

Biometrical Best Practices

in light of 2015 working experience with Afghan colleagues

Khaled Al-Sham'aa

Annual Planning Meeting for Afghanistan Projects 31st March – 5th April 2016 New Delhi, India

October 25, 2021

Presentation Roadmap

- 2015 Working Stats
- Alpha vs. RCBD
- REML vs. ANOVA
- Can and Can't in Alpha Design
- RCBD vs. DiGGer
- What is the Right Block Size?
- Alpha Implementation
- Layout Information
- Meta Data
- Data Validation and Integrity Check
- Combine Data for MET Analysis
- Excel files vs. Database

2015 Working Stats

Trials# per Location Trials% per Design

CRD, RCBD, and Alpha Designs

A method which partitions the total variation in the response into the components (sources of variation):

* Response = $\mu + \tau + \xi$ (CRD) * Response = $\mu + \tau + \pi + \xi$ (RCBD)

* Response = μ + τ + π + β + ξ (Alpha)

μ) grand mean

 τ) effect of treatments

 π) effect of replicates

tes β) effect of blocks

ξ) experimental error

REML vs. ANOVA

Can and Can't in Alpha Design

You Can

- Get more precision without increase any resources in the field (e.g. land, seeds, labors)
- Analysis your data using simple ANOVA and ignore block information!
- Generate it for free (e.g. ICARDA BioComuting online service, Agricolae R package from CIP, CIMMYT ALPHAGEN software, etc..)

You Can't

- Convert RCBD randomization into Alpha design simply by add an extra column to split your replications into hypothesis blocks!
- Lose precision comparing to RCBD (i.e. worst scenario when blocks within replicates are homogeneous)

RCBD vs. DiGGer

0	4	0
3	1	2
7	14	6
17	8	17
5	24	14
21	5	12
6	12	15
20	20	5
23	11	7
9	21	10
12	7	21
19	15	23
2	2	3
24	19	18
15	17	8
14	6	24
4	10	4
10	4	1
16	9	13
1	3	9
13	18	11
11	23	20
18	22	16
22	13	19
8	16	22

21	5	10
19	14	15
24	7	9
13	6	2
22	8	4
18	16	12
23	17	11
1	3	20
20	23	14
6	9	21
4	13	1
15	11	24
10	19	17
7	2	18
16	22	5
3	12	8
2	10	3
17	4	7
8	18	19
14	24	6
9	20	22
12	21	23
5	15	13
11	1	16

What is the Right Block Size?

- Do NOT ask ME that question! It is constrained by the physical arrangement of plots in the field, for example:
 - Total number of genotypes
 - Field homogeneity
 - Plot size
 - Field layout (i.e. rows & columns)

1 2 3

4 5 6

October 25, 2021

Alpha Design Implementation (1)

Annual Planning Meeting for Afghanistan Projects on 31st March – 5th April 2016 at New Delhi, India

October 25, 2021

DA

Science for Better Livelihoods in Dry Areas

10

*

Layout Information (1)

Layout Information (2)

Rep	Block	Col	Row	Plot
1	1	1	1	1
1	1	1	:	:
1	1	1	6	6
1	2	1	7	7
1	2	1	:	:
1	2	1	12	12
1	3	2	12	13
1	3	2	:	:
1	3	2	7	18
1	4	2	6	19
1	4	2	:	:
1	4	2	1	24

- Experiment name
- Description
- Coordinator name
- Coordinator institute
- Coordinator contact information
- Location
- Province (state)
- Country
- Latitude
- Longitude

- Crop
- List of entries / genotypes
- Season and cycle
- Experiment design
- Total number of entries
- Total number of plots
- Number of replications
- Block size (plots per block)
- Number of rows
- Number of columns

Data Validation and Integrity Check (1)

Science for Better Livelihoods in Dry Areas

14

Data Validation and Integrity Check (2)

