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Abstract 

Soil erosion in the northwestern Amhara region, Ethiopia has been a subject of anxiety, 

resulting in a major environmental threat to the sustainability and productive capacity of 

agricultural areas. In the present thesis, selected soil properties, hydrological and sediment 

dynamics were assessed for a watershed, while predicting the spatial distribution of soil 

properties was also done. The 53.7 km2 Gumara-Maksegnit watershed was divided into a 

500 m by 500 m grid to sample bulk density (ρd), pH, soil organic carbon (SOC), total 

nitrogen (TN), available phosphorus (AP) and texture of topsoil (roughly 10 to 25 cm 

depth). Such properties were investigated with respect to the two main land-uses (forest 

and agriculture) and three different slope steepness classes, 0–10 (%), 10–30 (%), >30 (%). 

The result indicated higher SOC, TN, silt and sand content in forest soils compared to 

agricultural soils, while ρd is lower in the forest soil. Overall an increase of SOC, TN, silt 

and sand content from gentle to steep slopes have been observed for both land-uses. In 

contrast, clay content and ρd seem to increase from steep to gentle slopes on agricultural 

areas, which might be due to accumulation of particularly fine soil particles eroded from 

the steep areas.  

In the second part, the performance of ordinary kriging (OK), inverse distance weighting 

(IDW) and radial basis functions (RBF) for predicting the spatial distribution of soil 

texture, pH, soil organic carbon (SOC) and available phosphorus (AP) were done. The 

performance of each interpolation method was assessed quantitatively in terms of Nash-

Sutcliffe efficiency (E), coefficient of determination (R2) and index of agreement (d). The 

interpolated maps generated based on the highest value of E displayed OK was best 

performed for SOC and sand. RBF was most suitable for mapping of AP and clay, while 

IDW gave better result when applied to pH. Overall, the cross-validation statistics for each 

interpolation method showed there was no single method that significantly outperformed 

the others. Therefore, one of the interpolation methods could be applied for surfaces map 

generation in future studies of similar regions. 
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In the third part, the Soil and Water Assessment Tool (SWAT) model was used to model 

hydrology and sediment dynamics of the watershed. Spatially distributed stone bund 

impacts were applied in the model through modification of the surface runoff ratio and 

adjustment of a support practice factor simulating the trapped amounts of water and 

sediment at the SWC structure and watershed level. The resulting Nash-Sutcliffe efficiency 

(NSE) for daily streamflow simulation was 0.56 for the calibration and 0.48 for the 

validation period, suggesting satisfactory model performance. In contrast, the daily 

sediment simulation resulted in unsatisfactory model performance, with the NSE value of 

0.07 for the calibration and –1.76 for the validation period and this could be as a result of 

high intensity and short duration rainfall events in the watershed. Meanwhile, the calibrated 

model indicated 21.08 Mg ha-1 average annual sediment yield, which is far beyond potential 

soil regeneration rate. 

Key words: Agricultural watershed, erosion, Ethiopian Highlands, interpolation, landuse, 

radial basis functions, semivariogram, slope steepness, soil and water conservation, soil 

properties, watershed hydrology. 
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Abstrakt 

Die Folgen von Bodenerosion im Nordwesten Amhara’s in Äthiopien sind erheblich und 

beeinflussen die Nachhaltigkeit der Umwelt sowie die Produktivität der landwirtschaftlich 

genutzten Flächen maßgeblich. Die vorliegende Arbeit erörtert verschiedene 

Bodeneignschaften, sowie hydrologische und bodendynamische Prozesse auf 

Einzugsgebietsebene als auch die räumliche Verteilung diverser bodenspezifischer 

Merkmale. das 53.7 km2 große Gumara-Maksegnit Einzugsgebiet wurde in 500m Raster 

unterteilt und entnommene Bodenproben hinsichtlich ihrer Trockendichte (ρd), pH, 

organischem Kohlenstoff (SOC), Gesamttickstock (TN), verfügbarem Phosphor (AP) und 

der oberflächennahen Bodentextur (ca. 10 bis 25cm Tiefe) untersucht. Die 

Bodeneigenschaften wurden in Zuordnung zu den zwei dominierenden Landnutzungen 

(Wald und landwirtschaftliche Flächen), sowie drei Geländeneigungsklassen, 0-10 (%), 

10-30 (%), >30 (%), untersucht.  Die Ergebnisse deuten auf erhöhte Werte von SOC, TN, 

Schluff und Sand, und niedrigere ρd Werte in Waldböden im Vergleich zu 

landwirtschaftlichen Böden hin. Generell wurden ansteigende Werte von SOC, TN, 

Schluff und Sand mit steigenden Geländeneigungen bei beiden Landnutzungen festgestellt. 

Im Gegensatz dazu scheint Ton und ρd mit abnehmender Hangneigung auf 

landwirtschaftlichen Flächen zuzunehmen, was mit der Deposition erodierter Feinpartikel 

von steileren Regionen zusammenhängt.  

Im zweiten Teil der Arbeit wurden die räumlichen Interpolationsmethoden Ordinary 

Kriging (OK), Inverse Distance Weighting (IDW) und Radial Bias Functions (RBF) 

verwendet, um die punktförmig erhobenen Daten von Bodentextur, pH, organischen 

Kohlenstoff (SOC) und verfügbaren Phosphor (AP) räumlich zu verteilen. Die Güte aller 

Interpolationsmethoden wurde quantitativ anhand  der Nash-Sutcliffe Effizienz (NSE), 

dem Bestimmtheitsmaß (R2) und dem Index of Agreement (d) überprüft. Die 

Interpolationsergebnisse weisen OK als die beste Interpolationsmethode für SOC und Sand 

aus. RBF scheint die beste Methode bezüglich der Kartierung von Ton zu sein, und IDW 
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führte zu den besten Ergebnissen für pH Interpolation. Generell deuten durchgeführte 

Kreuzvalidierungen darauf hin, dass keine der Interpolationsmethoden durchwegs 

signifikant beste Ergebnisse erzielte. Demzufolge könnte sich jede der gewählten 

Methoden für die Kartierung vergleichbarer Regionen eignen.  

