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ABSTRACT: Woody biomass production is a critical indicator to evaluate land use management 

and the dynamics of the global carbon cycle (sequestration/emission) in terrestrial ecosystems. The 

objective of the present study was to develop through a case study in Sudan an operational 

multiscale remote sensing-based methodology for large-scale estimation of woody biomass in 

tropical savannahs. Woody biomass estimation models obtained by different authors from 

destructive field measurements in different tropical savannah ecosystems were expressed as 

functions of tree canopy cover (CC). The field-measured CC data were used for developing 

regression equations with atmospherically corrected and reflectance-based vegetation indices 

derived from Landsat ETM+ (Enhanced Thematic Mapper) imagery. Among a set of vegetation 

indices, the Normalized Difference Vegetation Index (NDVI) provided the best correlation with CC 

(R2 = 0.91) and was hence selected for woodland woody biomass estimation. After validation of the 

CC-NDVI model and its applicability to MODIS (Moderate Resolution Imaging Spectroradiometer) 

data, time series MODIS NDVI data (MOD13Q1) were used to partition the woody component from 

the herbaceous component for sparse woodlands, woodlands and forests defined by FAO Land 

Cover Map. Following the weighting of the estimation models based on the dominant woody species 

in each vegetation community, NDVI-based woody biomass models were applied according to their 

weighted ratios to the decomposed summer and autumn woody NDVI images in all vegetation 

communities in the whole of Sudan taking the year 2007 for example. The results were found to be 

in good agreement with the results from other authors obtained by field measurements or by other 

remote sensing methods using MODIS and Lidar data. It is concluded that the proposed approach is 

operational and can be applied for a reliable large-scale assessment of woody biomass at a ground 

resolution of 250 m in tropical savannah woodlands of any month or season.  

 

1. Introduction  

                                                 
1Corresponding author. E-mail address:  w.wu@cgiar.org 
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Woody biomass is a measure of cumulative above ground net primary production (NPP) of trees or 

shrubs in a certain period of time and is expressed as weight of dry matter per unit area, e.g. tons ha-1. 

Information about woody biomass is critical because it is closely related to land use practice and 

management in savannahs and forest ecosystems, for example, deforestation, slash-and-burn 

agriculture activities. The Intergovernmental Panel on Climate Change (IPCC) reported that 68.6-

75.9% of the total annual NPP are concentrated in the biomes of boreal and temperate forests, 

tropical rainforests, and particularly in tropical savannah woodlands, in which the last ones account 

for 23.8-29.5% of contribution to the total annual NPP (IPCC 2001). Therefore, tropical savannah 

woodlands constitute an essential part of the global terrestrial ecosystem and play an important role 

in agroforestry and socio-economic development in tropical regions, not only for their energy, food, 

wood, and wood-based industry, but also for their critical multi-function part in controlling the 

equilibrium between carbon emission and sequestration, climate change, and in preserving the soil 

against desertification and land degradation (Hall et al. 1985, Dixon et al. 1994, Campbell 1996, 

Frost 1996, Foley et al. 2005, UNEP 2006). Monitoring and assessment of the woody biomass 

production of the savannah ecosystems at the regional scale is hence of major importance for the 

assessment of the state of the globe, particularly, in the context of climate change and land 

degradation, and for making sustainable land management decisions in related countries and regions. 

Savannah woodlands are transitional land cover types between closed forests and open grasslands, 

with tree canopy cover (CC) less dense than forests, but more than grasslands. Savannah biomes are 

very common in tropical Africa, where they occupy a large region that is conventionally subdivided 

into Southern Saharan/Sahelian Woodlands, Sudanian Woodlands in the north of the equator, and 

Miombo Woodlands in the south. Given the continuum in CC within this large ecosystem, different 

subdivisions have been proposed for savannah woodlands based on CC (White 1983, Helldén 1987b, 

FAO 2000). Since we intend to use the land cover map produced by FAO Africover Project (FAO 

2003) to largely identify the woodland and forest areas, we follow the division of the FAO Land 

Cover Classification System (Di Gregorio and Jansen 2000); and in this paper we use the following 

class terms: sparse woodland including wooded grassland and open woodland (tree/shrub CC: 1-

20%), woodland/shrubland (CC: 20-60%), and forest (CC: >60%). However, this classification 

cannot fully reveal the variability and mixture of the woody species in tropical savannah woodlands 

in space. For this reason, it is better to also take into account information on vegetation communities 

(Harrison and Jackson 1958) in order to understand not only the diversity of woody species crossing 

different savannahs, but also their dominance in each community in each savannah eco-region (table 

1) in tropical Africa.  

The extensive assessment of woody biomass is based on models that extrapolate actual measures of 

tree biomass, obtained in sampling sites, to large areas by establishing statistical relationships with 

indirect indicators of vegetation biomass, usually obtained by remote sensing. For boreal and 

tropical forests, a significant number of woody biomass assessments have been undertaken either 
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using allometric equations (e.g. Baskerville 1972, Brown et al. 1989, Iverson et al. 1994, Brown and 

Gaston 1995, FAO 1997, Sawadogo et al. 2010) or optical and radar remote sensing (Debson et al. 

1992, Foody et al. 2003, Popescu et al. 2003, Zheng et al. 2004, Lu et al. 2005, Rauste 2005, 

Heiskanen 2006, and Baccini et al. 2008). Given differences between biomes in species, CC, and 

environmental conditions, woody biomass models developed for specific biomes for boreal forests 

and tropical rainforests are not applicable in savannah woodlands.  

For the tropical savannah woodlands, some studies have attempted to establish CC-based woody 

biomass (WB) models. Helldén and Olsson (1982), Olsson (1985), and Helldén (1987a, 1987b, and 

1991) have conducted biomass assessment in Acacia-dominated Saharan/Sahelian woodlands in 

Sudan and Ethiopia, where they obtained a linear WB-CC model and established a relationship 

between CC and NDVI (Rouse et al. 1973, Tucker 1979). Their studies confirmed the feasibility to 

assess woody biomass by remote sensing. While investigating carbon stocks in the Sahelian 

Savannah in Senegal, Woomer et al. (2004) also reported a linear model between total carbon and 

CC. Due to some shortcomings these models cannot be directly applied to larger regions of interest. 

In the CC-NDVI model of Helldén, the NDVI was derived from Landsat MSS (Multispectral 

Scanner System) and TM (Thematic Mapper) images without atmospheric correction, and the 

radiance values were not converted into reflectance. The model of Woomer et al. (2004) was 

focused only on sparse woodlands (CC < 28%) and is therefore not applicable to Sudanian 

woodlands.  

Orthmann (2005) measured WB and CC in field in Benin allowing us to establish a power WB-CC 

model for Sudanian Savannah. Some authors (Malimbwi et al. 1994, Campbell 1996, Frost 1996) 

studied WB in Miombo Woodlands but did not report any relevant model coupling WB and CC. 

