time.
Alfonso et al. [2011] and Tian and Martinez [2014] forecasted system scale irrigation demands, combining
stochastic reference evapotranspiration forecasts derived from a machine learning algorithm and currently
operational Global Ensemble Forecast System (GEFS), respectively. Ticlavilca et al. [2011] also combined
daily maximum and minimum temperature with system scale irrigation demand forecasts using a machine
learning algorithm.

These system scale models were mainly developed for arid-zone agriculture and precipitation forecasts
were not considered, as it is not important for irrigation decisions in those environments [Alfonso et al.,
2011; Tian and Martinez, 2014; Ticlavilca et al., 2011]. These studies have generated system scale stochastic
irrigation demand forecasts with prediction intervals. In terms of assessing the probabilistic forecasts, all
studies provided a graphical comparison of observed time series overlain on the forecast prediction inter-
vals without a quantitative evaluation. Tian and Martinez [2014] also provided relative operating characteris-
tic (ROC) diagrams that suggested, they didn’t provide any statistical analysis of the reliability or sharpness
of the probabilistic forecasts. The maximum lead time for the most of these studies was 2 days or less and
no study comprehensively integrates input uncertainties into the irrigation demand forecast uncertainties.
While ensemble techniques have been used elsewhere, in hydrology [e.g. Addor et al., 2011; Li et al., 2015;
Shrestha et al., 2013a; Zappa et al., 2011] and hydrometeorology [e.g. Brown et al., 2010; Ebert et al., 2011;
Gneiting, 2013; Robertson et al., 2013a; Rossa et al., 2011], no studies we are aware of have used both sto-
chastic precipitation and reference evapotranspiration forecasts nor have there been studies that combine
uncertainties in antecedent flows and observed and forecast weather to derive stochastic volumetric irriga-
tion demand forecasts at system scale.

Ensemble techniques are commonly used to represent uncertainty in nonlinear models. In the context of
forecasting; ensemble forecasting is a form of Monte Carlo analysis that is used to characterize uncertainty
in model outputs [Toth and Kalnay, 1993]. In principle, this technique can be applied for both input and
parameter uncertainty depending on the context of the modelling. Ensemble forecasting techniques have
been widely used in science, engineering, medicine and ecology, among other areas. It has been widely
used in weather forecasting [Ebert, 2001; Ebert et al., 2011; Gneiting, 2013; Gneiting and Raftery, 2005] and
species distribution modelling [Ara�ujo and New, 2007; Buisson et al., 2010; Grenouillet et al., 2011; Thuiller
et al., 2009] to capture errors in the initial condition and model structure. In the field of water resources
engineering, ensemble forecasting techniques have also been used extensively in forecasting stream flow
[Bennett et al., 2014], short-term water demand [Hutton and Kapelan, 2015] and floods [Alvarez-Garreton
et al., 2014; Cloke and Pappenberger, 2009; Li et al., 2014; Schaake, 2006; Schaake et al., 2005]. In these stud-
ies, sources of uncertainty included in forecast ensembles were uncertainty in inputs (mainly precipitation
forecasts), state variable (soil moisture), and model structures through model parameters. We are unaware
of any irrigation demand forecast model that has used ensemble forecasting techniques to derive stochastic
irrigation demand forecasts.

The structure of the multivariate time series model used here, which has auto-correlated and cross-
correlated multivariate inputs, some of which are nonlinearly transformed, suggests ensemble forecasting
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techniques to derive output uncertainties would be useful. This technique has advantages in multivariate
time series models compared with the bootstrap method, which can often distort the cross correlations
between multivariate inputs and outputs [Khaliq et al., 2009; Rummel et al., 2010], whereas ensemble fore-
casts can preserve the error covariance among input time series which is then transferred through the
regression structure to the stochastic output. However, the outcomes from an ensemble forecasting tech-
nique is dependent on the quality of the input time series. Therefore, a good quality data set (i.e., fine scale,
free from bias and complete) is important for generating reliable, unbiased output ensembles. Past impedi-
ments such as the lack of required data, the expense of data acquisition and low data quality are being
reduced with the availability of irrigation flow data from fully automated irrigation distribution systems,
short-term weather forecasts from numerical weather predictions (NWP) models and observed weather
data from automatic weather stations. In particular, the accuracy of the weather forecasts is continuously
improving and consistent real-time irrigation flow data are now available from modernized distribution sys-
tems. This provides an opportunity to apply ensemble forecasting techniques to generate stochastic irriga-
tion demand forecasts.

This paper develops ensemble irrigation demand forecasts using the irrigation distribution system in the
Goulburn-Murray Irrigation District (GMID) in Northern Victoria as a case study. This system has been mod-
ernized and automated connections provide consistent real-time flow data [NVIRP, 2010a]. Previously, Perera
et al. [2015a] developed a deterministic model and assessed its performances under perfect weather fore-
casts i.e., using observed weather data. This paper uses that model as a basis and both brings real weather
forecasts into the analysis and develops an ensemble framework to incorporate uncertainties arising from
the weather forecast data as well as other inputs. In doing this we use data from the GMID and numerical
weather predictions (NWP) from the Bureau of Meteorology (BOM) to develop ensemble irrigation demand
forecasts. This is a relatively new and high level of data availability compared with many irrigation systems.
The analysis includes input uncertainties associated with the flow measurement and weather measure-
ments and forecasts. The remainder of the paper describes the area of study where the methodology has
been applied and forecasting performance for command area driven stochastic irrigation demand forecasts
and conclusions that has been drawn.This provides novel understanding about the irrigation demand pre-
diction uncertainties like input uncertainties related to biophysical, behavioral and supply factors and in
turn assists system operators to mitigate the risk associated with their routine irrigation distribution
decisions.

2. Study Area and Data

2.1. Study Area
The study area and data sources are described in detail in Perera et al. [2015a]. The study area is located in
the Central Goulburn Irrigation District (CGID), Victoria, Australia. Agriculture in the study area is dominated
by irrigated dairy, pome and stone fruit production, with other agricultural activities related to sheep for
wool, beef and dairy cattle [RDV, undated]. The main source of water supply for the CGID is from Lake Eil-
don, with delivery via the Goulburn River, Goulburn weir, and the Stuart Murray Canal. Water flows from
Stuart Murray Canal to the CGID through six gravity irrigation distribution channels namely CG1, 2, 3, 4, 5
and 6. Any excess water in the Stuart Murray Canal is diverted to Waranga Basin (Figure 1). The irrigation
distribution system in the CGID is highly automated and a SCADA (supervisory control and data acquisition)
system monitors levels and flows and controls the regulator gates and meter outlets across the district. Irri-
gation water takes about 4 days to travel from Lake Eildon to the farms in this area. The proposed ensemble
forecasting methodology was applied to 287 km2 of irrigated agricultural land supplied by CG 1, 2, 3 and 4.
The characteristics for each channel are given in Table 1. The irrigation year starts on the 15 of August and
continues to the 15 of May the following year. The study area is approximately 110 meters above the
Australian height datum (AHD) and the climate is temperate with a hot summer (T hot �228C) but without
a dry season (K€oppen climate type Cfa) [Peel et al., 2007].