ce for Better Livelihoods in Dry Areas

15

Use Pivot Table Functionality

Rep	Block	Plot	Geno	Count of Plot	Column Labels 💌			PivotTable Fields 🔹 👻
1	1	1	18	Row Labels 💌	1 2	3 Grand Tot	tal	Channe Galdete addete annat
1	1	2	10	1	2 1	. 1	4	Choose fields to add to report:
1	1	3	14	2	1 1	1	3	✓ Rep
1	1	4	22	3	1 1	1	3	Block
1	1	5	15	4	1 1	1	3	✓ Plot
1	1	6	6	5	1 1	1	3	Geno
1	2	1	24	6	1 1	1	3	MORE TABLES
1	2	2	19	7	1 1	1	3	MORE TABLES
1	2	3	2	8	1 1	1	3	
1	2	4	1	9	1 1	1	3	
1	2	5	21	10	1 1	1	3	
1	2	6	8	11	1	. 1	2	
1	3	1	12	12	1 1	1	3	
1	3	2	1	13	1 1	1	3	Drag fields between areas below:
1	3	3	3	14	1 1	1	3	
1	3	4	5	15	1 1	1	3	
1	3	5	4	16	1 1	1	3	Кер 👻
1	3	6	17	17	1 1	1	3	
1	4	1	13	18	1 1	1	3	
1	4	2	16	19	1 1	1	3	
1	4	3	20	20	1 1	1	3	\equiv ROWS Σ VALUES
1	4	4	7	21	1 1	1	3	Geno Count of Plot
1	4	5	9	22	1 1	1	3	
1	4	6	23	23	1 1	1	3	
2	1	1	13	24	1 1	1	3	
2	1	2	23	Grand Total	24 24	24	72	

Data Validation and Integrity Check (3)

	А	В	С	D	
1	Rep 💌	Block 💌	Entry 🖵	Yield 💌	
7	1	2	10	5.67	
14	2	1	10	11.23	
31	3	2	10	9.80	
39	4	2	10	11.93	
42					

1	Rep 💌	Block 💌	Entry 💌	Yield 📐
	1	1	7	10. 🛃
	1	1	4	10. <u>z</u> j
	1	1	5	12.
	1	1	1	10.
	1	1	9	10. 📉
	1	2	10	5.
	1	2	3	10.
	1	2	8	9.
	1	2	2	11.
	1	2	6	9.
	2	1	7	9.
	2	1	3	9.
	2	1	10	11.
	2	1	4	8.
	2	1	9	9.
	2	2	5	10.
	2	2	1	11.
	2	2	2	10.
	2	2	8	11.
	2	2	6	11

Sort	Smallest	to Largest		
↓ S <u>o</u> rt	Largest t	o Smallest		
ort	by Color			- • -
<u> </u>	ar Filter Fr	om "Yield"		
Filt	r by Colo	r		- • I
Nur	n per <u>F</u> ilter	rs		- • I
Sea	rcl			2
-	🗹 (. elect	All)		^
	✓ 5.67			
	8.13			
	8.43			
	8.50			
	8.64			
	0.57			
	8.87			-
	0.07			×
		OK	Cano	el

Use Filter Functionality

Α	В	С	D	E	F	G	Н
Rep 💌	Block 💌	Entry 💌	Yield 🔻				
1	1	7	10. 2	<u>S</u> ort Smal	llest to Large	st	
1	1	4	10. Z	Sort Large	est to Smalle	st	
1	1	5	12.	Sort by C	olor		
1	1	1	10.		-		
1	1	9	10. 🏷	Clear Filte	er From "Yie	ld"	
1	2	10	5.	F <u>i</u> lter by C	Color		
1	2	3	10.	Number	Filters		•
1	2	8	9.	Search			0
1	2	2	11.	Jan			~
1	2	6	9.		.23		^
2	1	7	9.		.65		
2	1	3	9.	···· 🗹 11.	.67		
2	1	10	11.		.73		
2	1	4	8.		.82		
2	1	9	9.		.97		
2	2	5	10.	···· 🗹 12	.27		
2	2	1	11.	····· 🗹 83.	.1		~
		5	10.				
	2 <		11.		O	(Cancel
(2)			11.				.:
Ş		Z	10.03				
3	1	3	83.1				

Combine Data for MET Analysis

- Genotype name as a join key:
 - FLIP 96-15L (Ibla 1)
 - Ibla 1
 - **FLIP** 96-15L
 - **FLIP96-15L**
 - FLIP 1996-15L
 - Leading and trailing space
 - Letter case (i.e. FLIP, Flip, or flip)
 - Typo (e.g. FLOP ~ FLIP)
- Naming style (e.g. Yield ~ GY or BY)
- Units (e.g. T/ha, Kg/ha, or gr/m2)
- Abbreviation & acronym (e.g. DFLR and DF)

Excel Files vs. Database

DB or not *DB*, is it really your question!?

- Data integrity (independent copies causing duplicate and often outdated versions)
- Query and retrieve data offers a greater range of complexity (SQL)
 - * What was planted in this field during last **n** years?
 - * Who planted **x** genotype in this area and what was the performance?

- Better access control (multi-user, security privileges, web access/open access)
- Better for long-term storage vs. Excel work-in-progress module

DB Cons

DB Pros

Excel is really widely used and more user friendly

Thank you