Suganuma et al. (2006) built up WB-CC models in Western Australian Savannah but their models 

cannot be directly applied in tropical Africa due to the endemic difference in woody species and 

environment.  

From the above brief review, it is clear that due to their particular limitations, no regional-scale 

woody biomass assessment can be undertaken in tropical Africa based on a single WB-CC model, 

because none of them are spatially representative enough to cover all savannah biomes and diversity 

of vegetation communities.  

The main objective of this study was therefore to develop a regionally valid and year-round 

operational woody biomass assessment methodology for the African tropical savannah ecosystems 

north of the equator by remote sensing based on existing studies. Sudan, the largest African country2, 

encompassing a very representative cross-section of tropical savannah woodlands including the 

Southern Saharan, Sahelian, and Sudanian Savannahs (WWF 2010, figure 1), was selected as a basis 

for developing and testing the methodology.  

                                                 
2 In this paper, we are talking about the Sudan before 9 July 2011, when South Sudan became independent. 
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Table 1. Woody vegetation diversity and communities in tropical savannahs taking Sudan for example  

 

 

Figure 1. Distribution of CC sampling plots and coverage of Landsat scenes 

Note: (1). The division of eco-regions or different savannahs was based on the annual rainfall of the period 

1980-1999 according to WWF (2010); (2) Light blue and red image frames indicate respectively the 16 

Landsat ETM+ scenes used for CC-VI model development and 11 scenes for CC-VI model evaluation in this 

study; (3) two sets of sampling plots: one includes 177 plots (in light blue) for development of CC-VI models 

and the other contains 72 plots (in red) for CC-VI model evaluation  

 

2. Methods 

Based on the understanding of the background of the study area (subsection 2.1), large-scale woody 

biomass assessment in tropical savannahs requires a multi-scale remote sensing approach which 

includes five major steps: calibration of the relevant WB-CC models for different savannah 

woodlands (subsection 2.2); development of generally valid CC-VI (vegetation index) models by 

coupling field-measured CC with remote sensing VIs derived from high resolution imagery 

(subsection 2.3); region- or country-scale biomass modelling using relevant WB-VI models based on 

extraction of the woody component by time-series analysis (subsection 2.4); model weighting and 

application to vegetation community for biomass estimation (subsection 2.5); and lastly, biomass 

map evaluation (subsection 2.6). For this purpose, a multi-resolution satellite dataset, composed of 

very-high-resolution satellite images, such as QuickBird (partly GeoEye) images (0.5-2.5 m) that are 

available in Google Earth, 27 Landsat ETM+ images (15-30 m) which are sensitive to local scale 

phenological change in land cover, and time-series moderate resolution data namely MOD13Q1 and 

MOD09Q1 (250 m) products, were prepared (table 2) and the global procedure is demonstrated in 

the flowchart (figure 2).  

 

Table 2. Satellite dataset used in this study 

 

 

Figure 2. Flow chart of the methodology and procedure adopted in this study 

(Note: it is the subsection number in parenthesis) 

 

 

2.1 The study area 
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A typical tropical savannah country and located in East Africa, Sudan covers a territory of 2.51 

million km2, where the average temperature does not vary greatly throughout the year (e.g. from 25 

to 35°C in Khartoum) but the annual rainfall has a strong variation in space from north (0 mm in 

Saharan Desert) to south (1400 mm in Congolian Forest Savannah). The annual rainfall is mainly 

concentrated between June and September (88-93% of the total rainfall) in Saharan and Sahelian 

Savannahs (dry season starts from October), and between May and October (82-91% of the total 

rainfall) in Sudanian and Congolian Savannahs, where the dry season starts from November.  

According to the FAO Africover Land Cover Map (FAO 2003), there are 23 main land use and 

cover types which can be further integrated into the following major classes: bare soil (mainly 

Saharan Desert, 36.33%), grasslands (in Saharan and Sahelian eco-regions, 8.19%), croplands 

(5.83%), sparse woodlands (including sparse shrublands and wooded grasslands, 16.88%), 

woodlands (including shrublands, 31.59%), forests (0.29%), water bodies (lakes and rivers, 0.56%), 

swamp (0.22%), and artificial (urban areas, villages and road infrastructures, 0.11%). Therefore 

woodlands (including sparse woodlands) crossing different savannah belts are the most important 

land cover in Sudan (48.47%). About 1.2 million km2 of woodlands crossing Saharan, Sahelian, 

Sudanian and Congolian Savannahs are included in our study.  

 

2.2 Calibration of WB-CC models 

To assess woody biomass in the tropical savannahs, the first need is to calibrate reliable WB-CC 

models, which are usually obtained from field measurement. Whereas in-situ measurements of the 

woody biomass and canopy cover in different savannah ecosystems were planned in the beginning of 

the study, we were not recommended to go due to security reasons and we had to use the models 

developed by other authors, if relevant and applicable to our study. 

As mentioned earlier, Helldén and others conducted field measurements for the species Acacia 

albida, Acacia mellifera, Acacia senegal, Acacia seyal, Acacia tortilis, Albizzia amara, Balanites 

aegyptiaca in the Saharan/Sahelian Savannahs in 1980s. Helldén (1991) incorporated all the field 

measurements in Kassala, Gedaref, and North Kordofan in Sudan, Gojam and Shewa in Ethiopia to 

develop the Acacia-dominated WB-CC model (equation (1)) and to obtain the relationship between 

CC and NDVI (equation (2)), which can be respectively expressed as follows:  

BW  = 0.4644CC − 0.6286  (R2 = 0.96)      (1) 

CC = -366 + 6.01 NDVIdc  (R2 = 0.90)      (2) 

where BW  dry weight woody biomass (tons ha-1), CC in percentage (%) and NDVIdc   NDVI 

Digital Counts.  

Despite the limitation of equation (2), as recognised earlier, the CC measurement in their studies 

covers a range of 3-47%, which is much wider than that of Woomer et al. (2004). Franklin and 

Hiernaux (1991), in their assessment in western Sahelian/Sudanian Savannahs in Mali, confirmed 
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that the model of Helldén (1987a and 1987b) produced better results than those of Olsson (1985) and 

Bille (1977). Thus, for the Acacia-dominated Sahelian/Saharan Woodlands, the model of Helldén, 

equation (1), was considered representative.  

For the Sudanian Woodlands, equation (1) is clearly not relevant due to the differences with the 

Sahelian Woodlands in dominant woody species and environmental conditions. Fortunately, 

Orthmann (2005) measured woody biomass of 51 species in 35 plots (30 m × 30 m) in the Western 

Sudanian Savannah in Benin, which floristically resemble those in the Eastern Sudanian Savannah 

eco-region, where Anogeissus-Isoberlinia-Uapaca-Terminalia is the dominant combination. From 

her measured data, the following power WB-CC relationship, taking all measured trees into account, 

was obtained:  

BW = 0.8868CC1.1069   (R² = 0.95)       (3) 

This WB-CC model was regarded as representative for the Sudanian Woodlands as it covers most 

dominant woody species  in the Sudanian eco-region.  