2.2. Data Sources and Preprocessing
2.2.1. Irrigation Flow Data
The irrigation flow data related to the regulators and service points were collected from the operational
SCADA system known as Total Channel ControlTM (TCCTM) that is used by Goulburn-Murray Water
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Figure 1. Study area–Central Goulburn channel 1, 2, 3, and 4 [Perera et al., 2015a].
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(GMW). TCCTM is a fully automated open channel delivery system that captures flow measurements in
real-time at all regulating structures and farm supply points. We used the flow data recorded at 1016
supply points for the period 15 August 2006 to 15 May 2012; which includes 6 irrigation years. The serv-
ice point delivery data were aggregated to a daily time step. The SCADA system records the start and
end times and flow rates of irrigation order deliveries. Service point flows were aggregated across all
service points for each individual channel and the study area as a whole. This aggregation implicitly
assumes that the travel time along the local channel or study area is significantly less than a day. The
aggregated service point flows are denoted IDCGi, ASP. Here ‘‘ASP’’ denotes the Aggregated Service Points,
and ‘‘i’’ provides spatial aggregation area (where i51, 2, 3, 4 or 1234).
2.2.2. Observed Climate Data
The observed climate data were obtained from two Automatic Weather Stations (AWSs) and three daily
read rain gauge sites operated by the Australian Bureau of Meteorology (BoM) [BoM, 2005] located in
and around the study area (Figure 1).The characteristics of each weather station are given in Table 2.
Daily precipitation records were collected from all five sites as the area often witnesses localized patchy
precipitation events. These five sites were established well before the channel automation and record
start dates vary between 1883 and 1996. The hourly weather variables needed to estimate daily refer-
ence evapotranspiration–ETO were collected from the AWSs (air temperature, dewpoint temperature,
wind speed) and satellite imagery (solar radiation) as described by Perera et al. [2014, 2015b]. The mea-
surement ranges and accuracies of these observed weather variables are given in Table 3. The AWSs
and rain gauges nominally provide continuous measured weather data; however, there were times
within the study period when hourly/daily weather data were missing due to various reasons. For miss-
ing daily precipitation, the aggregated value recorded at the end of missing period was uniformly dis-
aggregated over the missing period, while other weather variables were infilled from the neighbouring
AWS.

Table 1. Characteristics of CG 1, 2, 3 and 4 Channels

Channel

Length(km)

Area (km2)

Service Points (Nos.) Regulators (Nos.)
Degree of
Mod.b (%)

La21 La22 La23 Total Mod.b Unm.c Total Mod.b Unm.c Total SPd Vole

CG1 5.5 2.4 7.87 7.8 5 41 46 5 3 8 11 20
CG2 18.5 15.6 3.2 37.3 32.8 142 7 149 36 0 36 95 96
CG3 17.32 43.34 25.5 86.2 88.3 246 109 355 88 17 105 70 65
CG4 39.8 76.9 23.4 140.0 157.9 357 109 466 117 32 149 77 60
CG1234 81.1 138.2 52.1 271.4 286.9 750 266 1016 246 32 298 74 65

aLevels of distribution (L-1- backbone, L-2–primary and L-2–secondary).
bModernized.
cUnmodernized.
dService points.
eVolume through automated service points.

Table 2. Characteristics of Automatic Weather Stations and Rain Gauges

No. AWS no. Name Latitude (degrees) Longitude (degrees) El. (m) Precip.a Tb, Dewc, WSd and SRade

1 81125 Shepparton Apt.f 236�2504400 145�23’41’’ 113.9 � �

2 81049 Tatura Inst.g sus.h agi 236�2601600 145�16’02’’ 114.0 � �

3 81114 Thiess Service 236�2604000 145�13’40’’ 114.0 � 3

4 81053 Waranga Reservoir 236�3003900 145�05’25’’ 121.0 � 3

5 81035 Murchison 236�3605300 145�12’51’’ 115.0 � 3

aPrecipitation.
bDaily temperature.
cDew point temperature.
dWind speed.
eSolar Radiation.
fAirport.
gInstitute.
hSustainable.
iAgency.
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2.2.3. Weather Forecasts
The short-term weather forecasts relevant for the study area were collected from the Australian Bureau of
Meteorology’s operational NWP forecasts derived from the Australian Community Climate and Earth System
Simulator–(ACCESS) [Puri et al., 2013]. The ACCESS systems are nonhydrostatic, hybrid vertical level struc-
ture, mesoscale assimilation & forecast systems. They have been operational since 17 August 2010. The tem-
poral (lead time) and spatial resolution for different ACCESS systems vary from 11 to 1240 h and 5 to
80 km, respectively. The forecast performances for precipitation and mean sea level pressure of the ACCESS
systems have been comprehensively evaluated [BoM, 2010, 2012; Puri et al., 2013] and also its outputs have
been extensively used for short-term stream flow forecasting [Pagano et al., 2010; Shrestha et al., 2012,
2013b]. We selected the ACCESS-G system, which has the largest lead time (1240 h) and the largest grid
cells (80 km) in order to derive irrigation demand forecasts for longer lead times, where the next higher
resolution model has a lead time of only 72 h. ACCESS-G is run twice a day providing forecasts starting at
10.00 AM and 10.00 PM local time (i.e., 0000 and 1200 UTC). The outputs from these runs are available at
03:50 PM and 03:50 AM (the next day), respectively [BoM, 2010]. We used the 10:00 AM local time run and
constructed 9 midnight to midnight daily ETO and 09:00 AM to 09:00 AM daily precipitation forecasts using
the 3 hourly NWP forecast outputs of precipitation, air temperature, dew point temperature, wind speed
and incoming solar radiation from 17 August 2010 to 1 August 2012. The four grid points surrounding the
station were linearly interpolated to the AWS location and biases in the forecast ETO input variables were
corrected following Perera et al. [2014] and precipitation forecasts were post-processed following Robertson
et al. [2013b]. The ETO forecasts have been evaluated in detail by Perera et al. [2014], who found that the
root mean squared error (RMSE) and coefficient of determination (R2) values ranged over 0.73–1.43 mm d21

and 0.91–0.01 for 1 and 9 day lead times, respectively. Precipitation forecasts have R2 values of 0.65 and
0.55 for 1 and 3 day lead times, respectively [BoM, 2010].

3. Methodology

In this paper, the multivariate time series model developed previously by Perera et al. [2015a] is used to derive
irrigation demand forecast ensembles for lead time up to 5 days. In principle, the ensemble forecasting
approach can include all sources of uncertainties. We undertook some preliminary evaluations to decide which
uncertainties to incorporate in this analysis (not presented). This involved perturbing model inputs and param-
eters individually and collectively and examining the output ensemble spread. It was found that including
both model input and parameter uncertainty did not significantly change the ensembles compared with only
including model input uncertainty. Including only parameter uncertainty led to very narrow output ensembles.
Therefore, the ensemble forecast approach used here was simplified by omitting the parameter component.

Figure 2 provides the schematic diagram of the ensemble forecast approach that has been adopted and
shows the flow of input data through to ensemble irrigation demand forecasts along the time line. Steps
1–3 are about characterizing the statistical structure of each input time series, including measurement error
characterization; correction of NWP forecast bias and characterization of NWP forecast uncertainty, followed
by creation of the input ensembles for each model input. We used different perturbation methods in order
to account for measurement, observation and forecast uncertainties given that the deterministic multivari-
ate time series model is forced by observed demands and observed and forecasted weather. The selected
perturbation methods are discussed in detail later in this section. We post-processed input ensembles using
the Schaake Shuffle method [Clark et al., 2004] to achieve realistic cross-correlations and temporal

Table 3. Measurement Range and Accuracy of Climate Variables From AWS [BoM, 2005]

Sensor Range Accuracy Unit

Air pressure 750 to 1060 0.3 hPa
Air temperature 225 to 160 0.3 8C
Wet bulb temperature 225 to 160 0.3 8C
Relative Humidity 2 to 100 3 %
Wind Speed 2 to 180 2 knot
Wind Direction 0 to 359 5 degree
Precipitation 0 to 999.8 2% mm
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persistence within each ensemble. Step 4 involves preparing past and future forcing variable (water supply
deficit) and running the deterministic ARMAX models with the various input ensembles. A brief description
of the deterministic model and its calibration is given in the next section and further details can be found in
Perera et al. [2015a]. Step 5 summarizes the daily ensemble irrigation demand forecasts into a probabilistic
irrigation demand forecasts.

