Agricultural Diversity, Dietary Diversity, and Nutritional Outcomes in Central Asia: Empirical Evidence from Tajikistan Kamiljon Akramov (IFPRI, Washington, DC, USA) Mehrab Malek (IFPRI, Washington, DC, USA) 16th Steering Committee Meeting of the CGIAR Program for Sustainable Agricultural Development in Central Asia and the Caucasus Fergana, Uzbekistan August 28, 2014 #### Outline - Background - Motivation - Objectives and research questions - Data and methodology - Empirical results - Conclusions and future research # Background - Long lasting developmental impacts of nutrition for human development (Hoddinott et al. 2011, Victora et al. 2010) - Investments in improving nutritional outcomes have substantial economic returns (Hoddinott et al. 2013) - Various factors can impact nutritional outcomes - Parental (maternal) characteristics, socioeconomic status etc. - There is broad literature which claims the importance of agricultural diversity for nutritional outcomes (Allen et al 2014, Fanzo et al, 2013, Haywood 2012, etc.) - Dietary diversity is well established and widely recognized as important determinant of nutritional outcomes (WHO/FAO 2003, Arimond and Ruel 2004, etc.) #### **Motivation** - Despite recent improvements, malnutrition in Central Asian countries remain relatively high - Stunting among children under 5 varies between 13% in Kazakhstan to 30% in Tajikistan (WHO/UNICEF/World Bank database) - The current strategy of the national governments and development partners is to promote agricultural growth and diversification to ensure food security and nutritional outcomes - These interventions could be very beneficial given the fact that Central Asian countries have less diversified agricultural production systems - However, there is little evidence regarding the linkages between agricultural diversity, dietary diversity and nutrition in Central Asian context ### Objectives and research questions - This study aims to provide empirical evidence on agriculture-nutrition linkages in Central Asia by investigating three interrelated questions - How is agricultural diversity associated with household dietary diversity? - Does allocation of more land to cotton and wheat affect dietary diversity? - How is dietary diversity correlated with nutritional outcomes? - Assumption: Agricultural diversity influences nutritional outcomes mainly by improving dietary diversity of households and individuals - What are the policy implications of main findings of the study? ### Data and Methodology - Data sources - Tajikistan Living Standards Survey (TLSS) 2007 and 2009 - District level population and land allocation data (Regions of Tajikistan database, National Agency on Statistics, 2011) - Methodology: Multilevel mixed effects, and combined mixed process models to examine relationships between agricultural diversity and dietary diversity and nutritional outcomes - <u>Dependent variables:</u> HH dietary diversity scores and child stunting, measuring chronic malnutrition - <u>Key independent variables:</u> agricultural diversity at HH and district levels and share of cotton and wheat in total land area; HH dietary diversity score, with a maximum of 12 food groups - Control variables: child, maternal, HH, and community characteristics, and region fixed effects - Assumptions: interaction between child's age and dietary diversity - Consistency check: we split the sample by rural-urban, and for nutritional outcomes, by children over age 24 months. # Measuring agricultural and dietary diversity - Dietary diversity - Count based household DD score was developed using FAO's (2011) guidelines (12 food groups) - Calorie intake and food expenditure based indexes capture richness and evenness - Calorie intake and food expenditure based