The two models, in spite of their representativeness for individual biomes, do not cover all woody 

species in all woodlands savannahs. As evidenced by table 1, the dominant species show much 

variation in space and often occur in different savannah biomes. For example, some dominant 

species in Saharan/Sahelian Savannahs (e.g. Acacia seyal, Balanites) also occur in the Sudanian eco-

region, and vice versa. To avoid over- or underestimation, a combination usage of the two models 

based on the dominance of woody vegetation in each community seems essential. More detail will 

be provided in Subsection 2.5.  

 

2.3 Development of CC-VI models 

To develop CC-VI models, it is necessary to derive the most relevant VIs from high resolution 

satellite images, in our case from Landsat ETM+ images (2.3.1), then measure CC in the field or in 

very high resolution images/air photos of different savannah woodlands (2.3.2), followed by a 

calibration of CC-VI models by regression analysis (2.3.3), and finally, to evaluate the applicability 

of the developed CC-VI model in different savannahs (2.3.4). 

 

2.3.1 Conversion of VIs from Landsat ETM+ images  

Phenologically, herbaceous vegetation in tropical savannahs is affected by senescing but Acacia, 

coniferous, and broadleaved deciduous trees are still green in November, whereas in the dry months 

from December to February not only frequent woodland fires occur but also the deciduous species 

lose leaves. For this reason, November images are most pertinent for CC-VI calibration study as the 

contrast between woody and herbaceous vegetation is maximized. 

Sixteen November Landsat ETM+ images acquired in the period 1999-2002, the only available 

satellite imagery source we could find at no charge before February 2009, were obtained (see figure 
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1 and table 2 for spatial coverage) and employed for CC-VI modelling. After February 2009, all 

Landsat data became publicly available at no charge as a decision of USGS (United States 

Geological Survey). Thus we got another set of 11 scenes November Landsat ETM+ images of the 

same period 1999-2002 (see figure 1 and table 2). These 11 images were not used for CC-VI model 

development but for CC-VI model evaluation. The image processing of all Landsat imagery includes:    

Atmospheric correction: The obtained Landsat images were radiometrically normalized and 

atmospherically corrected using the COST model developed by Chavez (1996), which intends to 

remove both additive scattering and multiplicative path transmission effects. The haze values of 

images in Digital Number (DN) shown in table 2, an important input for the COST model, were 

estimated using the 4th feature of the Tasseled Cap Transformation (Crist et al. 1984a and 1984b). 

The haze removal was conducted in terms of the multiplication factor for each band proposed by 

Chavez (1988). The correction procedure is described by Wu (2003).  

Transformation of multispectral reflectance into relevant VIs: In addition to NDVI, we considered 

that other VIs might be also useful for biomass estimation in terms of their development theories, 

such as the Enhanced Vegetation Index (EVI, Huete et al. 1997) and the Soil Adjusted and 

Atmospherically Resistant Vegetation Index (SARVI) proposed by Kaufman and Tanré (1992). 

These vegetation indices introduce the blue band to conduct a self-correction and remove not only 

soil influence but also atmospheric effects. Also the Visible Atmospherically Resistant Index (VARI) 

and the Wide Dynamic Range Vegetation Index (WDRVI) developed by Gitelson et al. (2002) and 

Gitelson (2004) were considered in view of their reported higher sensitivity than NDVI to vegetation 

with a moderate-to-high Leaf Area Index (LAI = 2-6). For calibration of the CC-VI models, the 

reflectance-based NDVI, EVI, SARVI, VARI and WDRVI were produced. However, in any ETM+ 

image VARI and WDRVI values are negative in most pixels, except for some tracts of cropland. For 

this reason, only NDVI, SARVI and EVI were selected for further calibration.  

 

2.3.2 CC measurement  

CC measurement is the key for developing CC-VI models and its evaluation. It requires a rational 

and representative selection of plots for sampling. Based on FAO Land Cover Map, the ratio of the 

surface areas among sparse woodlands, woodlands and forests was obtained, that is, 58:109:1. In 

consideration of the available time investment and the requirement that sampling has to be spatially 

representative, we decided to assign randomly 500 points in total to these woodlands where there 

was coverage of QuickBird imagery as per the ratio so that 172 points were distributed in sparse 

woodlands, 324 in woodlands and 3 in forests. By removing those located in the cloud-covered and 

burnt areas in QuickBird images (where replacement was not possible due to absence of trees or 

shrubs in the adjacent areas), 287 points were left; then using 16 Landsat frames to clip, 177 points 

(of which 6 are located in Southern Saharan, 86 in Sahelian, 75 in Sudanian, and 10 in Congolian 

eco-regions and were considered spatially representative) were finally retained for CC sampling. The 
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plot selection was hence half stratified half random or stratified random covering all savannah 

woodlands within the coverage of available QuickBird imagery and Landsat frames. 

Using Google Earth, we conducted CC sampling plot by plot at the location of each of the above 

points. The plot, taking one of the above points as centre, covers an area of 100 m ×100 m (1 ha). 

The plot size is in fact a compromise between the resolutions of Landsat (30 m) and MODIS (250 m) 

data viewing that the CC sampling results would be applied to both two satellite imagery. In each 

plot, we counted the number of trees, measured canopy diameter, and calculated CC as follows: 

CC = ∑
=

n

i
id

1

2

4

π
           (4) 

where n is the number of trees in the 1-ha plot, and di is the canopy diameter of tree i. Trees or 

shrubs with canopy diameter (di) < 2 m were not counted because firstly, it is difficult to measure as 

a result of resolution degradation of QuickBird (including very locally GeoEye) images in Google 

Earth (their resolution is not 0.6–1.0 m but about 1.5–2.0 m in rural areas); and secondly, their 

biomass is negligible (about 1.6-3.0% of the total woody biomass) according to the measurement by 

Orthmann (2005) in tree savannah and savannah woodland. Counting manually all trees and 

measuring their crown diameters are tedious and very time consuming, especially when the number 

of trees exceeds 40-50. In its favour, the method is simple and easy to apply, especially in case of 

crown shading due to a low sun-elevation angle and low heterogeneity among tree canopy sizes.  

Another approach to measure CC consisted in copying the 1-ha plot sampling area from Google 

Earth using the Print-Screen function of the keyboard and paste it into Photoshop. After discarding 

the colour information, the plot was turned into a black-and-white image. By enhancing the contrast 

between the crown area (dark) and background soil (white), the number of black pixels can be easily 

read to get the crown area percentage1. The main limitation of this method is that it can be only 

applied in the plots where there is an apparent difference in reflectance between canopy cover and 

background soil, and when the sun-elevation angle is large enough not to produce much crown 

shadow.    

Both methods were compared for accuracy and reliability in five plots (four in Sahelian and one in 

Sudanian) where QuickBird images were acquired in later spring and summer and both approaches 

were applied for CC sampling. It was noted that the difference between the two approaches varied 

between 3 and 7%; and if the images are obtained in summer without much canopy shadow, the 

second approach is more accurate and more time-effective.  