The various modelling steps above are described in more detail in the following methodology sections. The
last part of the methodology describes the evaluation methods that have been used to quantify the fore-
cast performance of ensemble irrigation demand forecast.

3.1. Deterministic Model and its Calibration
3.1.1. Deterministic Model Structure
The model used here is a multivariate time series model, which has been previously developed to derived
irrigation demand forecasts for the same study area [Perera et al., 2015a]. This time series model combines
bio-physical factors (weather) as the exogenous variable with behavior factors captured through the auto-
regressive process dependent on immediate past irrigation demands. The model is an autoregressive mov-
ing average model with an exogenous variable-(ARMAX) (equation (1)).

ID tð Þ1a1:ID t21ð Þ1 � � �1ana :ID t2nað Þ5 b1:u t2nkð Þ1 � � �1bnb :u t2nk2nb11ð Þ
1 c1:e t21ð Þ1 � � �1cnc :e t2ncð Þ1e tð Þ

(1)

where, ID tð Þ is the daily irrigation demand at time t, u tð Þ is the daily exogenous variable at time t, na is the
number of past irrigation demand terms included, nb is the number of time points at which the exogenous
term is specified plus 1, nc is the number of autoregressive error terms, nk is the number of input samples
that occur before the input affects the output, also called the dead time in the system, ID tð Þ . . . ID t2nað Þ
are the previous outputs on which the current output depends, u t2nkð Þ . . . u t2nk2nb11ð Þ are the

Figure 2. The schematic diagram of the ensemble forecast approach.

Water Resources Research 10.1002/2015WR018532

PERERA ET AL. ENSEMBLE FORECASTING OF SHORT-TERM IRRIGATION SYSTEM DEMANDS 4807



previous and delayed inputs on which the current output depends, e tð Þ . . . e t2ncð Þ are the white-noise
disturbance values, which is modeled as an independent and identically distributed (iid) Gaussian process,
with zero mean and variance r2

e .

The exogenous variable (u) is a water supply deficit (WSD) index which reflects the effect of atmospheric
forcing on irrigation demand as a combination of precipitation and ETO. The WSD is estimated using a sim-
ple soil water bucket model with two parameters.

WSDt5ETOt3 12
St

Smax

� �c� �
(2)

The storage at time t, St, is calculated using a soil water balance,

St5min St211Pt21:t2ET0t21:t
St

Smax

� �c

; Smax

� �
(3)

where, ETO (mm d21) is the daily reference crop evapotranspiration, St (mm) is the soil moisture storage,
Smax is the maximum soil moisture storage (mm), P (mm) is the precipitation. The bucket capacity (Smax) and
the nonlinearity (c) of actual evapotranspiration are determined in the model fitting. WSD is essentially a
command area average index aiming to represent the pattern of supplemental water that would need to
be supplied through irrigation.
3.1.2. Deterministic Model Calibration
A detailed description of the model fitting and selection through cross validation is provided in Perera et al.
[2015a]. This included developing data transformation to remove seasonality and scaling differences in the
raw data set. Then, the model parameters were estimated in two steps: the first of which determined the
order of each transfer function and Smax and c; and the second of which determined the lag coefficients.
Model selection was guided using the Bayesian information criterion (BIC)

BIC5N:log MSE1d:log N (4)

where, MSE is the mean squared prediction error, d is the number of parameters and N is the number of
observations.

This is essentially a mean squared error minimization penalized by parameter number as a measure of
model complexity. The deterministic model calibration process used a leave-one-year-out cross-validation
(LOOCV) technique to select the best time series models based on the BIC calibration. In the original paper
[Perera et al., 2015a] 6 years of data were used (calibration on 5 years, validation on 1 year); however, the
NWP weather forecasts from ACCESS-G are only available the 2010–2011 and 2011–2012 irrigation seasons
due to changes in the Bureau’s NWP systems. Therefore this study focusses on just two of the original mod-
els; the ones that were validated on the 2010–2011 and 2011–2012 irrigation seasons. Cross-validations
showed that the overall patterns between command areas and years were similar. The average performan-
ces for RMSE and NSE during calibration, among six cross-validation scenarios across 5 command areas
ranged from 2.33 ML d21 (CG 1) to 28.5 ML d21 (CG 1234) and from 0.55(CG 1) to 0.93 (CG 1234) respec-
tively, for 1 day lead time [Perera et al., 2015a].

3.2. Ensemble Generation
3.2.1. Real-Time Flow Data
The measurement uncertainty for the irrigation flows was estimated from the manufacture’s specifications
and in-field audits. The measurement uncertainty for automated off take regulators and meter outlets is 6

2.5% (95% confidence) under laboratory test conditions [Rubicon_Water, 2014]. However, under operational
conditions, the Total Channel ControlTM (TCCTM) SCADA system was assessed as being able to maintain a
constant rate of flow as channel level varied. Specifically, the field assessment concluded that ‘‘the modernised
backbone will deliver a uniform flow within 1/25% more than 90% of the time’’ [NVIRP, 2010b]. We have inter-
preted these two sources of information as representing likely bounds on the in-field performance of the sys-
tem and we consider error scenarios between these bounds. The above statements imply measurement error
standard deviations (as a proportion of measured flow) of 0.0304 (65.0% with 90% confidence) and 0.0128
(62.5% with 95% confidence) respectively, assuming a normal distribution. A preliminary evaluation (not pre-
sented) was carried out to select the measurement uncertainty standard deviation for generating ensembles
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of observed flow. This evaluation considered standard deviations of 0.0304, 0.025, 0.02, 0.015 and 0.0128. The
results shows the standard deviation for measurement error for and meter outlets of 0.02 (i.e., 2% of measured
flow) generated reasonably reliable 1 day lead time forecast ensembles under calibration conditions. This mea-
surement uncertainty is assumed to be a constant proportional error across the full range of flows.

In addition, the measurement errors under laboratory conditions [Rubicon_Water, 2014] and supply error in
the field [NVIRP, 2010b] need to be generalized across all the automated off take regulators and meter out-
lets as regulators record times of flow rate change and meter outlets record the start and end timings and
flow rates of irrigation order deliveries. The off take regulator and aggregated service point flow ensembles
were created similarly, perturbing daily irrigation flow time series with an additive percentage error. The
additive error is assumed to be a white noise. The variance is adjusted for the daily aggregated service point
(IDCGi, ASP) data, given that it is the sum of many individual service points with individual errors that were
assumed to be independent of each other. Therefore, the irrigation flow ensembles for daily aggregated
service point (IDCGi, ASP) are derived using equations (5) and (6).

IDens
CGi; ASP5 IDCGi; ASP1nID

CGi; ASP (5)

nID
CGi; ASP � N 0; r2

CGi; ASP

� �
and rCGi; ASP50:02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
IDCGi; ASP

2
q

(6)

where, IDens
CGi; ASP is the irrigation demand ensemble for aggregated service, IDCGi; ASP is the daily aggre-

gated service point, and nID
CGi; ASP is the Gaussian additive noise representing measurement error with zero

mean and a variance of r2
CGi; ASP . The variance derives from assuming that the 99% measurement confi-

dence interval is 65.0% of the measured flow.
3.2.2. Observed Weather Variables
The errors in the atmospheric forcing variables for the WSD are a key component contributing to uncertain-
ties in the irrigation demand estimation and forecasting. Estimation uncertainty for the exogenous variable
WSD results from the precipitation measurement errors and the estimation errors of ETO. Given the various
nonlinearities in converting weather variables to ETO and WSD, a Monte Carlo method is applied to create
ensembles for the WSD, where precipitation and ETO are perturbed with known error parameters.