Im dritten Teil der Arbeit wird das Soil and  Water Assessment Tool (SWAT) Modell 

verwendet, um Abfluss- und Erosionsprozesse in dem Einzugsgebiet zu simulieren. Dieses 

hydrologisches Modell wurde eingesetzt,, um die Effekte ‚stone bunds‘ als 

Bodenschutzmaßnahmen und Maßnahmen zur Speicherung von Wasser und Sediment 

abzuschätzen und somit einen ‚support practice factors‘ abzuleiten. Die resultierende Nash-

Sutcliffe Effizienz (NSE), gemessen an tagesbasierten Abflussdaten, erreichte 0.56 für die 

Kalibrierungsperiode und 0.48 für die Validierungsperiode, was einer zufriedenstellenden 

Modellgüte entspricht. Im Gegensatz dazu resultierte die tagesbasierte Simulation des 

Sedimentaustrags mit nicht zufriedenstellender Modellgüte und einer NSE von 0.07 für die 

Kalibrierung sowie -1.76 für die Validierung. Dieser Umstand kann durch die kurzen und 

intensiven Regenfälle im Einzugsgebiet verursacht sein. Das kalibrierte Modell simulierte 

21.08 Mg ha-1 durchschnittlichen Sedimentaustrag pro Jahr und somit eine 

Bodenabtragsrate weit jenseits der potenziellen Bodenerneuerung. 

Schlüsselwörter: Landwirtschaftliches Einzugsgebiet, Äthiopisches Hochland, 

Interpolation, Landnutzung, Radial Bias Functions, Semivariogramm, Geländeneigung, 

Boden- und Wasserschutz, Bodeneigenschaften, Einzugsgebietshydrologie.   
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1. Introduction 

Accelerated soil erosion, mainly caused by water, is a widespread problem affecting 

environmental quality, agricultural productivity and food security in many countries of the 

world (Lal, 2001; Morgan, 2009). The excessive rate of soil erosion in Ethiopia is caused 

by a combination of physical factors such as erosive tropical rains, rugged terrain and steep 

slopes and the accumulated human pressure on the environment (Nyssen et al., 2004). Soil 

erosion affects several soil functions (food and other biomass production, water storing, 

filtering and transformation, habitat and gene pool, physical and cultural environment for 

mankind, and source of raw materials) and hence soil quality (Poesen, 2011). 

Early study documented that innumerable example of horrible consequences of soil erosion 

in the northern Ethiopian highlands (Meshesha et al., 2012). Therefore, adoption of 

recommended soil and water conservation measures (SWC) is a survival for populations 

living in the highlands of Ethiopia. A successful implementation of land management 

practices which ultimately minimizes soil degradation can be achieved through active 

involvement of communities and awareness sharing (Tesfahunegn et al., 2011). 

Development of effective erosion control plans and sustainable agricultural production 

requires understanding the spatial soil variability, hydrological processes as well as erosion 

dynamics of the study area.  

Spatial soil variability is inherent in nature due to different soil forming factors (Wei et al., 

2008) in which climate, time, topography, living organisms, and parent materiel have been 

indicated as the main drivers of soil genesis (Jenny, 1994). The described soil forming 

factors interact across different spatial and temporal scales (Iqbal et al., 2005). Insight into 

the variability of the soils affected by different soil forming factors is essential for 

evaluating the impacts of future landuse and climate changes on the soil status (Kosmas et 

al., 2000), and consequentially, for understanding the entire ecosystem response 

(Townsend et al., 1995). Typically, spatial soil variability and hydrological processes 



Hailu Kendie Addis: Watershed based land degradation modeling and soil property 

assessment 

2 

 

depend on the specific soil studied but, such information for soil of the study watershed is 

lacking and hence, need to be assessed. 

Meanwhile, many rainfall–runoff–soil erosion and sediment transport processes models 

(Agricultural Policy/Environmental eXtender (APEX), Soil and Water Assessment Tool 

(SWAT), Water Erosion Prediction Project (WEPP), USLE, etc.) with a broad spectrum of 

concepts were classified as spatially lumped, spatially distributed, empirical, regression, 

semi-distributed eco-hydrological model and factorial scoring models (de Vente et al., 

2013). The Soil and Water Assessment Tool (SWAT) is a semi-distributed eco-

hydrological model and one of the most widely used watershed models, which was 

developed by the United States Department of Agriculture-Agricultural Research Service 

(USDA-ARS) (Arnold et al., 1998) and can be used to predict agricultural land 

management impacts on the hydrological regime of a watershed through simulation of 

variable soil, land use and management conditions over long periods (Gassman et al., 2007; 

Gassman and Wang, 2015). In Ethiopia, SWAT has been used in a number of studies to 

predict streamflow and sediment yield with different outcomes and recommendations 

concerning the usability of the model for remote landscapes (Setegn et al., 2010; Betrie et 

al., 2011; Mengistu and Sorteberg, 2012; Wosenie et al., 2014; Schmidt and Zemadim, 

2015; Yesuf et al., 2015). 

This thesis was part of a multidisciplinary research project that was conducted within the 

Gumara-Maksegnit watershed which is part of the Blue Nile River Basin in the Amhara 

region of Ethiopia. Integrated watershed research was performed, including several soil 

variability, hydrology and agro-environmental related analyses, to gain a deeper insight 

into the spatial distribution of a soil as well as a watershed scale hydrology and land 

degradation issues and evaluate various soil and water conservation interventions. The 

spatial assessment of surface runoff and sediment yield within Gumara-Maksegnit 

watershed using SWAT is a key component of the overall research project. 
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2. Hypotheses and objectives 

This thesis follows the motivation to contribute research results to the scientific community 

with the objective of a watershed scale land degradation processes, soil properties 

measurement as well as predicting the spatial distribution of selected soil properties. The 

following main hypotheses were assumed: 

• Variation in landuse/land cover change can affect the soil physical and chemical 

properties. 

• The spatial distribution of selected soil properties can change across a watershed. 

• Increase in slope will result in a decrease in soil nutrients. 

• Spatially distributed stone bund structures can increase the trapped amounts of water and 

sediment at the SWC structure level. 

• Different soil properties measured at different slope steepness classes can have a 

correlation  

• Different interpolation methods can result in a different surfaces map of a soil property. 

The hypotheses resulted in the following main research objectives: 

• Assessing the impacts of landuse and slope steepness on selected soil properties. 

• Analyzing the performance of frequently used spatial interpolation techniques (IDW, OK 

and RBF) for predicting topsoil pH, soil organic carbon (SOC), available phosphorus (AP) 

and texture. 

• Determining the optimum spatial interpolation method for mapping of selected soil 

properties in the study sub-watersheds. 