 

 

2.3.3 CC-VI models  

                                                 
1 Method developed based on a personal communication with Dr Rolf Sommer (ICARDA), October, 2008.  
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While plotting the CC of these 177 sampling plots against the 16 November Landsat ETM+ images, 

the correlation between the CC and the vegetation indices, which are the weighted values of nine 

pixels within a kernel size of 3×3 (more or less equivalent to the plot size, 1 ha), was very low (R2 = 

0.16). Our first concern was that whether the low correlation was a consequence of the difference in 

acquisition time between Landsat ETM+ and recent QuickBird imagery. To understand this low 

correlation phenomenon and explore the applicability of the Landsat ETM+ imagery for this CC-VIs 

calibration, for each of the 177 plots the QuickBird was compared with the corresponding Landsat 

ETM+ image. Major discrepancies occurred in the following cases: (a) forest/woodland fire in 

November ETM+ images (1999-2002), but regrowth of trees or shrubs in the recent QuickBird 

images (low VIs vs. high CC case); (b) recent woodland fire: burning occurred 1-2 years before 

image acquisition but burnt scars still clearly distinguishable in the QuickBird images, with high VIs 

in the ETM+ images (high VIs vs. low CC case; measured CC cannot represent that when Landsat 

images were acquired); and (c) a very green herbaceous understory (high VIs) in the November 

ETM+ images but with low tree density (low CC) measured in the QuickBird images, particularly in 

the Sudanian Savannahs (again high VIs vs. low CC). The plots belonging to these three abnormal 

cases were excluded. The defect related to the occurrence of the sudden events during the period of 

difference was thus reduced. Whether the retained plots, in total 82 (of which 6 are distributed in 

Saharan, 62 in Sahelian and 14 in Sudanian savannahs), are pertinent for calibration, we need a 

further check on the tree/shrub canopy growth rate in its natural state without disturbance (e.g. fire). 

If the growth rate is high, old images cannot represent the CC of 3-8 years after. For this reason, we 

carefully selected some previous and new plots, in which QuickBird image pairs acquired in the 

same month but in different years could be found in Google Earth, to investigate the annual canopy 

growth rate. It is noted that the average annual growth rate of the observed five sites (perhaps still 

not representative enough in space) is about 1.55%. For a period of 3-8 years, the difference from the 

measured CC may be around 4.7-12.4%; and such a difference should fall in the scope of the 

tolerable error in satellite remote sensing field, especially, when we are dealing with moderate 

resolution data. We considered hence the November Land ETM+ data can still be used for CC-VIs 

calibration despite of the difference in time acquisition.  

The measured CC of the retained 82 plots, were projected against the VIs using least-square linear 

regression models, and we obtained a clear and strong correlation between CC and VIs (R2 = 0.83–

0.91) at the confidence level of 95% (figure 3).  

Although there were some concerns on the use of NDVI to infer vegetation and soil properties, 

especially in drylands (Huete 1988, Kaufman and Tanré 1992, Huete et al. 1997, Gitelson 2004), the 

calibration revealed that among the three vegetation indices the atmospherically corrected 

reflectance-based NDVI showed the best correlation with CC (R2 = 0.91, figure 3a). SARVI has the 

same level of correlation with CC (R2 = 0.90) as NDVI but with a lower dynamic range (0.1-0.2 

units lower than that of NDVI and EVI). For this reason, we selected NDVI as CC indicator for 
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biomass estimation. Since we have excluded the herbaceous influence, here the NDVI is woody 

NDVI. We can denote it as NDVIW. The equation between CC and NDVI can be expressed as:      

 CC = 153.09NDVIW – 10.12   (R2 = 0.91)       (5) 

  

2.3.4 Evaluation of CC-NDVI model  

To test the applicability and validity of the CC-NDVI model crossing different savannahs, we used 

the other set of 11 scenes of Landsat ETM+ images (table 2), which were obtained after February 

2009, to derive, or rather, to predict CC in the sparse woodland, woodland and forest areas using 

equation (5). Again, we used these 11 Landsat frames to intercept the same 500 points created in 

2.3.2. By removing those in cloud covered areas, bare land and burnt scars in both QuickBird and 

Landsat ETM+ images, 72 points (18 in Saharan, 37 in Sahelian, and 17 in Sudanian Savannahs) 

were retained for sampling.  So a new set of  CC samples were measured again in Google Earth (see 

figure 1: Plots for validation). By coupling the predicted weighted CC from nine pixels derived from 

the 11 Landsat images using equation (5) vs. the measured CC using linear least-square regression 

model at confidence level of 95%, we obtained a very high R2 value (0.95). If we remove the four 

outliers (two overestimated and one underestimated cases in the rainforests, and the third case in 

woodland but with green herbaceous vegetation in November image) in the Sudanian Savannah, the 

R2 value is increased to 0.99 (see figure 4). Thus the predicted CC corresponds very well to the 

measured CC and the CC-NDVI model can reliably predict CC crossing different savannah 

woodlands. 

 

Figure 3.  The relationships between the measured CC and VIs 

 

Figure 4. Agreement between the measured and predicted CC 

 

  

2.3.5 Upscaling analysis  

Since the CC-NDVI model was developed based on Landsat ETM+ images, a critical step was to 

evaluate whether they can be directly applied to MODIS data, because the sensed information 

between the two captors is not identical, even for the same targets or objects, due to the difference in 

spatial resolution and nadir viewing angle. For this purpose, three Landsat ETM+ images (176-53 

and 176-54 dated 17 November 2002, and 179-51 dated 6 November 2002, table 2) and two frames 

of MOD13Q1 (250 m) NDVI images (H20V07 and H20V08 of 16 November 2002) were selected 

for this upscaling test. To have more comparability with MODIS data and diminish the difference in 

spatial resolution, the three scenes of Landsat NDVI were resampled to 250 m resolution. To ensure 

enough check points to cover all land cover types in space, mainly sparse woodlands, woodlands, 

swamp and croplands in each scene of the three Landsat images, and to have also a quick assessment, 
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2 000 points in total were randomly generated, of which 1 655 points were finally retained for 

extraction of the NDVI values from both Landsat and MODIS data, after removing those falling in 

rivers and burnt areas. The NDVI of Landsat ETM+ images (NDVIL) and that of MODIS (NDVIM) 

of the same time or more or less at the same time period are strongly correlated (NDVIM = 

0.9786NDVIL + 0.0471, R2 = 0.88). 