Precipitation, ETO and irrigation flow ensembles were post-processed using the Schaake Shuffle method
[Clark et al., 2004] and historical records. During the calibration, we used a moving window of 100 days
(equivalent to the number for ensembles); either centred, forward shifted or back shifted, depending on the
day of the year. These three types of moving window were necessary to given that the irrigation distribu-
tion operation is inactive for 3 months (15 May to 15 August) of each year, meaning there is no irrigation
flow data for that period. Similar moving windows were used to post-process the irrigation flow ensembles
for the evaluation period, but the immediate past year’s data were used because observations are unknown
ahead of time in an operational forecasting context.
3.2.2.1. Precipitation
Lognormal multiplicative error models have been widely used to generate ensembles for precipitation and
to simulate precipitation error in hydrologic data assimilation [Alvarez-Garreton et al., 2014; Li et al., 2014].
Therefore, we used a lognormal multiplicative error to create the ensembles representing measured
precipitation:

Pens5nP3Pobs (7)

nP � LN lP; rPð Þ (8)

where, Pens is the daily precipitation ensemble member, Pobs is observed daily precipitation, nP is the multi-
plicative error, which follows a lognormal distribution with the mean of lP and standard deviation of rP .

To create an unbiased precipitation ensemble, lP is set to 1 rP set to be 0.25 (25% error). This error repre-
sents both gauge errors and spatial variability. The assumption of the variance of the precipitation multi-
plier being 25% is agreed with various studies that have been investigated rain gauge representativeness
errors [Barancourt et al., 1992; Ciach and Krajewski, 1999; Villarini et al., 2008] and also consistent with
other recent studies [Alvarez-Garreton et al., 2014; DeChant and Moradkhani, 2012; Li et al., 2014]. The rep-
resentativeness error of rain gauges for areas of order 250 km2 is quite variable but of this order. Perera
et al. [2015a] found the performance of the ARMAX model was insensitive to choice of individual or
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combinations of rain gauges in the area, indicating that the modelling is likely to have relative low sensi-
tivity to this choice.

In accordance with the definition of the lognormal probability distribution model, the natural logarithm
of nP , denoted as nLN

P , follows a normal distribution with mean and variance given by:

l5ln lPð Þ2
1
2

ln 11
rP

lP

� �
(9)

r5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 11

rP

lP

� �s
(10)

3.2.2.2. Reference Evapotranspiration-ETO

ETO was calculated based on the guidelines provided by the United Nations Food and Agricultural Orga-
nization Irrigation and Drainage Paper No. 56 (FAO 56) [Allen et al., 1998]. The daily ETO ensembles were
created by perturbing observed weather variables (daily mean air temperature; daily mean dew-point
temperature, daily mean wind speed and incoming shortwave solar radiation) using zero mean additive
noise. The equations used to calculate the inputs to ETO are given in Table 4, along with the corre-
sponding measurement accuracy [BoM, 2005] and the standard deviations used in the perturbations.
Measurement accuracies were assumed to represent a 3 standard deviation spread [BoM, 2005] and
measurement errors were assumed to be independent when calculating the perturbation standard
deviations. The perturbation standard deviations account for the number of measurements contribut-
ing to each ETO input.
3.2.3. Forecast Weather Variables
To forecast irrigation demand, forecast weather is required, which has errors resulting from the NWP
weather forecasts. NWP models like ACCESS usually contain both systematic biases due to the NWP model
structure, site elevation, temporal and spatial resolution and interpolation techniques, together with noise
[Perera et al., 2014; Shrestha et al., 2013b]. In constructing irrigation demand ensembles, the NWP weather
forecasts should be corrected for bias and the noise should also be represented. The error characteristics of
the forecast precipitation are quite different to the forecast errors for ETO and hence they are treated
differently here.

Forecast precipitation ensembles were developed using the approach of Wang et al. [2009], which was
developed for ACCESS NWP forecasts. This approach uses a simplified version of the Bayesian joint probabil-
ity technique to derive forecast probability distributions for individual sites as well as for each lead time
[Wang et al., 2009]. A joint probability distribution of observations and forecasts is fitted based on past fore-
cast data. Ensemble forecasts are then generated from conditional probability distributions based on the
joint probability distribution conditioned on the NWP forecast for that particular day. Space–time correla-
tions are imposed by linking the samples from the forecast probability distributions using the Schaake shuf-
fle [Clark et al., 2004]. Further detail of the post-processing can be found in Robertson et al. [2013b].

While the Wang et al. [2009] method could potentially also be applied to ETO forecasts, differences in the
distribution characteristics meant this was unsuccessful. An alternative approach based on the analysis of
Perera et al. [2014] where ACCESS-G NWP weather forecasts were used to generate deterministic daily ETO

forecasts for lead times of 1–9 days. In essence the weather variables input to ETO were first bias corrected
using a regression between forecast and observed data following Perera et al. [2014] and then used to

Table 4. Perturbation Methods for ETO Related Weather Variablesa

Input Estimator Measurement Accuracy (63r) Perturbation Standard Deviation

Tmean ens5
Tmax1Tmin 1nTemp

2 0.3 �C
ffiffiffi
2
p
� 0:3

3

DewPtmean ens5
1

24

P24

hr51
Dewpthr 1 nDewpt

0.3 �C
ffiffiffiffiffi
24
p

� 0:3
3

Wndspdmean ens5
1

24

P24

hr51
Wndspdhr 1 nWndspd

1.03 ms21
ffiffiffiffiffi
24
p

� 1:03
3

Sradens5Srad1nSrad 1.5 MJ m22 1:5
3

aDaily mean temperatures ensembles–Tmean ens , daily mean dew point temperatures ensembles–DewPtmean ens , daily mean wind speed
ensembles–Wndspdmean ensand daily solar radiation ensembles-Sradens).
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make a deterministic ETO forecast. The errors in that deterministic forecast were then examined against
observed ETO for the relevant climate station. This showed that the ETO forecast error is multiplicative.
Finally, bias-free ensemble daily ETO forecasts were generated using the deterministic daily ETO forecasts
and forecast error realizations based on the observed multiplicative error and then daily ETO ensemble fore-
casts were post-processed using the Schaake Shuffle method as described above.

3.3. Evaluation Methods
The reliability of the ensemble in terms of bias and spread is the most important attribute of ensemble fore-
casts as it describes the capability of the ensemble spread to represent the real probabilistic uncertainty of
the forecast. In this paper, the reliability of ensemble irrigation demand forecasts is quantified using the
temporal mean of the ensemble root mean squared error (MRMSE), the mean continuous ranked probability
score (CRPS) and one of its decomposition the mean CRPS reliability [Hersbach, 2000], which are defined in
equations (11–13) respectively. The MRMSE is derived by calculating the RMSE at each time step using all
ensemble members and then averaging the RMSEs for the entire period of interest [Li et al., 2013, 2015].
The mean CRPS and mean CRPS reliability are calculated following step provided by Brown et al. [2010]. The
negative orientation of these skill scores leads to 0 for a perfect spread and higher skill scores indicates that
forecasts become more biased or the spread less reliable (or both).

The rank histogram approach [Hamill, 2001] is also used to evaluate the reliability of ensemble irrigation
demand forecasts. Rank histograms are generated by repeatedly finding the rank of the observation relative
to values from the forecast ensemble sorted from lowest to highest. The resulting ranks are then plotted into
a histogram. If the ensemble is reliable, the observations should be evenly spread across the various ensemble
member ranks. Therefore, a flat rank histogram indicates a reliable ensemble spread; a U-shaped (n-shaped)
histogram indicates the ensemble spread is too narrow (wide); and an asymmetric histogram is a sign of bias.
Other attributes such as accuracy, sharpness and skill are also important to determine the overall quality of
forecasts. Therefore, we further quantify the predictive performance of the mean ensemble daily irrigation
demand forecasts through three additional statistical indices, (1) the root mean squared error (RMSE) of the
ensemble mean, (2) the Nash-Sutcliffe efficiency coefficient (NS) of the ensemble mean and (3) the mean error
(BIAS), which are described in equations (14–16) respectively. We also looked at the ratio between MRMSE
and RMSE. This ratio becomes one for a perfect spread, but values less than or more than one indicate ensem-
ble forecasts spreads are under or overestimated, respectively.