• Assessing the applicability of SWAT for simulating the key watershed processes of a 

remote and mountainous agricultural watershed. 

• Evaluating the impact of spatially distributed soil and water conservation (SWC) 

structures on surface runoff and soil erosion. 
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3. Structure of the study 

This doctoral thesis consists of three independent chapters. The three chapters reported 

here were performed in the context of a multidisciplinary research project that includes 

linking selected soil properties to landuse and hillslope, predicting the spatial distribution 

of selected soil properties as well as hydrological processes and sediment dynamics of the 

Gumara-Maksegnit watershed. In chapter 5, intensive soil sampling was undertaken to 

investigate the general links of landuse and topography related to selected soil properties. 

Soil sampling points for the study watershed were selected using a well-organized regular 

sampling interval in a GIS environment, coupled with a systematic selection of the most 

representative soil-landscape features. Meanwhile, a detailed soil samples were also 

measured at the sub-watershed scale for predicting the spatial distribution of selected soil 

properties (In chapter 6). The measured soil datasets through the course of this study were 

further used as an input for the semi-distributed eco-hydrological model (SWAT) in 

chapter 7. Over a period of three consecutive years, the hydrological processes as well as 

sediment dynamics of the Gumara-Maksegnit watershed were measured and this data is 

presented in chapter 7.  

4. Dissemination 

Since this is a cumulative doctoral thesis, the central parts of the study were subject to 

scientific publications in peer‐reviewed journals (Thomson Reuters/Science Citation Index 

(SCI) Web of Science List). Therefore, the international communities will have access to 

read and shear our experience and applied the procedures in future studies of similar 

regions. Details are listed in Tables 4‐1 and 4-2. 
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Table 4-1. List of scientific publications in journals that are under Thomson Reuters/Science 

Citation Index (SCI) Web of Science List. 

Chapter of 

this study 

SCI-Journal Impact factor 

(2015) 

Title 

5 Soil and Water 

Research  

0.67 Linking Selected Soil Properties to Land Use 

and Hillslope – A 

Watershed Case Study in the Ethiopian 

Highland1 

6 Applied Engineering in 

Agriculture 

0.57 Performance of Frequently Used 

Interpolation Methods to Predict Spatial 

Distribution of Selected Soil Properties in an 

Agricultural Watershed, Ethiopia2 

7 International Journal of 

Agricultural and 

Biological Engineering 

1.01 Modeling Streamflow and Sediment using 

SWAT in the Ethiopian Highlands3 

Table 4-2. List of presentation on international scientific conference. 

Chapter of 

this study 

Conference Date and City Title and type of presentation 

5 TropiLakes2015  Sep 23 to 29, 2015  

Bahir Dar, Ethiopia 

Variation of Selected Soil Properties 

in Relation to Land Use Types and 

Slope Steepness in a Mountainous 

Watershed, Ethiopia  

6 Sustainable Land and 

Watershed Management 

(SLWM): Experience 

and Lessons 

May 26 to 27, 2014 

Mekelle, Ethiopia 

Comparing the performance of spatial 

interpolation techniques in 

mountainous terrain for mapping soil 

properties, Ethiopia.  

7 Annual SWAT 

Conference 

July 17 to 19, 2013 

Toulouse, France  

 

Using SWAT model to evaluate the 

impact of community‐based soil and 

water conservation interventions for 

an Ethiopian watershed. 

__________________________ 

1Addis, HK., Klik, A., Oweis T., Strohmeier, S., 2016. Soil and Water Research, 11: 163-

171. doi: 10.17221/117/2015-SWR  

2Addis, HK., Klik, A., Strohmeier, S., 2016. Applied Engineering in Agriculture (in press, 

doi: 10.13031/aea.32.11447). 
3Addis, HK., Strohmeier, S., Ziadat, F., Melaku, N.D., Klik, A.,2016. International Journal 

of Agricultural and Biological Engineering, 9(5): 51-66. doi: 

10.3965/j.ijabe.20160905.2483  
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5. Linking Selected Soil Properties to Land Use and Hillslope – A 

Watershed Case Study in the Ethiopian Highland4 

Abstract 

Deforestation of native forests for crop production in the Gumara-Maksegnit watershed, 

located in the Lake Tana basin, Ethiopia, dramatically increases the vulnerability of the 

soil for rainfall driven erosion. Hence, the central task of the study is to investigate the 

general links of land-use and topography related to selected soil properties. The 53.7 km2 

watershed was divided into a 500 m by 500 m square grid to sample bulk density (ρd), pH, 

soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AP) and texture of 

topsoil. Such properties were investigated with respect to the two main land-uses (forest 

and agriculture) and three different slope steepness classes, 0–10 (%), 10–30 (%), >30 (%). 

Descriptive statistics and correlation analyses were undertaken to explore potential 

dependencies of the obtained soil parameters according to land-use and slope steepness. 

The study indicates higher SOC, TN, silt and sand content in forest soils compared to 

agricultural soils, while ρd is lower in the forest soil. Overall an increase of SOC, TN, silt 

and sand content from gentle to steep slopes have been observed for both land-uses. In 

contrast, clay content and ρd seem to increase from steep to gentle slopes on agricultural 

areas, which might be due to accumulation of particularly fine soil particles eroded from 

the steep areas. Basic correlations valid for both land-uses and slope steepness classes have 

not been detected. Nevertheless, the study suggests slope steepness as a tool to assess the 

potential drivers of soil depletion in the Ethiopian Highlands. 

 

 

__________________________________ 

4Addis, H., Klik, A., Oweis T., and Strohmeier, S., 2016. Soil and Water Research, 11: 

163-171. doi: 10.17221/117/2015-SWR 
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5.1  INTRODUCTION 

Soil variability is inherent in nature due to different soil forming factors (Wei et al., 2008); 

in which climate, time, topography, living organisms, and parent materiel have been 

indicated as the main drivers of soil genesis (Jenny, 1941). The effects of vegetation on 

soil formation are related to the impacts on microclimate, soil erosion, microbial activity, 

organic matter accumulation, clay minerals, infiltration, and nutrient cycling (Foth, 1984). 

Meanwhile, hillslope orientation and slope steepness affect the soil profile development, 

especially in areas where rainfall and runoff enforce the detachment and the translocation 

of soil (Foth, 1984). The described soil forming factors interact across different spatial and 

temporal scales (Iqbal et al., 2005). Insight into the variability of the soils affected by 

different soil forming factors is essential for evaluating the impacts of future land use and 

climate changes on the soil status (Kosmas et al., 2000), and consequentially, for 

understanding the entire ecosystem response (Townsend et al., 1995).  