Another approach to test the applicability is to apply a differencing technique to see their agreement 

between MODIS and Landsat NDVI images. After subsetting the MODIS NDVI image into the 

same size as three Landsat NDVI images, the former was subtracted by the latter, followed with a 

statistical analysis which indicates a normal leptokurtic distribution, where the mean (M) is -0.041; 

the standard deviation (σ) is 0.060; the minimum (Min) and maximum (Max) are respectively -0.863 

and 0.528. It was noted that pixels between M-σ (-0.101) and M+σ (0.018) take up 78.38%, and 

between M-2σ (-0.161) and M+2σ (0.078) 94.91%. The little percentage of the abnormal pixels 

distributed in the two tail ends of the histogram were burning or burnt areas (2.79%) and herbaceous 

vegetation senescing (2.31%) along the river running courses in the 11 days’ observation period 

from 06 to 17 November 2002. Thus, if we don’t consider the abnormal pixels, MODIS and Landsat 

NDVIs are consistent to each other.       

Both approaches confirmed the feasibility to transfer models developed from Landsat ETM+ images 

to MODIS data and to upscale from local level studies to regional or nationwide assessments.   

 

2.4 Modelling woody biomass 

For regional woody biomass assessment, it is essential to have representative biomass models 

corresponding to different savannahs based on the relationship of CC-NDVI (2.4.1) and relevant 

input such as regional scale woody NDVI (2.4.2).   

2.4.1. WB–NDVI models 

As calibrated in subsection 2.2, we have two WB-CC models relevant respectively for 

Saharan/Sahelian and Sudanian Savannahs. Through the CC-VI model development in subsection 

2.3, we have now the CC-NDVI model, equation (5), which is applicable to multiple tropical 

savannahs. We can combine equations (1) and (5) to get WB-NDVI model for Acacia-dominated 

Saharan/Sahelian Savannahs (Model 1), and merge equations (3) and (5) to get the WB-NDVI model 

for Sudanian eco-region (Model 2): 

Model 1: BW = 71.095NDVIW − 5.3283       (6) 

Model 2: BW = 0.8868(153.09NDVIW – 10.12)
1.1069  

      (7) 

 

These models allow regional woody biomass assessment by direct application to the most popular 

remote sensing product such as NDVI if the woody component (NDVIW) can be extracted.  
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2.4.2. Derivation of woody NDVI by time-series analysis 

As already mentioned earlier in section 1, woodland is the land cover between grassland and forest, 

and itself is a mixture of trees or shrubs together with annual herbaceous vegetation. In savannahs, 

tree cover is generally low, especially in lower-rainfall zones, but may locally be dense, particularly 

in lowlands and valleys dominated by Acacia in the southern Saharan and Sahelian woodlands. With 

higher rainfall tree cover becomes generally denser, as is the case in the Anogeissus-Khaya-

Isoberlinia and Combretum-Terminalia-dominated Sudanian Savannahs (Harrison and Jackson 1958, 

White 1983, Franklin and Hiernaux 1991, Hiernaux and Le Houérou 2006). Hence, the NDVI value 

of a pixel is not completely contributed by the tree cover but also by the herbaceous vegetation. 

Normally, using imagery of autumn (e.g. November), the confounding influence of herbaceous 

vegetation can be minimized, but cannot be completely removed because in lowlands, valleys, and 

riparian plains, grasses are still green favoured by available moisture, especially, in the Sudanian and 

Congolian Savannahs.   

It is evident that no matter which period of imagery we use, the herbaceous confusion is always a 

challenge for woody biomass assessment by remote sensing, especially in the Sudanian and 

Congolian eco-regions. To achieve our objective to develop an approach to estimate year-round 

woody biomass, it is essential to separate the woody component from the herbaceous one in any 

image of any season; and time-series analysis provides a useful tool for this purpose.  

Research by Roderick et al. (1999), Lu et al. (2003), and Verbesselt et al. (2010) indicates that time-

series NDVI data can be decomposed into a trend, a seasonal change, and a random or irregular 

change component. Verbesselt et al. (2010) used time-series trend analysis to detect abrupt changes 

while Roderick et al. (1999) and Lu et al. (2003) used this technique to partition the woody 

component from the herbaceous one. In this study we adopted the same concepts as trend and 

baseline of Roderick et al. (1999) and Lu et al. (2003) and applied these to eight years of MODIS 

NDVI time-series data (MOD13Q1 product) from January 2002 to December 2009 (96 months and 

184 acquisitions for each of the six frames) for decomposition.  

Within the FAO Land Cover Map defined sparse woodlands, woodlands and forests, a number of 

polygons were respectively defined in the MODIS NDVI images crossing Sahelian and Sudanian 

Savannahs to have spatial representativeness. The polygons of forests cover 795 pixels; those of 

woodlands and sparse woodlands take up respectively 4048 pixels and 5006 pixels. The 

corresponding time-series monthly average NDVI datasets from January 2002 to December 2009 

were extracted using these polygons. Then the time-series NDVI dataset of each type of woodlands 

was decomposed into a trend and seasonal component, following the “locally weighted regression 

smoother (LOESS)” approach proposed by Cleveland et al. (1990) using R-Code developed by 

Wessa (2008). The decomposed results are shown in figure 5. According to Roderick et al. (1999) 

and Lu et al. (2003), the baseline (NDVIBi), which can be obtained by shifting the trend of NDVI 
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(NDVITi) by a constant K, is a good measure of the evergreen woody NDVI or woody component 

(NDVIWi) at the given time i and can be expressed as: 

 NDVIWi = NDVIBi = NDVITi – K       (8) 

where K is the absolute value of minimum seasonal component for the two consecutive years. K for 

forest, woodland, and sparse woodland was respectively measured 0.1466, 0.2143 and 0.1982 for the 

entire period of eight years. The baseline is shown in figure 5. The percentage of the woody 

component, in other words, the ratio (R%) between the woody component (NDVIW) and the observed 

NDVI (NDVIO), in our case, the NDVI of MOD13Q1 product, of a given pixel at any time i can be 

calculated as: 

 Ri % = 100 (NDVIWi / NDVIOi)       (9) 

This woody NDVI percentage of different types of woodlands is shown in figure 5d. In some winters, 

the values exceed 100%, due to abnormal low NDVI of woodlands caused by an abrupt change, 

most likely woodland fire (Wu and De Pauw 2010), in which the estimated woody NDVI was higher 

than the observed one. Based on such abnormality, time-series data can be used for change detection, 

but it is not the focus of our paper. The calculation results are illustrated in table 3, taking the 

MODIS NDVI images of 2007 as example. These R values were determined for all pixels of the 

given savannah woodlands. 

 

 

 

Table 3. Woody NDVI percentage in summer and autumn 

 

 

 

Figure 5. Seasonal component, trend and baseline of NDVI series, and the ratio between the woody 

component and the observed NDVI 

a: forest, b: woodland, and c: sparse woodland; d: the ratio (R%) between woody NDVI (NDVIW) and the 

observed NDVI (NDVIO). Note: numbers on horizontal axis represent monthly time steps, with 1: January 

2002 and 96: December 2009; 67-68 and 71 indicate respectively the summer (July-August) and autumn 

(November) of 2007.  