All forecast verification scores are normalized using the size of the respective command area to make the pre-
dictive performance indicators are independent from the size of the commend area (NSE is unaffected by this
normalization). The uncertainties of all of the forecast verification scores are evaluated using the bootstrapping
technique [Efron and Tibshirani, 1986] and the 5th and 95th confidence intervals are provided along with score.

a. The temporal mean of the ensemble root mean squared error, MRMSE is:

MRMSE5
1
T

XT

t51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i51
IDi

fcst;t2IDobsv;t

� �2
r

=CAj (11)

b. The mean continuous ranked probability score (CRPS)

Mean CRPS5
1
T

XT

t51

ð1
21

Ffcst;t IDð Þ2Fobsv; t IDð Þ
	 
2

d ID=CAj (12)

Fobsv; t IDð Þ5
0 ID < IDobsv;t
	 


1 ID � IDobsv;t
	 


(
(13)

c. The root mean squared error, RMSE is:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT

i51
IDi

fcst;t 2IDobsv;t

� �2
r

=CAj (14)
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d. Nash–Sutcliffe (NS) model efficiency coefficient (NSE) is:

NSE512

PT
i51 IDi

fcst;t 2IDobsv;t

� �2

PT
i51 IDobsv;t2IDobsv;t
	 
2 (15)

e. The mean error (BIAS) is:

BIAS5
1
T

XT

i51
IDi

fcst;t 2IDobsv;t

� �
=CAj (16)

In equations (11–16), IDi
fcst;t is the ith ensemble prediction at time, t, and IDobsv;t is the observed values at t,

N is the number of ensembles, T is the total number of time steps IDi
fcst;t is the predicted ensemble mean at

t, IDobsv;t is the mean of IDobsv;t for the period of verification (POV) and CAj is the size of jth command area.

4. Results

4.1. Precipitation and ETO Forecast Uncertainties
The exogenous variable, WSD, acts as a weather forcing variable for irrigation demand and it is calculated
using precipitation and reference evapotranspiration (ETO). The forecast and observed uncertainties in these
two weather variables contribute to irrigation demand forecast uncertainties. The observation uncertainties
for the weather variables are instrument and measurement network dependent, while the forecast uncer-
tainties depend on the forecast skill of the NWP system. The observation uncertainties for weather variables
were obtained from the Australian Bureau of Meteorology [BoM, 2005]. For the weather forecasts, ensemble
forecasts were first constructed as outlined in section 3.2.3. Detailed evaluations of these ensemble fore-
casts for the study region were then undertaken through comparisons with local observations. This section
briefly evaluates the forecast performance of the precipitation and ETO ensemble forecasts derived from
ACCESS-G.

Table 5 summarizes the statistical indicators related to the forecast performance for precipitation and ETO

ensemble forecasts and Figures 3 and 4 summarize the results for precipitation and evapotranspiration,
respectively. These stats are for the periods of 15 August 2010 to 15 May 2011 and 15 August 2011 to 15
May 2012 (551 days). The forecast performance for ensemble daily ETO and precipitation forecasts declines

Table 5. Statistical Indicators Related to Prediction Performance for Ensemble Precipitation and ETO Forecasts for Study Area Between
15 August 2010 and 15 May 2011 and 15 May 2012 to 15 May 2012 (551 days)a

Lead time Ensemble verification score

Variable

Precipitation ETO

1 Day MRMSE mm d21 1.89 (1.6–2.19) 1.00 (0.96–1.04)
Mean CRPS mm d21 1.01 (0.79–1.27) 0.37 (0.34–0.39)

Mean CRPS Rel. mm d21 0.06 (0.03–0.12) 0.02 (0.01–0.02)
RMSE (mean) mm d21 4.52 (3.48–5.53) 0.72 (0.67–0.78)

NSE (mean) 0.51 (0.42–0.62) 0.90 (0.88–0.91)
BIAS (mean) mm d21 20.69 (20.98 to 20.43) 20.09 (20.13 to 20.04)

3 Day MRMSE mm d21 2.46 (2.12–2.84) 1.37 (1.32–1.43)
Mean CRPS mm d21 1.26 (0.99–1.58) 0.48 (0.45–0.51)

Mean CRPS Rel. mm d21 0.05 (0.03–0.1) 0.03 (0.03–0.04)
RMSE (mean) mm d21 5.67 (4.18–7.11) 0.9 (0.82–0.97)

NSE (mean) 0.23 (20.07 to 0.46) 0.84 (0.81–0.87)
BIAS (mean) mm d21 20.63 (20.99 to 20.31) 20.09 (20.15 to 0.04)

5 Day MRMSE mm d21 2.7 (2.34–3.07) 1.67 (1.61–1.74)
Mean CRPS mm d21 1.34 (1.05–1.64) 0.58 (0.55–0.62)

Mean CRPS Rel. mm d21 0.06 (0.03–0.12) 0.05 (0.04–0.06)
RMSE (mean) mm d21 5.75 (4.42–7) 1.07 (0.99–1.16)

NSE (mean) 0.2 (0.04–0.37) 0.77 (0.73–0.81)
BIAS (mean) mm d21 20.66 (21.02 to 20.34) 20.14 (20.21 to 20.08)

aThe range shown in brackets is the 5th295th confidence interval from the bootstrapping analysis.
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Figure 3. Time series plot (91 days) of observed daily precipitation versus post-process ensemble precipitation forecast and respective rank histograms (551 days) for lead times of 1, 3
and 5 days.

Figure 4. The scatter plot (551 days) between the deterministic daily ETO forecast and forecast error, time series plot (241 days) of observed daily ETO versus ensemble daily ETO forecast
with spread between 10th and 90th percentile and respective rank histograms (551 days) for lead times of 1, 3 and 5 days.
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with increasing lead time, as expected. For precipitation forecasts, the MRMSE, mean CRPS and RMSE
increase approximately 42%, 32% and 27% respectively and mean CRPS reliability remain same, as the lead
time increases from 1 to 5 days. For ETO forecasts the MRMSE, mean CRPS, mean CRPS reliability and RMSE
increase more than twice for lead time 5 days and indicated spread of ETO ensemble forecasts is poor reli-
able for longer lead times. The NS efficiency coefficient for mean precipitation and ETO ranged between
0.51 and 0.20 and between 0.90 and 0.77, respectively, for lead times of 1–5 days. The rank histogram and
bias shows that the ensemble precipitation forecast was slightly negatively biased and that the ensemble
ETO forecast was slightly positively biased and the uncertainty was overestimated for ETO. The results also
suggest that the forecast performance for ETO was higher than for precipitation.

4.2. Ensemble Demand Forecasts for the Model Calibration Period
The model parameters reported in Perera et al. [2015a] are used here. The following results are based on
forecasts for the 2010–2011 and 2011–2012 irrigation seasons. The deterministic model was calibrated to
the 2006–2007, 2007–2008, 2008–2009 and 2009–2010 seasons plus one of 2010–2011 or 2011–2012. Inde-
pendent validation results were obtained for each of the 2010–2011 and 2011–2012 irrigation seasons.
Tabulated values below were obtained by calculating the calibration (or validation) metrics for each of the
two seasons and then averaging these. We note that the ‘‘calibration period’’ results correspond to only 1 of
the 5 years contributing to the original model fitting.