Recently, the reduction of the soil quality and thus crop productivity become severe in 

some regions of the Ethiopian Highlands (Habtamu et al., 2014). Some of the factors 

causing considerable nutrient depletion in agricultural lands are related to the cultivation 

of the steep and fragile soils, limited recycling of dung and crop residues, deforestation and 

overgrazing (Habtamu et al., 2014), poor soil management and soil erosion by water 

(Kosmas et al., 2000; Amare et al., 2013). Particularly, soil erosion by water, leaching of 

nutrients due to intensive rainfall events, organic matter depletion as a result of continuous 

removal of crop residues and use of cow dung for different purposes were detected as the 

driving factors for poor soil productivity in the Ethiopian Highlands.  

As a matter of fact, the study site covers only smaller parts of the Ethiopian Highlands, at 

which large areas of the landscape are still not explored in detail; however, the opportunity 

of linking soil specific case study results with other aspects of watershed research may 

support integrated watershed assessment. The specific task of this research is to assess the 
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impact of land use and slope steepness on selected soil properties. Nevertheless, general 

outcomes and linkages may be used as starting point for advanced soil quality assessment 

even at field level to aim for sustainable land management for the fragile Ethiopian 

Highland ecosystem. 

5.2  MATERIALS AND METHODS 

5.2.1 Description of the study area 

The study was conducted in the Gumara-Maksegnit watershed (53.7 km2) located in the 

northwestern Amhara region, Ethiopia between 12° 24’ and 12° 31’ North, and between 

37° 33’ and 37° 37’ East (Figure 5-1). The soil types are predominately Cambisol and 

Leptosol in the upper and central part of the watershed, and Vertisol in the lower catchment 

near the outlet. The mean annual rainfall is 1170 mm at which more than 90 (%) of the 

rainfall occurs during the three month periods, June to August. Average daily maximum 

and minimum temperatures are 28.5 0C and 13.6 0C, respectively. The elevation of the 

study watershed varies from 1920 m at the outlet to 2850 m in the northern mountains. The 

majority of the study watershed is mountainous and consists of dissected terrain with steep 

slopes (Addis et al., 2015). 
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Figure 5-1. Overview of the project watershed area in the northwest Amhara region, Ethiopia 

The 53.7 km2 watershed was divided into a 500 m by 500 m square grid. Approximately, 

at the center of each grid soil samples of about 2 kg were collected from the surface soil 

horizon (0–25 cm) for chemical and physical analyses. Composite soil samples from 

agricultural and forest land use systems under three slope steepness classes: 0–10 (%) 

(18.77 km2) (Gentle slope), 10–30 (%) (17.66 km2) (Moderate slope) and greater than 

30(%) (17.26 km2) (Steep slope) were collected using bucket auger and core cylinder 

equipment resulting in 230 sampling points (Figure 5-2a). A few soil samples were 

collected outside the periphery of the study watershed, however, in this study such soil 

samples were not considered during the analyses. Meanwhile, the land use types of the 
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Gumara-Maksegnit watershed are mainly agricultural land 63.5 (%) followed by forest 

24.3 (%) and grassland 12.2 (%) (Figure 5-2b). Although there exist a consensus regarding 

the soil characteristics of grassland are largely different from arable land, neither the soil 

sampling intensity nor the relative distribution of soil samples on the grassland of the study 

watershed is optimal for the statistical analyses; therefore, this research only analyzed soil 

samples collected on agricultural and forest land use systems, which were located at three 

different slope steepness classes. 

 

Figure 5-2. Distribution of soil sampling points; (a) Under different slope steepness classes 

and (b) Under different land use systems 
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5.2.2 Statistical analyses 

The selected soil attributes were subject to descriptive statistics which includes mean, 

standard deviation (sd), and coefficient of variation (CV) using R software (R Development 

Core Team, 2013). Two-way analysis of variance (ANOVA) was executed to evaluate the 

effects of land use and slope steepness on the observed soil properties. The least significant 

difference (LSD0.05) was used for determination of statistical significance (P<0.05).  

5.3  RESULTS AND DISCUSSIONS 

5.3.1 Soil textural classes 

Five different soil textural classes were determined within the Gumara-Maksegnit 

watershed: sandy clay loam, sandy loam, clay loam, loam, and clay. Descriptive statistics 

were derived based on the mean values gained from the soil textural analyses, classified 

for the different land use and slope steepness classes (Table 5-1). The resulting soil textures 

seem significantly dependent on land use and slope steepness (Table 5-2), which was also 

indicated by Wei et al. (2008). In this study, the average silt, sand and clay contents in 

different land uses and slope steepness classes vary between 28.4 % and 37.1 %, 29.3 % 

and 41.7 %, and 21.2 % and 42.3 %, respectively (Table 5-2). Generally, higher silt and 

sand contents were found in forested areas compared to agricultural lands. This contradicts 

to the studies conducted by Wei et al. (2008), and Ezeaku and Eze (2014) where land uses 

do not affect particularly the silt fraction. Compared to the other slope steepness classes, 

clay contents tend to be higher on the gentle slopes of both land uses. The increasing clay 

content with decreasing slope steepness might be a result of the long-term soil erosion and 

accumulation processes, as reported by several studies (Ogban and Babalola, 2009; 

Obalum et al., 2011). As a standardized measure of variance, the coefficient of variation 

(CV) was used to describe the shape of the frequency distribution of the observations. 

Based on the CV values, silt, sand and clay contents may be generally considered as 

moderately variable (CV ranges from 14 % to 37 %). Silt content at gentle slopes of the 
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forest is least variable (CV less than 14 %), while clay content at gentle slopes of 

agricultural areas has largest variation (CV equals to 38 %). 