 

 

 

2.5 Application of models   

Application of the models to conduct region- or country-scale woody biomass assessment consists of 

production of the critical input, the woody NDVI data (2.5.1), and model weighting based on the 

dominance of vegetation species in each community, and community-scale model application (2.5.2).  
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2.5.1 Producing summer (peak) and autumn (trough) cloud-free woody NDVI images 

Tropical savannahs are frequently covered with clouds in summer and autumn, especially in 

Sudanian and Congolian eco-regions. In order to have higher possibility to get cloud-free NDVI for 

each pixel, we used the 8-days interval MOD09Q1 reflectance data (table 1) of 2007 in consideration 

of the fact that most of the QuickBird images in Google Earth used for CC sampling were dated 

2004-2007. The reflectance data from 01 July to 30 September (12 acquisitions) and from 01 

November to 03 December (5 acquisitions) were converted into NDVI. An algorithm was designed 

to extract the maximum value of each pixel of the 12 summer acquisitions, and the observed peak 

NDVI (or wet season cloud-free NDVI)  image was thus produced; the same function was applied to 

the five November NDVI images to extract the autumn (or dry season cloud-free) NDVI for each 

pixel.  

In the FAO classified sparse woodlands, woodlands, and forests, the decomposed woody NDVI 

percentage as shown in table 3, was respectively applied to the summer/peak  and autumn/trough 

cloud-free MODIS NDVI images to produce summer and autumn woody component (NDVIW) 

images. 

 

2.5.2 Vegetation community-based model weighting and application 

As aforementioned, due to the strong variability and mixture of the dominant woody species 

crossing different savannahs, it is important to take account of  a combination use of the two biomass 

models (Models l and 2). This could be done by adjusting the models to the woody species 

composition of each vegetation community, or more concretely, vegetation community-level model 

weighting. 

In order to identify the woody species communities in different savannahs, we used the Vegetation 

Map of Sudan by Harrison and Jackson (1958). To account for the dominance and composition in 

woody species, a weight ratio between Model 1 (equation (6)), and Model 2 (equation (7)), was 

estimated for each vegetation community based on the description in the monograph of Harrison and 

Jackson (1958). The model weights were determined subjectively based on our expert knowledge. 

Taking the community “Low rainfall woodland savannah, on sand (c) Terminalia-Sclerocaryea-

Anogeissus-prosopis Savannah Woodland” in the Sahelian eco-region (see table 1) for example, the 

dominant woody species are Terminalia, Sclerocaryea, Anogeissus, and Proposis which are 

dominant species in Sudanian eco-region, mixed locally with Acacia senegal. So we gave a weight 

0.2 for Model 1 and 0.8 for Model 2. If the Acacia-dominated model (Model 1) were used only, 

woody biomass would be underestimated. Another example is the community “Special areas of low 

rainfall woodland savannah (b) Hill Catena East (North of Kurmuk)” in Sudanian eco-region (see 

table1). This community is geomorphologically a part of the west slope of the Ethiopian Highlands 

extending to Sudan, dominated with Acacia seyal and Balanites but is at lower elevations mixed 

with more Anogeissus and Combretum species. To account for this effect a weight 0.6 was given for 
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Model 1 and 0.4 for Model 2. The result after weighting should be closer to the reality than a simple 

application of Model 2.  

One point to be noted here is that the Congolian eco-region in the southwest of Sudan (figure 1), the 

former rainforests, can for practical purpose be considered a part of the Sudanian Savannah, because 

the rainforests have degraded into woodlands (see table 1) due to burn-and-slash agricultural 

activities over the past 200-300 years (Harrison and Jackson 1958).  

In accordance with the weights given in table 1, Models 1 and 2, either single or in combination, 

were applied to both the decomposed summer and autumn woody NDVI images in each vegetation 

community to produce the aboveground woody biomass maps of both summer and autumn.   

 

2.6 Evaluation of two biomass maps  

To evaluate whether the two biomass maps of summer and autumn produced in subsection 2.5 are 

consistent with each other, a differencing procedure was again applied; more concretely, the summer 

biomass map was subtracted by the autumn one to check the variation and difference between the 

two maps in space.  

Given M (0.232), σ (5.542), Min (-49.99), and Max (45.99) of this difference map, it follows that the 

pixels falling in the extent between M–σ and M+σ hold an absolute percentage, 84.12%. The 

positive difference (M+σ, Max), 7.98%, implying that the estimated summer biomass density is 

higher than that of autumn, is mainly distributed in Saharan, and in particular, in Sahelian Savannahs 

and northern Sudanian Savannah; whereas the negative difference (estimated autumn biomass higher 

than the summer one), about 7.90%, is found mostly in the Sudanian Savannah. An investigation 

was conducted firstly in the Sahelian Savannah. If we can briefly consider one tree or big shrub 

containing 0.5 tons of woody biomass in average, and if the tree number in the 1-ha area is known, 

the woody biomass can be largely estimated. We used the 249 (177+72) CC sampling plots and 

examined those falling in the Sahelian area, and found that the autumn biomass is closer to the “real” 

approximation and the summer biomass is overstated. A similar check was undertaken in the 

Sudanian Savannah supposing that the average tree biomass density is about 2-5 tons per tree 

depending on the size of tree. It is noted that the woody biomass in some plots is in between the two 

maps, while in others it is closer to the summer one. Thus the summer map may be slightly better 

estimated in the Sudanian Savannah. One potential option is to combine the two maps to take the 

average for the Sudanian Savannah woodlands, and the autumn estimation for Saharan/Sahelian 

Savannahs. 

 

 

3. Results and discussion 

Through the above processing procedure, the results obtained are presented here for discussion.  
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3.1 CC-NDVI model  

Our study found that among the observed vegetation indices, the atmospherically corrected and 

reflectance-based NDVI shows the best correlation with CC (R2 = 0.91). This validated CC-NDVI 

model can predict well CC in woodland savannahs, in particular, in the Saharan and Sahelian 

Savannahs, and can be applied to MODIS data for regional and country-scale studies. However, 

some care has to be taken while deriving CC using this model. As mentioned above, we checked the 

outliers, the plots where there is significant difference between the measured and predicted CC, and 

noted that they are all located in the Sudanian eco-region (either in rainforests in the mountains or in 

the plain where there is green herbaceous vegetation even in dry season). The difference between the 

predicted and measured CC in these plots may be caused by (1) the difference in time acquisition 

between Landsat and QuickBird images, (2) the slope effect in the mountains leading to that NDVI 

cannot fully reflect the real CC, and (3) the model itself is not suitable for the closed rainforests 

(normally with CC more than 85-90%). With the concern of the third point, a further check was 

made in the Imatong Mountains (Mts) in south Sudan. Given that the top CC of the closed rainforest 

is 100% (theoretically reasonable), we found that our model overestimated CC (more than 100%) in 

about 39% of the pixels in the closed rainforests in this montane area. Hence, adaption or 

modification is essential if one wants to apply this model for CC characterization in the closed 

rainforests.  