Log-abundance indexes captures richness and abundance - Agricultural diversity - Count based household level agricultural diversity score - Land allocation based and population-weighted log abundance diversity scores were calculated at the district level ## **Descriptive Statistics** | Variable | Mean | SD | Min | Max | |--------------------------------|------|------|-------|------| | Stunting | 0.37 | 0.48 | 0 | 1 | | DD (count) | 9.35 | 1.38 | 3 | 12 | | DD (evenness, cal, log) | 1.59 | 0.25 | 0.40 | 2.23 | | DD (evenness, exp, log) | 1.77 | 0.26 | 0.44 | 2.35 | | DD (abundance, cal, log) | 3.28 | 0.68 | 0.89 | 6.13 | | DD (abundance, exp, log) | 0.36 | 0.38 | -0.72 | 2.35 | | Agric. Diversity (HH) | 0.44 | 0.17 | 0.08 | 0.92 | | Agric. Diversity (District) | 0.92 | 0.08 | 0.5 | 1 | | Cotton & wheat share | 0.57 | 0.22 | 0 | 0.85 | | Distance to Urban Center (log) | 3.74 | 1.49 | -0.69 | 5.77 | | Per capita expenditures (log) | 5.02 | 0.52 | 3.21 | 8.45 | # Household diets are dominated by cereals (wheat) #### Composition of calorie intake in Tajikistan, 1992-2007 Source: FAOSTAT 2013 # Regression Results: Dietary Diversity | | Dependent variable | | | | | | | | |-----------------------------------|--------------------|------------------|--------------|--------------------|----------------|--|--|--| | | Count-based DD | Calorie-weighted | Expenditure- | Calorie-based log- | Expenbased log | | | | | | | DD | weighted DD | abundance DD | abundance DD | | | | | Agricultural diversity (HH) | 0.0518*** | 0.0486* | 0.0658** | 0.1753*** | -0.0150 | | | | | | (0.0118) | (0.0281) | (0.0299) | (0.0583) | (0.0261) | | | | | Agricultural diversity (district) | 0.0124** | 0.0487*** | 0.0552*** | 0.1113*** | 0.0838*** | | | | | | (0.0056) | (0.0142) | (0.0154) | (0.0288) | (0.0136) | | | | | HH expenditure (log) | 0.0886*** | 0.1524*** | 0.1748*** | 0.7272*** | 0.3976*** | | | | | | (0.0070) | (0.0160) | (0.0174) | (0.0476) | (0.0269) | | | | | Poor | -0.0200*** | -0.0341** | -0.0417*** | -0.1494*** | -0.0753*** | | | | | | (0.0057) | (0.0133) | (0.0142) | (0.0322) | (0.0167) | | | | | Location | 0.0165*** | 0.0578*** | 0.0621*** | 0.0681** | -0.0020 | | | | | | (0.0061) | (0.0130) | (0.0147) | (0.0293) | (0.0137) | | | | | HH size | 0.0076*** | 0.0071*** | 0.0057** | 0.0008 | -0.0284*** | | | | | | (0.0010) | (0.0024) | (0.0025) | (0.0049) | (0.0023) | | | | | No of children under 14 | 0.0032** | -0.0000 | 0.0036 | 0.0131* | 0.0020 | | | | | | (0.0015) | (0.0035) | (0.0037) | (0.0074) | (0.0033) | | | | | HH head's gender | 0.0062 | -0.0109 | -0.0058 | 0.0120 | -0.0230** | | | | | | (0.0057) | (0.0122) | (0.0135) | (0.0269) | (0.0109) | | | | | Distance to oblast center | -0.0066*** | -0.0101*** | -0.0211*** | -0.0252*** | -0.0002 | | | | | | (0.0016) | (0.0034) | (0.0037) | (0.0076) | (0.0033) | | | | | Grain and Cotton share | -0.0309** | -0.0129 | 0.0232 | -0.3142*** | -0.2134*** | | | | | | (0.0152) | (0.0331) | (0.0358) | (0.0768) | (0.0366) | | | | | Constant | 0.2891*** | 0.7286*** | 0.8661*** | -0.3858 | -1.4914*** | | | | | | (0.0510) | (0.1210) | (0.1301) | (0.3062) | (0.1677) | | | | | Observations | 3,062 | 3,062 | 3,062 | 3,062 | 3,062 | | | | | F-test | 42.49 | 22.36 | 27.66 | 94.67 | 190.45 | | | | | R-squared | 0.245 | 0.1578 | 0.1565 | 0.4228 | 0.6435 | | | | Note: Robust standard errors in parentheses; All specifications control for HH and community characteristics, region fixed effects *** p<0.01, ** p<0.05, * p<0.1 # Regression Results: Child Nutrition | | Key Independent variable | | | | | | |--|--------------------------|--------------------------|----------------------|-------------------------|-----------------|--| | | Count-based DD | Calorie-weighted | Expenditure- | Calorie-based log- | Expenbased