5.3.2 Bulk density 

The descriptive statistical summary of bulk densities for both land uses and slope classes 

is presented in Table 5-1. Mean bulk density varies from 1.4 ± 0.24 g/cm3 to 1.3 ± 0.09 

g/cm3 at gentle slope, from 1.2 ± 0.02 g/cm3 to 1.2 ± 0.04 g/cm3 at moderately slope, and 

from 1.2 ± 0.02 g/cm3 to 1.1 ± 0.04 g/cm3 at steep slope classes. Mean bulk density on 

forested areas is significantly lower compared to agricultural areas (Figure 5-3a). This 

could be associated to low rooting density and higher organic matter accumulation (Barker 

and Pilbeam, 2007), well-developed fine to medium granular structure and high organic 

matter contents in forested soils (Cardelli et al., 2012). On agricultural areas, bulk density 

seems to be significantly affected by the slope steepness. In contrast, there is no statistical 

significant difference between the mean values measured in the forest with respect to the 

different slope steepness classes. However, bulk density measured at gentle slope seems 

higher than the other slope classes (Table 5-2). Significant changes of bulk density on 

agricultural areas might be – amongst other impacts – related to the agricultural practices 

applied. Similarly, Emadi et al. (2008) documented compaction of topsoil layer due to 

intensive cultivation. 

5.3.3 Soil pH 

The descriptive statistical summary of measured pH indicates a mean value of 6.7 ± 0.03 

(Table 5-1). Variation in pH, with respect to the interaction of land uses and slope classes 

is mostly non-significant, which was also shown by Worku (2014). However, focusing 

only on agricultural soil, pH might change slightly for different slope classes (Table 5-2). 

The highest pH value was obtained on agricultural soil, similar to the results reported by 

Bewket and Stroosnijder (2003).  
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Several studies also indicate that forest soils are often more acidic than agricultural soils 

(Barker and Pilbeam, 2007; Binkley and Fisher, 2012). Soils in high altitudes often related 

to steeper slopes – tend to lower pH value, which likely indicates the washing out of solutes 

and very high leaching of bases and clay particles from these areas as a result of intensive 

rainfall in the watershed. Some of the factors which are responsible for the reduction of pH 

at steep slope classes of forested soils might be associated with dense vegetation cover and 

slow decomposition leading to plenty of organic matter accumulation, eventually reducing 

soil pH. Similarly, Dlapa et al. (2011) stated that pH has a close relationship with soil 

organic carbon (SOC) as pH is commonly decreased with increasing SOC. Meanwhile, 

higher pH on agricultural areas could probably due to the long-term cultivation practices 

(Dlapa et al., 2011). Generally, the observed soil pH is the least variable (CV less than 7 

%) compared to the other soil properties. Similarly, Abu and Malgwi (2011) indicates low 

coefficients of variation for pH compared to other soil properties. 

5.3.4 Effects of land use and slope on soil chemical properties 

The nutrient supplying power of the soil is determined by the chemical properties of the 

soil which are also the most important factors that affect soil fertility (Habtamu et al., 

2014). In this research, the most essential chemical properties of the soil such as soil 

organic carbon (SOC), total nitrogen (TN) and available phosphorous (AP) were analyzed 

and displayed in Tables 5-1 and 5-2. The results revealed that for both land use types 

significantly higher SOC was observed at the steeper slopes, particularly steep slopes of 

the forested areas, this might be due to the different litter decomposition rate (Tsui et al., 

2004), types of vegetative cover (Grigal and Ohmann, 1992) and the intensity of human 

interaction (Reynolds et al., 2007). In this study, SOC is generally low on agricultural areas 

with high clay content. Low SOC on cultivated areas may be attributed to unfavorable soil 

conditions due to the utilizations of crop residues and animal fodder as a fuel, continuous 

farming and soil erosion impacts mentioned in the literature (Craswell and Lefroy, 2001; 

Emadodin et al., 2009).  
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Comparison of the topsoil TN grouped for agriculture and forest suggests that overall TN 

on forested areas is significantly higher compared to the agricultural lands (Table 5-2). This 

may be explained by the higher soil organic matter (SOM) in the forest soils. Such results 

were in agreement with Díaz-Raviña et al. (2005) who described the changes in SOM could 

lead to changes in TN as more than 95 % of soil N comes from SOM. Similarly, Belachew 

and Abera (2010) indicated that the contribution of SOM to TN is significantly high. On 

the other hand, performed ANOVA suggests that AP does not significantly change between 

both land uses and slope steepness classes. The AP content in the watershed ranges from 

1.2 to 77.2 (ppm), with an arithmetic mean of 12.40 (ppm). The coefficient of variation, 

standard deviation, and basic statistical parameters of AP for both land uses and slope 

steepness show that AP has relatively large variance (CV equals 101 %). This may be 

related to the heterogeneity of the land use patterns, overlaid with random application of 

inorganic fertilizer and also severe but variable erosion occurrence within the watershed. 

Similarly, Addis et al. (2015) documented highest CV for AP. 
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Table 5-1. Overview of the descriptive statistics of the selected soil properties classified based on land use and slope steepness 

Soil properties 

Agriculture Forest 

0–10(%) 10–30(%) >30(%) 0–10(%) 10–30(%) >30(%) 

Mean sd CV Mean sd CV Mean sd CV Mean sd CV Mean sd CV Mean sd CV 

ρd (g/cm3) 1.4 0.19 0.1 1.2 0.16 0.1 1.2 0.15 0.1 1.3 0.24 0.2 1.2 0.15 0.1 1.1 0.2 0.1 

pH  7 0.44 0.1 6.7 0.4 0.1 6.6 0.35 0.1 6.7 0.33 0.1 6.7 0.21 0 6.6 0.2 0 

Silt (%) 28.4 8.17 0.3 35.3 5.64 0.2 36.1 6.26 0.2 30.3 9.98 0.3 38 7.6 0.2 37.1 4.9 0.1 

Sand (%) 29.3 8.75 0.3 39.6 7.36 0.2 39.9 8.56 0.2 31.6 6.22 0.2 39.9 10.5 0.3 41.7 7.8 0.2 

Clay (%) 42.3 14 0.3 25.1 8.89 0.4 24 8.64 0.4 38.1 14.7 0.4 22 4.47 0.2 21.2 4.4 0.2 

SOC (%) 1 0.57 0.6 1.7 1.01 0.6 2 1.09 0.6 1.1 0.54 0.5 1.8 0.87 0.5 2.1 1.1 0.5 

TN (%) 0.2 0.16 1 0.2 0.13 0.5 0.3 0.12 0.5 0.3 0.12 0.5 0.3 0.06 0.2 0.3 0.1 0.4 

AP (ppm) 12.8 12.8 1 16.7 15.8 1 12.6 15.4 1.2 16.6 25.5 1.1 8.4 4.95 0.6 10.4 12 1.1 