 

3.2 Woody biomass maps 

Using the described multiscale remote sensing methodology, obtained and evaluated woody biomass 

maps were presented in figure 6 and total biomass of forests, woodlands, sparse woodlands, and all 

three classes combined were calculated for both summer and autumn. Table 4 indicates the total 

woody biomass estimated in Sudan in 2007 in the range 733-751 million tons. Though some 

variation found between the two maps, e.g. slight overestimation of the summer map in Sahelian 

savannah (green in figure 7), and overestimation of the autumn map in Sudanian eco-region (see 

brown in figure 7), largely speaking, the total woodland biomass is almost the same between 

summer and autumn with a little difference of 2.4%. Furthermore, the estimates for specific States 

are also in good agreement with the ground data of woody biomass and the results obtained by other 

authors. The field-measured values by Helldén and Olsson (1982, 1989), and by Helldén (1987b, 

1991), in the Northern Kordofan and Kassala States (Acacia-dominated savannahs with a woody 

canopy cover range 3–47%) are in the range 0.14–18.63 tons ha-1. The values predicted from our 

remote sensing-based approach are in the range 0-21.19 tons ha-1 for Kassala and 0-23.78 tons ha-1 

for Northern Kordofan, with a CC range of Acacia trees and shrubs 0-50%. Our results for the 

mountain forests (12-161 tons ha-1) also agree well with those of Baccini et al. (2008), who 
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conducted a rainforest biomass assessment in Central Africa using MODIS and Lidar data, and 

estimated for Southern Sudan the woody biomass of forests in the range 11-166 tons ha-1.  

 

 

Table 4. Estimated summer and autumn woody biomass in Sudan 

 

 

Figure 6. Woody biomass of Sudan in the summer (left) and autumn (right) of 2007  

 

 

3.3 Applicability of the method 

The consistency between the two summer and autumn biomass maps, and the agreement between 

our results and the ones of other authors, indicate that although we could not conduct field work due 

to security reasons, the developed methodology can produce reliable woody biomass assessments 

and can therefore be contemplated for operational use in tropical Africa north of the equator. 

However, two points are worthy of attention:  

Firstly, in our estimation approach the decomposed results of the sampled forests, woodlands, and 

sparse woodlands were used for a countrywide biomass assessment. Inevitably, for some pixels 

biomass will be underestimated and for others overestimated due to spatial variability, for example, 

overestimation in the Saharan/Sahelian eco-region in the summer map. Therefore, the biomass 

quantity modelled for each pixel should be regarded as a relative value, rather than an absolute 

indication of stand volume for commercial usage. In next stage, we can try eco-region level or even 

vegetation community level decomposition to take the spatial variability into consideration to get the 

estimation as approximate as possible to the reality. 

Secondly, the model coupling CC and woody NDVI may lose its sensitivity when CC is below 5% 

due to the soil influence or over 75%, especially in the closed rainforests due to overestimation; and 

hence, the estimation result may be less accurate at the extremes of CC than in the middle parts (CC 

10-60%). 

 

 

Figure 7. Difference between the summer and autumn biomass maps 

Note: Green colour indicates (1) the estimated summer biomass higher than autumn one and (2) overestimation 

of summer biomass in comparison with the “real” approximation (see subsection 2.6); and brown implies (1) 

the obtained autumn biomass is higher than the summer one and (2) a slight overestimation of autumn biomass 

compared with the “real” approximation.   
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As for other tropical savannah in Africa, e.g. Miombo Woodland (south of the equator), the 

developed methodology may be extendable with some slight adaption in WB-CC model since a lot 

of woody species (Isoberlinia, Terminalia, Combretum, Burkea Africana, Mopane, etc.) are the same 

as in Sudanian eco-region. Yet, while disseminating the method to other non-tropical savannahs, 

more adaption and calibration on the CC-VI and WB-CC models are necessary due to the difference 

in woody species and endemic environment from our study area. Theoretically, the method should 

be repeatable if there are land cover map and vegetation community information. Time-series 

decomposition to derive the woody component is applicable in any savannah.  

 

4. Conclusions  

This paper describes through a case study in Sudan the development and large-scale operational use 

of a methodology for woody biomass estimation in tropical savannahs. The biomass calculation 

method based on the combination of several procedures involving CC–VI calibration and evaluation, 

upscaling from high resolution (Landsat) to moderate-resolution (MODIS) data, time-series NDVI 

decomposition to extract the woody component, biomass model weighting in line with the dominant 

woody species, and application of models to vegetation communities, is scientifically sound and can 

provide reliable biomass assessment. The results obtained in Sudan are compatible with available 

ground truth data and those presented by other authors. This suggests that our methodology and its 

principles are operational and can be applied in other tropical African countries where woodland 

savannahs are dominant for woody biomass assessment in both wet and dry seasons.  

Another important outcome of this research is an innovative approach to derive tree canopy cover 

(CC) by time-series decomposition analysis superimposed on the CC-NDVI model. Applied to a 

multi-resolution, multi-sensor and time-series dataset, this new technique allows not only to estimate 

CC at any time in each observed year, but also to assess the year-round woody biomass if cloud-free 

NDVI images are available.  

In conclusion, the developed methodology offers a promising approach for year-round woody 

biomass assessments and monitoring in the tropical savannah woodlands and can contribute to low-

cost, large-scale assessment and monitoring of carbon balances in savannah woodland ecosystems at 

local and regional scales in Africa. The future work will be focused on testing the methodology first 

in Miombo Woodland and then in other non-tropical woodlands for woody biomass assessment.  
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Table 1. Woody vegetation diversity and communities in tropical savannahs taking Sudan for example 

Eco-regions Vegetation Communities Model 1 Model 2 

Saharan 

Desert 0.00 0.00 

Montane vegetation in the state of Red Sea (northeast) 1.00 0.00 

Semi-Desert (e) Acacia glaucophylla - A. etbaica Scrub 1.00 0.00 

Semi-Desert (d) Acacia mellifera - Commiphora Desert Scrub 1.00 0.00 

Semi-Desert (c) Semi - desert grassland on Sand 1.00 0.00 

Semi-Desert (a) Acacia tortilis - Maerua Crassifolia Desert Scrub 1.00 0.00 

 
Semi-Desert (b) Semi - desert grassland on Clay 1.00 0.00 

Sahelian 

Low rainfall woodland savanna, on sand (b) Combretum 

cordofaum-Dalbergia-Albizzia sericephela Savanna Woodland 
1.00 0.00 

Montane vegetation in Jabal Marra Mountains (west) 0.60 0.40 

Special areas of low rainfall woodland savanna (d) Raqaba 

Repeating Pattern 
1.00 0.00 

Low rainfall woodland savanna, on clay (c) Anogeissus-Combretum 

hartmannianum Savanna Woodland 
0.20 0.80 

Low rainfall woodland savanna, on clay (Acacia mellifera 

Thornland) (i) on dark cracking clay, alternating with grass areas 
1.00 0.00 

Low rainfall woodland savanna, on sand (a) Acacia senegal 

Savanna 
1.00 0.00 

Low rainfall woodland savanna, on clay (b) Acacia seyal-Balanites 

Savanna, alternating with grass areas 
0.90 0.10 

Low rainfall woodland savanna, on sand (c) Terminalia-

Sclerocaryea-Anogeissus-prosopis Savanna Woodland 
0.20 0.80 

Special areas of low rainfall woodland savanna (b) Hill Catena in 

Darfur (west) 
0.80 0.20 

Special areas of low rainfall woodland savanna (c) Baggara 

Repeating Pattern 
0.90 0.10 

Low rainfall woodland savanna, on clay (Acacia mellifera 

Thornland) (ii) on hill soils formed in-situ, associated with 

Commiphora africana, Boscia senegalensis 

1.00 0.00 

 