log- | | | | | DD | weighted DD | abundance DD | abundance DD | | | Dietary Diversity | -0.3238 | 0.2405 | 0.1692 | -0.0536 | 0.0613 | | | | (0.3153) | (0.1563) | (0.1573) | (0.0576) | (0.0542) | | | Child's age in months (log) | 0.0555 | 0.2282*** | 0.2105** | 0.0812 | 0.1115*** | | | | (0.0786) | (0.0763) | (0.0857) | (0.0592) | (0.0215) | | | Interaction of DD with child's age | 0.0423 | -0.0878* | -0.0692 | 0.0026 | -0.0122 | | | | (0.0995) | (0.0486) | (0.0493) | (0.0184) | (0.0094) | | | Child's gender | 0.0347* | 0.0338* | 0.0339* | 0.0342* | 0.0343* | | | | (0.0193) | (0.0194) | (0.0194) | (0.0193) | (0.0192) | | | Mother's height | -0.6525*** | -0.6522*** | -0.6519*** | -0.6549*** | -0.6456*** | | | | (0.1432) | (0.1431) | (0.1432) | (0.1427) | (0.1441) | | | HH expenditure (log) | 0.0197 | 0.0036 | 0.0074 | 0.0355 | -0.0065 | | | | (0.0404) | (0.0401) | (0.0408) | (0.0438) | (0.0465) | | | Poor | 0.0174 | 0.0168 | 0.0172 | 0.0137 | 0.0180 | | | | (0.0335) | (0.0336) | (0.0336) | (0.0334) | (0.0334) | | | Location | -0.0450 | -0.0452 | -0.0432 | -0.0446 | -0.0465 | | | | (0.0298) | (0.0292) | (0.0293) | (0.0297) | (0.0297) | | | Total livestock units | 0.0044** | 0.0040** | 0.0040** | 0.0043** | 0.0045** | | | | (0.0018) | (0.0018) | (0.0018) | (0.0018) | (0.0018) | | | Distance to nearest large urban center (log) | 0.0193** | 0.0189** | 0.0188** | 0.0192** | 0.0191** | | | | (0.0091) | (0.0090) | (0.0091) | (0.0091) | (0.0091) | | | Chi-squared test for joint significance | 54.9462 | 59.6255 | 58.4859 | 55.1102 | 53.3205 | | | p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Log Likelihood | -1549.4069 | -1549.1685 | -1549.3735 | -1549.1225 | -1550.0116 | | | Wald test (full model) | 118.77 | 131.86 | 125.42 | 118.42 | 119.12 | | | p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Observations | 2,310 | 2,310 | 2,310 | 2,310 | 2,310 | | | Note: Robust standard errors in parentheses; | All specifications con | trol for HH and comm | nunity characteristi | cs, region fixed effect | S | | | Chi-squared tests for joint significance between | n dietary diversity sc | ore, age of child (log). | and their interacti | on | | | Chi-squared tests for joint significance between dietary diversity score, age of child (log), and their interaction *** p<0.01, ** p<0.05, * p<0.1 ## Summary of Findings - Key empirical results suggest that - Agricultural diversity is positively associated with dietary diversity, and - Dietary diversity is in turn correlated with child nutritional outcomes and this relationship depends on child's age - Findings also suggest that there is a negative association between household dietary diversity and share of land allocation to cotton and wheat at district level - Households in communities located further away from urban centers tend to have lower dietary diversity - These results are robust - Across alternative measures of household dietary diversity - Changes in estimation techniques - Controls for key child, maternal, household and community characteristics - Split sample: rural-urban, and children's age over 24 months #### Conclusions and future research - Further promotion of agricultural diversity may be necessary by allocating more land to horticulture and feed crops - In some districts up to 85% of arable land is still allocated to cotton and wheat - Investment in infrastructure is important to promote market integration across different regions of the country - Regional cooperation and trade is crucial to ensure food and nutritional security in the region - Similar empirical research is being conducted using rich household survey data from Kyrgyzstan - Kyrgyzstan Integrated Household Survey (KIHS) with a sample size of 5000 hh - Rotated panel starting from 2003 to 2012 Thank you!