ρd–bulk density; SOC–soil organic carbon; TN–total nitrogen; AP–available phosphorous; sd–standard deviation; CV–

coefficient of variation  
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Table 5-2. Interaction effects of observed soil properties at different land uses and slope steepness classes 

Soil properties 

 

Agriculture Forest Overall sample 

0–10(%) 10–30(%) >30(%) LSD mean 0–10(%) 10–30(%) >30(%) LSD mean LSD CV 

ρd 1.4 1.2 1.2 0.06*** 1.3 1.3 1.1 1.1 ns 1.2 0.05*** 0.2 

pH 7 6.7 6.5 0.15* 6.7 6.7 6.7 6.6 ns 6.7 ns 0.1 

Silt 28.4 35.3 36.1 2.52*** 33.3 30.3 38 37.1 6.12* 35.2 2.38** 0.2 

Sand  29.3 39.6 39.9 3.04*** 36.3 31.6 39.9 41.7 7.47* 37.7 3.01* 0.3 

Clay 42.3 25.1 24 4.06*** 30.4 38.1 22 21.2 5.79*** 27.1 4.09** 0.4 

SOC 1 1.7 1.9 0.34*** 1.4 1.1 1.8 2.1 0.81* 1.7 0.31* 0.6 

TN 0.2 0.2 0.3 0.05*** 0.2 0.2 0.3 0.3 0.08* 0.2 0.04* 0.6 

AP 12.8 16.7 12.6 ns 14 16.6 8.4 10.4 ns 11.8 ns 1.0 

*, **, *** Significant at p ≤ 0.05, 0.01 and, 0.001, respectively; ns–not significant; LSD–least significant difference  
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5.3.5 Correlation among the soil attributes 

Correlation of the eight soil attributes related to the different land uses and slope steepness 

classes were evaluated based on the correlation coefficient and the corresponding 

significance level (Tables 5-3 and 5-4). The correlation analysis indicates that bulk density 

(ρd) seems significantly positively correlated with pH and significantly negatively correlated 

with SOC and silt, while clay is significantly positively correlated with pH. These findings 

follow the general principle that bulk density mostly increases with decreasing soil SOC 

(Cardelli et al., 2012) and pH commonly increases with decreasing SOC (Dlapa et al., 2011). 

AP was found to be significantly negatively correlated to bulk density and clay content, 

while significantly positively correlated with TN. Observed TN is significantly negatively 

correlated with pH and clay content, while significantly positively correlated with SOC. 

Focusing on single pairwise correlations, some of the observed soil properties seem 

significantly linked with the others. However, there is no clear indication that any of the 

measured soil properties is correlated with the other variables across the combined classes – 

slope steepness classes and land uses allowing generalized statements. Nevertheless, 

potential trends for the correlation of different soil properties for individual combinations of 

land uses and slope steepness classes are evident, which may enable the link of specific soil 

properties for certain areas considering a proper level of uncertainty.   
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Table 5-3. Matrix of the correlation coefficients among the measured soil properties in all the slope positions at agricultural land use 

Slope position Variables ρd pH Silt Sand Clay SOC TN AP 

>30(%) with 

n=65 

ρd          

pH 0.51**         

Silt -0.39** -0.45**        

Sand -0.25 -0.16 0.37**       

Clay 0.39** 0.36** -0.82** -0.84**      

SOC -0.26* -0.43** 0.17 -0.1 -0.03     

TN -0.02 -0.27* -0.05 0.02 0.02 0.36**    

AP -0.15 -0.01 0.3* 0.18 -0.28* 0.14 0.28*   

10–30(%)with 

n= 67  

ρd          

pH 0.44**         

Silt -0.26* -0.3*        

Sand 0.003 -0.16 -0.08       

Clay 0.16 0.32** -0.57** -0.77**      

SOC -0.26* -0.3* 0.24* 0.15 -0.28*     

TN -0.25* -0.43** 0.52** 0.16 -0.46** 0.38**    

AP 0.02 0.06 0.32** -0.09 -0.13 0.19 0.12   

0–10(%) with n= 

49 

ρd          

pH 0.01         

Silt -0.1 0.07        

Sand 0.06 0.45** -0.35*       

Clay 0.01 -0.49** -0.37** -0.74**      

SOC -0.09 -0.11 -0.06 0.17 -0.12     

TN -0.38** -0.22 0.23 0.06 -0.23 0.34*    

AP -0.24 -0.09 0.11 0.11 -0.19 0.04 0.43**   

*, **, *** Correlation is significant at p ≤ 0.05, 0.01 and 0.001 (two-tailed), respectively; n–number of samples 
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Table 5-4. Matrix of the correlation coefficients among the measured soil properties in all the slope positions at forest land use 

Slope position Variables ρd pH Silt Sand Clay SOC TN AP 

>30(%) with n=7 

ρd                 

pH 0.85*         

Silt -0.9** -0.71        

Sand -0.72 -0.67 0.62       

Clay 0.92** 0.77* -0.94** -0.85*      

SOC -0.55 -0.81* 0.38 0.51 -0.48     

TN -0.79* -0.98** 0.58 0.63 -0.66 0.8*    

AP 0.21 0.05 -0.29 0.16 0.13 0.29 -0.07   

10–30(%) with 

n=17 

ρd          

pH -0.25         

Silt -0.35 -0.16        

Sand 0.23 0.28 -0.93**       

Clay 0.04 -0.39 0.48 -0.77**      

SOC -0.15 0.19 -0.2 0.23 -0.2     

TN -0.27 -0.26 0.15 -0.14 0.09 0.42    

AP -0.49* -0.12 0.1 -0.19 0.27 -0.04 0.11   

0–10(%) with 

n=25 

ρd          

pH 0.01         

Silt -0.2 -0.02        

Sand 0.17 0.13 -0.85**       

Clay -0.07 -0.2 0.39 -0.81**      

SOC -0.51** -0.07 0.42* -0.26 -0.009     

TN -0.29 -0.2 -0.12 0.2 -0.22 -0.001    

AP -0.35 -0.03 0.05 0.003 -0.06 0.11 0.48*   

*, **, *** Correlation is significant at p ≤ 0.05, 0.01 and 0.001 (two-tailed), respectively; n–number of samples  
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Slope steepness has been indicated as the main abiotic factor that controls the soil genesis on a 

local scale (Buol et al., 1997). The steeper the slopes, the higher the runoff as well as the greater 

the relocation of soil materials downslope through rainfall driven erosion. In the study 

watershed, slope has a significant effect on the majority of obtained soil properties and there 

were a number of soil properties which have also been found to be strongly correlated to slope 

steepness. The highest positive correlations with slope were found, in descending order, for 

sand, SOC, silt and TN. The highest negative correlations with slope were found, in ascending 

order, for AP, pH, bulk density and clay content. The box plot diagrams (Figures 5-3 and 5-4) 

give insight into the distribution of the different soil properties. Particularly, larger variances of 

SOC, TN and AP might indicate different impacts of human interferences, such as local 

fertilization and individual agricultural management, overlaid with variable hillslope processes 

– for example surface runoff induced soil erosion and translocation of soil materials. This may 

inhibit a clear statement on parameter dependency, even though general trends and interactions 

seem detectable based on the box plots (Figures 5-3 and 5-4). 