Special areas of low rainfall woodland savanna (b) Hill Catena 

Nuba (Center, around Kadugli) 
0.70 0.30 

Sudanian 

High rainfall woodland savanna, laterite catena (a) Anogeissus-

khaya-Isoberlinia Deciduous woodland 
0.00 1.00 

Montane vegetation in Imatong and Didinga Mountains (south) 0.00 1.00 

Special areas of low rainfall woodland savanna in Toposa Area 1.00 0.00 

Flood Region 0.50 0.50 

Special areas of low rainfall woodland savanna (b) Hill Catena 

South (east of Juba) 
0.20 0.80 

Low rainfall woodland savanna, on clay (b) Acacia seyal-Balanites 

Savanna, alternating with grass areas 
0.90 0.10 

Special areas of low rainfall woodland savanna (b) Hill Catena East 

(North of Kurmuk) 
0.60 0.40 

Congolian 
High rainfall woodland savanna, laterite catena (b) Woodland 

recently derived from rainforest 
0.00 1.00 
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Table 2. Satellite dataset used in this study 

Landsat ETM+ (30 m) 

16 Scenes for CC-VI Model Development 11 Scenes for CC-VI Model Evaluation 

Scenes Acquisition Date 
Total Mean 

Haze (in DN) 
Scenes 

Acquisition 

Date 

Total Mean 

Haze (in DN) 

173-50 06 Nov 2000 7.27 171-49 30 Nov 2002 0 

173-51 06 Nov 2000 7.80 171-50 30 Nov 2002 3.04 

173-52 04 Nov 1999 17.17 171-57 30 Nov 2002 4.16 

173-53 04 Nov 1999 18.16 172-53 05 Nov 2002 12.74 

173-57 25 Nov 2001 17.46 172-57 21 Nov 2002 12.88 

174-51 27 Nov 1999 2.22 173-55 09 Nov 2001 12.75 

175-50 07 Nov 2001 0 176-52 17 Nov 2002 2.40 

175-51 18 Nov 1999 0.99 176-53 17 Nov 2002 5.06 

175-54 20 Nov 2000 17.56 177-49 08 Nov 2002 0 

175-55 20 Nov 2000 18.34 177-50 08 Nov 2002 1.36 

176-53 17 Nov 2002 10.33 179-52 06 Nov 2002 5.97 

176-54 17 Nov 2002 12.81    

178-50 12 Nov 2001 0    

178-51 12 Nov 2001 1.43    

178-53 07 Nov 1999 15.01    

179-51 06 Nov 2002 3.66    

Time-series MODIS (250 m) 
   

Frames 
MOD13Q1 

 
MOD09Q1 

Acquisition Period Acquisition Period 

H20V06 

01 Jan 2002 to 31 Dec 2009 

H20V06 

01 July 2007 to 03 Dec 2007 

H20V07 H20V07 

H20V08 H20V08 

H21V06 H21V06 

H21V07 H21V07 

H21V08 H21V08 

QuickBird/GeoEye (0.5-2.5m) 
   

Available in 

Google Earth 
Feb 2002 to Dec 2009 
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Table 3. Woody NDVI percentage in summer and autumn 

2007 

Forest  

(CC: >60%) 

Woodland  

(CC: 20-60%) 

Sparse Woodland  

(CC: 1-20%) 

Summer Autumn Summer Autumn Summer Autumn 

Observed NDVI 

(NDVIO) 
0.88 0.82 0.80 0.58 0.72 0.48 

Woody NDVI 

(NDVIW -

Baseline) 

0.65 0.65 0.38 0.38 0.26 0.26 

R (%) 73.51 78.63 47.14 65.54 35.45 53.45 

Woody NDVI of the 

pixel j (NDVIWi) 
0.7351* NDVIOj  0.7863* NDVIOj 0.4714* NDVIOj  0.6554* NDVIOj 0.3545* NDVIOj 0.5345*NDVIOj  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Estimated summer and autumn woody biomass in Sudan 

2007 

Forest  

(CC: > 60%) 

Woodland  

(CC: 20-60%) 

Sparse Woodland  

(CC: 1-20%) 
Total  

(tons) Mean 

density 

(tons/ha) 

Sub-total 

(tons) 

Mean 

density 

(tons/ha) 

Sub-total 

(tons) 

Mean 

density 

(tons/ha) 

Sub-total 

(tons) 

Summer 107.69 10 604 688 44.28 595 649 470 8.49 145 053 140 751 307 298 

Autumn 98.95 9 746 618 44.55 599 183 420 7.31 124 855 450 733 785 488 
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Figure 1. Distribution of CC sampling plots and coverage of Landsat scenes 

Note: (1). The division of eco-regions or different savannahs was based on the annual rainfall of the period 1980-1999 according to 

WWF (2010); (2) Light blue and red image frames indicate respectively the 16 Landsat ETM+ scenes used for CC-VI model 

development and 11 scenes for CC-VI model evaluation in this study; (3) two sets of sampling plots: one includes 177 plots (in light 

blue) for development of CC-VI models and the other contains 72 plots (in red) for CC-VI model evaluation  
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Figure 2. Flow chart of the methodology and procedure adopted in this study 

(Note: it is the subsection number in parenthesis) 
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Figure 3.  The relationships between the measured CC and VIs 
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Figure 4. Agreement between the measured and predicted CC 
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Figure 5. Seasonal component, trend and baseline of NDVI series, and the ratio between the woody 

component and the observed NDVI  

a: forest, b: woodland, and c: sparse woodland; d: the ratio (R%) between woody NDVI (NDVIW) and the observed 

NDVI (NDVIO). Note: numbers on horizontal axis represent monthly time steps, with 1: January 2002 and 96: 

December 2009; 67-68 and 71 indicate respectively the summer (July-August) and autumn (November) of 2007.  
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Figure 6. Woody biomass of Sudan in the summer (left) and autumn (right) of 2007  
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Figure 7. Difference between the summer and autumn biomass maps 

Note: Green colour indicates (1) the estimated summer biomass higher than autumn one and (2) overestimation of 

summer biomass in comparison with the “real” approximation (see subsection 2.6); and brown implies (1) the 

obtained autumn biomass is higher than the summer one and (2) a slight overestimation of autumn biomass 

compared with the “real” approximation.   
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