Table 6. Average Forecast Performance for Ensemble Daily IDCG i, ASP Forecasts Related to the Two Cross Validation Scenarios for Four
Channels and Study Area During the Last Year of Calibration Periods 15 August 2010 to 15 May 2011 (274 days) or 15 August 2011 to
15 May 2012 (275 days)a

Lead Time Ensemble Verification Score

Average Performances for Command Area

CG1 CG2 CG3 CG4 CG1234

1 Day MRMSE 0.39 0.41 0.32 0.36 0.25
(ML d21 km21) (0.38–0.41) (0.39–0.42) (0.31–0.33) (0.34–0.37) (0.24–0.26)

Mean CRPS 0.21 0.19 0.12 0.11 0.08
(ML d21 km21) (0.2–0.22) (0.18–0.2) (0.11–0.12) (0.1–0.11) (0.08–0.08)
Mean CRPS Rel 0.05 0.01 0.01 0.03 0.01
(ML d21 km21) (0.04–0.06) (0.01–0.02) (0.01–0.01) (0.02–0.03) (0.01–0.01)
RMSE (mean) 0.38 0.34 0.2 0.15 0.12

(ML d21 km21) (0.36–0.41) (0.32–0.36) (0.19–0.22) (0.14–0.16) (0.12–0.13)
NSE (mean) 0.46 0.73 0.83 0.91 0.94

(0.37–0.52) (0.69–0.75) (0.8–0.85) (0.9–0.92) (0.93–0.94)
BIAS (mean) 0.1 0.06 0.04 0.05 0.03

(ML d21 km21) (0.08–0.13) (0.03–0.08) (0.03–0.06) (0.04–0.06) (0.02–0.04)
3 Day MRMSE 0.48 0.49 0.37 0.38 0.32

(ML d21 km21) (0.46–0.5) (0.47–0.51) (0.36–0.38) (0.36–0.39) (0.31–0.33)
Mean CRPS 0.27 0.25 0.17 0.14 0.13

(ML d21 km21) (0.25–0.29) (0.24–0.26) (0.16–0.18) (0.14–0.15) (0.13–0.14)
Mean CRPS Rel. 0.06 0.02 0.01 0.01 0
(ML d21 km21) (0.06–0.08) (0.02–0.03) (0.01–0.01) (0.01–0.01) (0–0.01)
RMSE (mean) 0.48 0.44 0.3 0.25 0.24

(ML d21 km21) (0.45–0.51) (0.42–0.46) (0.28–0.31) (0.23–0.26) (0.22–0.25)
NSE (mean) 0.17 0.55 0.64 0.76 0.77

(0.07–0.22) (0.51–0.59) (0.6–0.67) (0.73–0.78) (0.74–0.8)
BIAS (mean) 0.1 0.04 0.03 0.05 0.04

(ML d21 km21) (0.06–0.13) (0.01–0.07) (0.01–0.05) (0.03–0.07) (0.02–0.06)
5 Day MRMSE 0.48 0.52 0.39 0.37 0.35

(ML d21 km21) (0.46–0.5) (0.5–0.53) (0.38–0.4) (0.36–0.38) (0.34–0.36)
Mean CRPS 0.27 0.27 0.19 0.15 0.16

(ML d21 km21) (0.25–0.29) (0.26–0.29) (0.18–0.2) (0.15–0.16) (0.15–0.17)
Mean CRPS Rel. 0.07 0.02 0.01 0 0.01
(ML d21 km21) (0.06–0.08) (0.02–0.03) (0.01–0.02) (0–0.01) (0–0.01)
RMSE (mean) 0.48 0.48 0.34 0.28 0.29

(ML d21 km21) (0.45–0.51) (0.45–0.5) (0.32–0.36) (0.26–0.29) (0.27–0.3)
NSE (mean) 0.15 0.48 0.52 0.69 0.67

(0.06–0.21) (0.44–0.51) (0.48–0.56) (0.66–0.72) (0.63–0.71)
BIAS (mean) 0.1 0.03 0.02 0.04 0.03

(ML d21 km21) (0.06–0.13) (20.01 to 0.06) (0–0.05) (0.02–0.06) (0.01–0.05)

aThe range shown in brackets is the 5th - 95th confidence interval from the bootstrapping analysis.
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Table 6 provides the average statistical indicators between two calibration scenario for ensemble daily
ID CG i, ASP forecasts across all 5 command areas and the performance for each individual calibration
scenario is in supporting information Table S1. These calibration periods have 4 years in common, with
the fifth year being different between the two sets of results and the results in Table 6 only represent
the average of those fifth year. Only the results relating to the best LOOCV calibration scenario and the
full study area (i.e., LOOCV-S 1 for CG 1234) are shown graphically as time series (Figure 5) and rank his-
tograms (Figure 6). The statistical indicators for the two scenarios corresponding to each command
area vary significantly due to the differences in irrigation flows between years. We start by considering

Figure 5. Time series plot of observed versus ensemble daily IDCG 1234, ASP forecasts with the ensemble spread between 10th and 90th percentile for lead times of 1, 3 and 5 days for
irrigation year 15 August 2010 to 15 May 2011(274 days-validation scenario 1 in the Table 5).

Figure 6. Rank histograms for observed and ensemble daily IDCG 1234, ASP forecasts for lead times of 1, 3, and 5 for irrigation years 15 August 2010 to 15 May 11(274 days–validation
scenario 1 in the Table 5).
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the ensemble mean forecast. The NSE between forecast and observed irrigation demand ranged
between 0.91 (1 day lead time, CG 1234) and 0.31 (5 day lead time, CG 1). The highest and lowest NSE
values were always found at CG 1234 and CG 1, respectively due to differences in the area irrigated
and number of supply points. For 5 day lead times compared with 1 day lead times, NSE decreased by
more than 40% for small command areas (CG 1, CG 2 and CG 3) and approximately 25% for larger com-
mand areas (CG 4 and CG 1234). The bias was highest at CG 1234 and lowest at CG 1 and it is propor-
tional to the size of the area irrigated. The bias showed that the ensemble daily demand forecasts
slightly over predicted the observed flows for all command areas and mostly remains approximately
same with increased in lead time. .

The ensemble spread can be evaluated through the MRMSE, mean CRPS, mean CRPS reliability, RMSE and
the rank histograms. The difference between MRMSE and RMSE increased with the increasing command
area or decreasing lead times. The mean CRPS, mean CRPS reliability and difference between these two
scores increased with the increasing command area or lead times. These facts suggest that reliability of
ensemble spread declines with increasing command area or lead times. The MRMSE was higher than the
corresponding RMSE for all command areas and for all lead times. Across the five command areas, MRMSE,
mean CRPS, mean CRPS reliability and RMSE increase on average by approximately 23%, 53%, 8% and 73%
respectively from 1 day to 5 days lead time. For most cases, these statistics and the rank histograms (Figure
6) show that the ensemble spread marginally overestimated the forecast error variability for the first day
and then tend to be flat with increased in lead time, indicating a reliable ensemble spread. During the

Table 7. Average Forecast Performance for Ensemble Daily IDCG i, ASP Forecasts Related to the Two Cross-validation Scenarios for Four
Channels and Study Area During the Evaluation Periods 15 August 2010 to 15 May 2011 (274 days) or 15 August 2011 to 15 May 2012
(275 days)a

Lead Time Ensemble Verification Score

Average Performances for Command Area

CG1 CG2 CG3 CG4 CG1234

1 Day MRMSE 0.35 0.39 0.31 0.35 0.23
(ML d21 km21) (0.34–0.36) (0.38–0.4) (0.3–0.33) (0.33–0.37) (0.22–0.25)

Mean CRPS 0.17 0.15 0.1 0.1 0.07
(ML d21 km21) (0.16–0.17) (0.14–0.16) (0.1–0.11) (0.1–0.11) (0.07–0.07)
Mean CRPS Rel. 0.03 0.02 0.02 0.04 0.02
(ML d21 km21) (0.03–0.04) (0.01–0.02) (0.02–0.02) (0.03–0.04) (0.02–0.02)
RMSE (mean) 0.3 0.27 0.15 0.11 0.09