 

Figure 5-3. Distribution (box plots with 25th, mean, and 75th percentile) across the different land uses 

and slope steepness classes; (a) ρd (g/cm3), (b) pH, (c) Silt (%) and (d) Sand (%) 
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Figure 5-4. Distribution (box plots with 25th, mean, and 75th percentile) across the different land uses 

and slope steepness classes; (a) Clay (%), (b)SOC (%), (c) TN (%) and (d) AP (ppm) 

5.4  CONCLUSIONS 

This study aims for the investigation of potential interactions and linkages between selected soil 

properties across the different land uses as well as topographic conditions (three slope steepness 

classes; 0-10%, 10-30%, >30%), sampled within mountainous watershed in the Ethiopian 

Highland. The study showed that forested areas of the Gumara-Maksegnit watershed tend to have 

higher soil nutrients (SOC and TN) as well as higher silt and sand contents compared to agricultural 

lands, while bulk density is lower in the forest. However, some of the investigated soil properties 

do not indicate any dependency (such as AP). Concerning SOC, TN, silt and sand content an 

overall increase from gentle to steep slope classes have been observed for both land uses. The 

study also points out high levels of clay content and bulk density occurred on the gentle slope of 

agricultural lands. Higher clay content on flat agricultural areas might be due to the deposition of 

clay particles eroded from uphill slopes. Generally, the obtained results suggest certain potential 

for using slope steepness classification as a tool for soil property definition in the Ethiopian 

Highlands. Based on the applied correlation statistics some of the soil properties are significantly 
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linked (correlated) to the others, which may support the allocation of the most endangered regions 

concerning land degradation. However, basic linkages valid for all land uses and slope steepness 

classes have not been detected. Nevertheless, significant parameter correlations considering 

specific land use and slope steepness may help to delimit required soil sampling for future research. 

In fact, soil property pattern assessed in the present study may be used as a basis for specific task 

related to research at field level - to assess the potential drivers of soil depletion and to come up 

with proper interventions to counteract ongoing land degradation in the Ethiopian Highlands. 
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6. Performance of Frequently Used Interpolation Methods to Predict 

Spatial Distribution of Selected Soil Properties in an Agricultural 

Watershed, Ethiopia5 
 

Abstract 

Soil map of a watershed provide a wealth of knowledge and can be vital for implementing site 

specific soil managements. Hence, watershed based soil assessment was conducted to select an 

optimum spatial interpolation method, while aiming for sustainable soil managements. Intensive 

soil sampling was undertaken to investigate the performance of ordinary kriging (OK), inverse 

distance weighting (IDW) and radial basis functions (RBF) for predicting the spatial distribution 

of soil texture, pH, soil organic carbon (SOC) and available phosphorus (AP). The 72ha study area 

was divided into a 100m by 100m grid and approximately at the center of each grid, topsoil samples 

(roughly from 10‒25cm depth) were collected over 75 locations across the entire watershed. The 

exponential and Gaussian models were best fitted in the semivariogram of measured soil. The 

performance of each interpolation method was assessed quantitatively in terms of Nash-Sutcliffe 

efficiency (E), coefficient of determination (R2) and index of agreement (d). The interpolated maps 

generated based on the highest value of E displayed OK was best performed for SOC and sand. 

RBF was most suitable for mapping of AP and clay, while IDW gave better result when applied 

to pH. The highest value of R2, E and d (0.51, 0.51, and 0.83, respectively) resulted from the spatial 

interpolation of AP. Overall, the cross-validation statistics for each interpolation method showed 

there was no single method that significantly outperformed the others. Therefore, one of the 

interpolation methods could probable be applied for surfaces map generation in future studies of 

similar regions. 

 

______________________________________ 

5Addis, H.K., Klik, A., and Strohmeier, S., 2016. Applied Engineering in Agriculture (in press, 

doi: 10.13031/aea.32.11447). 
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6.1  INTRODUCTION 

Soils continually undergo development and vary over a wide range of spatial and temporal scales. 

Spatial scales reach from the micro-environment (a small area of a few square meters) to the 

watershed and beyond, while temporal scales extend from seconds to centuries and longer (Addis 

et al., 2015). Therefore, any effort to enhance soil productivity in different types of cropping 

method may not yield appropriate results without a careful understanding of soil variability. The 

spatial variability of soil is often measured using a number of interpolation methods. Selecting an 

ideal spatial interpolation method for map generation is crucial in surface analysis (Zandi et al., 

2011).  

The goal of spatial interpolation is to estimate the magnitude of the variable (Z0) at location X0, 

Y0 using surrounding points with known X and Y coordinates and magnitude of variable (Z) 

(Meijerink et al., 1994). However, spatial interpolation and interpretation is predominantly human 

dependent, and therefore subjective (Furrer and Genton, 1999). The spatial interpolation methods, 

including geostatistics, have been developed for and applied in various disciplines (Zhou et al., 

2007). Numerous factors including sampling density, sample volume, spacing, sampling design 

and variation in the data affect the predictive ability of a spatial interpolation method (Li and Heap, 

2008). These factors make it difficult to select an appropriate spatial interpolation method for a 

given input dataset (Burrough and McDonnell, 1998).   

The precision of various spatial interpolation techniques for predicting unmeasured values have 

been documented by a number of researchers (Weber and Englund, 1992; Nalder and Wein, 1998; 

Kravchenko and Bullock, 1999). Nevertheless, there have been many conflicting findings 

regarding the relative performance of different spatial interpolation methods and the use of basic 

statistics to predetermine both interpolation techniques and their parameters (Robinson and 

Metternicht, 2005). 