(ML d21 km21) (0.28–0.31) (0.26–0.28) (0.14–0.16) (0.1–0.11) (0.08–0.09)
NSE (mean) 0.63 0.82 0.9 0.95 0.96

(0.55–0.68) (0.79–0.83) (0.88–0.91) (0.94–0.96) (0.96–0.97)
BIAS (mean) 0.1 0.01 0.02 0.02 0.01

(ML d21 km21) (0.08–0.11) (0–0.03) (0.01–0.03) (0.02–0.03) (0–0.02)
3 Day MRMSE 0.41 0.46 0.35 0.36 0.28

(ML d21 km21) (0.4–0.42) (0.44–0.47) (0.34–0.36) (0.35–0.37) (0.28–0.29)
Mean CRPS 0.2 0.21 0.13 0.12 0.11

(ML d21 km21) (0.19–0.21) (0.2–0.22) (0.13–0.14) (0.12–0.13) (0.1–0.11)
Mean CRPS Rel. 0.04 0.04 0.02 0.02 0.01
(ML d21 km21) (0.04–0.05) (0.03–0.05) (0.01–0.02) (0.02–0.02) (0.01–0.02)
RMSE (mean) 0.37 0.39 0.25 0.2 0.18

(ML d21 km21) (0.35–0.39) (0.37–0.4) (0.23–0.26) (0.19–0.21) (0.18–0.19)
NSE (mean) 0.44 0.64 0.74 0.84 0.86

(0.32–0.51) (0.6–0.67) (0.71–0.77) (0.82–0.85) (0.84–0.87)
BIAS (mean) 0.09 20.04 20.02 20.01 20.01

(ML d21 km21) (0.07–0.12) (20.06 to 20.01) (20.03 to 0) (20.03 to 0) (20.03 to 0)
5 Day MRMSE 0.41 0.48 0.37 0.37 0.31

(ML d21 km21) (0.4–0.43) (0.46–0.5) (0.35–0.38) (0.36–0.39) (0.3–0.32)
Mean CRPS 0.21 0.23 0.15 0.14 0.13

(ML d21 km21) (0.2–0.22) (0.22–0.24) (0.15–0.16) (0.14–0.15) (0.13–0.14)
Mean CRPS Rel. 0.05 0.05 0.03 0.03 0.02
(ML d21 km21) (0.04–0.06) (0.04–0.06) (0.02–0.03) (0.02–0.03) (0.02–0.03)
RMSE (mean) 0.38 0.43 0.29 0.25 0.24

(ML d21 km21) (0.36–0.4) (0.41–0.45) (0.28–0.3) (0.24–0.26) (0.23–0.25)
NSE (mean) 0.42 0.57 0.65 0.75 0.76

(0.31–0.49) (0.52–0.6) (0.61–0.68) (0.73–0.77) (0.74–0.79)
BIAS (mean) 0.09 20.07 20.04 20.05 20.04

(ML d21 km21) (0.06–0.11) (20.09 to 20.04) (20.06 to 0.02) (20.07 to 0.04) (20.05 to 0.02)

aThe range shown in brackets is the 5th - 95th confidence interval from the bootstrapping analysis.
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calibration periods, the observed daily IDCG 1234, ASP values were within the ensemble daily ID CG i, ASP fore-
cast spread (10th290th percentile) for 86%, 83% and 82% of the time with respect to lead time 1, 3 and 5
days.

4.3. Real-Time Forecasting With Numerical Weather Prediction Outputs
We now examine the results for validation conditions using a similar approach to the previous section. With
the exception of the fitting of uncertainty parameters for the NWP ensembles, these demand forecasts are
made under operational conditions; that is using observation data available from automatic weather sta-
tions, the SCADA network of supply points and NWP forecast data, all of which would be available at the
time of making an operational forecast, and with the ARMAX model fitted to independent data. The aim is

Figure 7. Time series plot of observed versus ensemble daily IDCG 1234, ASP forecasts with the ensemble spread between 10th and 90th percentile for lead times of 1, 3 and 5 for irrigation
year 15 August 2011 to 15 May 2012 (275 days).

Figure 8. Rank histograms for observed and ensemble daily IDCG 1234, ASP forecasts for lead times of 1, 3, and 5 days during irrigation year 15 August 2011to 15 May 2012 (275 days).
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to test the forecast performance of both the ensemble mean and to assess how well the ensemble repre-
sents the forecast uncertainty.

Table 7 provides the average statistical indicators between two evaluation scenario for ensemble daily IDCG i, ASP

forecasts across all 5 command areas and the performance for each individual evaluation scenario is in support-
ing information Table S2. Figure 7 shows the time series plots of observed and ensemble daily demand forecast
for evaluation year 2011/2012, while Figure 8 shows the rank histograms and associated probabilities. The NSE
values ranged between 0.97 (1 day lead time, CG 4) and 0.22 (5 day lead time, CG 1) and for the whole study
area it ranged between 0.97 and 0.75 for 1 and 5 day lead times, respectively. The bias varied with the evaluation
year, being positive for 2010/2011 and negative for 2011/2012. This is partly reflects the variability of irrigation
flow within each year, where the highest variability occurred during year 2011/2012.

The ensemble spread is again examined by using MRMSE, mean CRPS, mean CRPS reliability, RMSE and rank
histograms. In general all MRMSE, mean CRPS, mean CRPS reliability and RMSE decrease with increasing irri-
gated area reflecting the higher forecast performances for larger command areas and the spread of forecast
uncertainties is not reliable for smaller command areas. The pattern between the MRMSE, mean CRPS, mean
CRPS reliability and RMSE was similar to calibration period, where MRMSE is higher for all command areas and
all lead times. The difference between MRMSE and RMSE increased and the difference between mean CRPS
and mean CRPS reliability decreased with the increasing command area and decreasing lead times. Typically
MRMSE is larger than RMSE values indicating that the ensemble spread is somewhat overestimating the fore-
cast uncertainty at system scale, when irrigation flow among distribution channels aggregated. The average
ratio MRMSE/RMSE across 2 validation years varies between 1.10 and 4.20 for all command areas for 1 day
lead time. Ideally this ratio should be one and significant deviations from one indicate that the ensemble
spread is unreliable. For the small command areas (CG 1 and CG 2) MRMSE/RMSE varies between 1.16 and
1.44, indicating the ensemble spread is slightly overestimated for the smaller command areas and consistently
overestimated for the larger command areas. The rank histograms for the whole study area show that the
ensemble is marginally too wide and slightly negative biased for 1 day lead time. This negative bias increases
with lead time and forecast ensemble spreads are slightly under-dispersive for lead times of 3 and 5 days. This
is consistent with the indications from mean CRPS, mean CRPS reliability and MRMSE versus RMSE; however,
those statistics are likely to be more sensitive to outliers than the rank histograms. During the evaluation peri-
ods, the observed daily IDCG 1234, ASP values were within the ensemble daily IDCG i, ASP forecasts spread
(10th290th percentile) for 86%, 80% and 72% times for lead times of 1,3 and 5 days respectively. Overall, these
results suggest that the ensemble forecasts give good estimates of forecast uncertainty and reliable probabilis-
tic irrigation demand forecasts, particularly for the large command areas, but that the ensemble spread does
not grow quickly enough with time.

5. Discussion

The ensemble forecasting techniques used here build on those used in forecasting short runoff or stream
flow [Addor et al., 2011; Bennett et al., 2014; Robertson et al., 2013a; Shrestha et al., 2013a; Smiatek et al.,
2012]. Those studies have either used stochastic precipitation forecasts that have been post-processed or
output from NWP models. While, the inputs and the techniques are similar for forecasting stream flows and
irrigation demands, the dynamic responses of the systems are the opposite; with irrigation demand
decreasing when precipitation increases and evapotranspiration decreases and streamflow doing the oppo-
site. In catchments there is also likely to be more variation in antecedent conditions prior to precipitation
events (antecedent moisture tends to be controlled by the application of irrigation in irrigated fields). This
means that the forecast performance is not directly comparable between streamflow and irrigation
demand.

The forecast performance for the ensemble irrigation demand predictions were evaluated for lead times of
1–5 days across the four command areas plus the full study area. Both the average forecasts (ensemble
means) and the uncertainty estimates (ensemble spread) performed well overall. NSEs for forecast conditions
were up to 0.97 for 1 day lead time and larger command areas and remained above 0.65 for 5 day lead
times, with the exception of the two smallest command areas. There were clear dependencies on lead
time and command area. The area dependence relates to the amount of averaging between individual
irrigation farms while the dependence on lead time relates to accumulation of forecast errors over time.
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From the system operators’ perspective, these probabilistic short-term system scale irrigation demand forecasts
could assist with planning operations, particularly those operations such as transferring water from the main
storage at Lake Eildon to the irrigation command areas. The ensemble approach provides a reliable estimate of
forecast uncertainty that could be used to inform operational risks. The modelling also provides a quantitative
link to enable operational weather forecasts to be more easily utilized in system operation decisions.

From the forecasting context, this is the first study to generate probabilistic daily irrigation demand fore-
casts with lead times up to 5 days at the system scale. The results showed that the forecasting performance
for ensemble daily irrigation demand forecasts were higher than most previous studies [Alfonso et al., 2011;
Pulido-Calvo and Gutierrez-Estrada, 2009; Tian and Martinez, 2014; Ticlavilca et al., 2011] and the performance
of the forecasted ensemble mean is marginally lower than the deterministic forecasts derived by Perera
et al. [2015a] using the same time series model. The rank histograms highlighted that the spreads were
slightly over dispersive for lead time 1 and then change to slightly under-dispersive as lead time increases.
This implies the influence of other sources of uncertainty that are not being fully captured by input errors.
There are a number of influences not explicitly included in the model. These include responses to regular
(� monthly) adjustments in yearly water allocation, changes in the price of water in the market, variations
in sowing date for crops, on-farm storages and stock and domestic (non-irrigation) water leading to addi-
tional errors. These are in general model structural uncertainties, which we have not dealt with this paper.

There are some subtle differences in the evolution of ensemble spread in different situations. In general,
where there is a low antecedent flow, the 1 day lead time spread is small and it increases with antecedent
flow. The low initial spread is due primarily to the multiplicative error applied to the observed flows, which
has the largest influence on the lead one ARMAX outputs. The evolution of the ensemble spread over time
is influenced by both the initial ensemble spread and the contributions to spread from the error component
of the ARMAX model and the weather forecasts. The error structure for the observe ETo is complicated by its
propagation from measurements through the Penman-Monteith equation. The inputs to the observed ETO

calculation are assumed to have additive errors. The precipitation observation error model is multiplicative.
These choices of measurement error structure reflect the nature of measurement errors for the different

Figure 9. Rank histograms (a) Excluding irrigation flow uncertainties (b) Excluding observed weather uncertainties and (c) Including irrigation flow and observed and forecast weather
uncertainties, for observed and ensemble daily IDCG 1234, ASP forecasts for lead times of 1, 3, and 5 days during the evaluation period 15 August 2011 to 15 May 2012 (275 days).
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types of instruments involved. The ensemble evolution is influenced by the error structure in the ARMAX
model itself and the weather forecasts. The ARMAX model has an additive error structure, which is justified
by the forecast errors from the deterministic ARMAX model [Perera et al., 2015a, Figures 8 and 9). The fore-
cast ETO also has an additive error structure, justified by error analysis in Perera et al. [2014], Figure 7. The
precipitation forecast errors are determined by the structure of the Bayesian Joint Probability model [Robert-
son et al., 2013a; Wang et al., 2009]. Of these, the additive errors in the ARMAX model have the greatest
effect on the ensemble evolution under different conditions and they lead to rapid ensemble widening
when the initial spread is small but slow widening when the initial spread is larger.

As discussed in the previous paragraph, there are a variety of sources of uncertainty incorporated into the
ensembles, including uncertainty in antecedent conditions (observed flow/demand, observed weather) and
forecast weather uncertainty. To further understand the importance of the antecedent conditions in con-
tributing to the ensemble variability, we undertook two additional sets of simulations. The first excluded
uncertainty in the antecedent flow and the second excluded uncertainty in the antecedent weather. Figure
9 shows the resulting rank histograms. The top row of histograms indicates that the ensembles become
biased when flow uncertainty is excluded. Comparing the middle and lower rows in Figure 9 shows that
including the impact of antecedent weather uncertainty also leads to subtle improvements in the ensemble
(less under-dispersion, slightly less bias), but the improvements are smaller than the effect of antecedent
flow. These results suggest that including the antecedent conditions as a source of uncertainty is important
and that flow is more important than past weather. The difference in influence of past flow and past
weather is as expected given that the ARMAX model weights past flows more heavily than past weather.

In this paper, the input error terms are assumed to be independently and identically distributed. These
assumptions are not valid in practice because the time series plots show a serial correlation of the irrigation
demand forecast error. This might be due to structural errors in the model but could also be partly due to
serial correlation of the ETO forecast error as the serial correlation of the precipitation error was corrected
using the post-processing approach following Robertson et al. [2013b]. This serial correlation of irrigation
demand forecast error is highly subjective for non-stationary time series like previous irrigation flows and
accordingly, the systematic bias increased with the increase in lead time. However, in the face of higher auto-
correlation between consecutive observed irrigation flows, the serial correlation of ETO forecast error is not sig-
nificant. Nevertheless, ensemble forecasting scheme has provided sufficiently accurate probabilistic irrigation
demand forecasts that can be useful to the system operators for their routine irrigation distribution decisions.

6. Conclusion

This paper developed an ensemble forecasting scheme to generate a real-time probabilistic short-term sys-
tem scale irrigation demand forecasts. We used a deterministic multivariate time series model that was
developed previously [Perera et al., 2015a], along with real-time data recorded at irrigation regulators; short-
term weather forecast derived from an NWP model and observed weather variables recorded at automatic
weather stations. This method was applied to four neighbouring irrigated agricultural areas operating under
fully automated irrigation distribution system.

The observation, estimation and forecast uncertainties were guided by the manufacturer’s specification,
obtained from the literature or calculated. A range of perturbation methods were used to generate ensem-
ble for each input that is necessary for the deterministic time series models. The spatial and temporal pre-
dictive performance for probabilistic daily irrigation demand forecast (IDCG i, ASP and IDCG i, OTR) were
evaluated against observed data recorded at 1016 service points. Averaged over the two evaluation periods,
the NSE values for IDCG i, ASP across the 5 command areas were in the range 0.96 (CG 1234) - 0.63 (CG 1) for
1 day lead time and between 0.76 (CG1234) and 0.42 (CG 1) for 5 days lead time. The predictive perform-
ance improved as the irrigation area served by the channel increased and the temporal predictive perform-
ances declined with the lead time. The rank histograms showed that the ensemble spread was slightly over
dispersive for shorter lead time (1–2 days) and slightly under-dispersive for longer lead time (3–5 days), sug-
gesting that additional sources of error that are not accounted for accumulate over time.

This study investigated input uncertainties in detail and overlooks the model structural and parameter
uncertainties. While preliminary trials showed parameter uncertainties have little influence, it would be valu-
able to examine ways of including model structural uncertainty. Nevertheless, the ensemble forecasting
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scheme adopted provides useful information on demand forecast uncertainty that would be useful in help-
ing system operator manage the risk associated with operational decisions.
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