Spatial interpolation techniques are developed for specific data types or a particular variable (Li 

and Heap, 2008). Most of the methods perform at an acceptable level for estimating soil attributes 

in gentle terrain, whereas few perform well in rugged terrain (Pandey and Pandey, 2010; Yao et 

al., 2013). Three of the most popular interpolation methods, IDW, RBF and ordinary kriging have 
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been commonly used in agricultural research (Zandi et al., 2011). Several studies; however, have 

found that IDW to be more accurate than kriging for mapping of soil organic matter (SOM) and 

soil NO3 levels (Gotway et al., 1996) and for mapping of P and K levels (Wollenhaupt et al. 1994). 

Similarly, research conducted by Robinson and Metternicht (2005) reported that IDW predicted 

the subsoil pH with greater accuracy than kriging and spline. However, kriging has been the 

preferred method for predicting agricultural yield data (Birrell et al., 1996; Batchelor et al., 2002; 

Whelan et al., 2002), topsoil pH (Robinson and Metternicht, 2005) and for mapping of soil Zn 

(Leenaers et al., 1990). In contrast, research conducted by Zandi et al. (2011) showed that RBF 

outperformed OK and IDW for interpolating topsoil pH and this study tried to test the validity of 

such methods at a sub-watershed scale.  

Surface soil map generation for an agricultural watershed provide a wealth of information and can 

be an important tool for implementing various site specific soil managements but such information 

for soil of the study agricultural sub-watersheds is lacking and hence, need to be assessed. 

Considering these different and conflicting findings, the objectives of this research were to i) 

analyze the performance of frequently used spatial interpolation techniques (IDW, OK and RBF) 

for predicting topsoil pH, soil organic carbon (SOC), available phosphorus (AP) and texture; and, 

ii) determine the optimum spatial interpolation method for mapping of selected soil properties in 

the study sub-watersheds.   

 

Figure 6-1. Location of the study sub-watersheds and the distribution of observed soil samples. 
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6.2  MATERIALS AND METHODS 

6.2.1 Study Area Description 

The study was carried out in the Ayeye and Aba-Kaloye sub-watersheds (37035ꞌ15"E, 

12025ꞌ50"N), which are located near Lake Tana basin in the northwestern Amhara region, Ethiopia 

(Figure 6-1). The two sub-watersheds have a total area of 72ha and the elevation ranges from 

1,997m to 2,532m, while the hillslopes range from nearly flat (<2%) to extremely steep (> 50%). 

The climate of the area is characterized by intense rainfall events occurring mainly between June 

and August and a dry period between November and April; average annual rainfall is 1170mm 

(Addis et al., 2015). The study area, which is part of the northern highlands of Ethiopia, belongs 

to the Trap Series of Tertiary volcanic eruptions (Mohr, 1963). In the study sub-watersheds, some 

of the factors causing considerable nutrient depletion in agricultural lands are related to soil erosion 

by water, the cultivation of the steep and fragile soils, limited recycling of cow dung and crop 

residue, deforestation, and overgrazing. 

6.2.2 Soil Sampling Method 

The study sub-watersheds were under agricultural land-use system (crop production) with varying 

landscape features, including elevation, slope steepness and aspect, soil categories and land 

management. The soil sampling sites were selected using a well-organized regular sampling 

interval in a GIS environment, coupled with a systematic selection of the most representative soil-

landscape features as it was described by Buttafuoco et al. (2012). Garmin explorer GPS accuracy: 

(± 3m) was used for locating the geographic coordinates of the sampling points in the field so that, 

topsoil samples of around 2kg were removed for analysis (Addis et al., 2015). During this study, 

sometimes the center of the square grid may not be a representative location, thus in such cases 

sampling point was shifted to the area which describe the grid well (Addis and Klik, 2015). The 

systematic method is the most commonly used technique and provide more accurate results than 

random sampling pattern (Wang and Qi, 1998; Kavianpoor et al., 2012) and is an appropriate 

method when no other information is available regarding the soil variability prior to sampling. 

Therefore, the 72ha study area was divided into a 100m by 100m square grid using ArcGIS and a 

total of 75 soil samples across the entire sub-watersheds were collected from the topsoil horizon 

(roughly 10‒25cm depth) with the best available tool (bucket auger) for analyses. The pH value of 

the soil was measured with a pH meter in the supernatant suspension of 1:2.5 ratios (sample to 

water mixture). Soil texture was measured following the procedure as described by Gee and Or 
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(2002), and organic carbon was determined by wet oxidation method as described by De Vos et 

al. (2007). Available phosphorus (AP) was extracted using sodium bicarbonate solution at pH 8.5 

following the procedure described by Olsen (1954). In this study, classical statistical analyses were 

used to describe soil properties and geostatistical analyses were used to select an optimum spatial 

interpolation method. 

6.2.3 Spatial Interpolation Techniques 

Frequently used spatial interpolation techniques (OK, RBF and IDW) were selected to predict the 

spatial continuous surfaces of soil properties in the study sub-watersheds. Naturally, the selected 

interpolation techniques are commonly described as weighted average methods, and they all share 

the same basic mathematical formulation (Webster and Oliver, 2001; Li and Heap, 2008) and 

calculated as: 

ž(𝑥0) = ∑ 𝜆𝑖 z(𝑥𝑖)
𝑛

𝑖=0
    [6-1] 

Where n represents the number of sampled points used for the prediction, ž is the predicted value 

of an attribute at the point of interest x0, z is the observed value at the sampled point xi, and λi is 

the weight assigned to the sampled point (Webster and Oliver, 2001).  

6.2.3.1 Kriging 

Kriging is a statistical procedure for interpolating values at unmeasured locations between 

locations with sampled data (Nielsen and Wendroth, 2003). Kriging analysis is applicable for 

environmental disciplines such as agricultural yield mapping (Blackmore, 1999), spatial 

continuous soil surface generation (Goovaerts, 1999), spatial variability assessment of rainfall 

(Naoum and Tsanis, 2004) and air pollution modelling (Wong et al., 2004). Ordinary kriging is a 

type of kriging that considers the mean is constant but unknown across the spatial domain of 

interest (Li and Heap, 2008). Kriging utilizes the spatial variance structure available in a 

semivariogram and provides a best linear unbiased estimate of an unmeasured value calculated 

from weighted values measured in a local neighborhood (Nielsen and Wendroth, 2003). 

Semivariance (γ) is an important concept in geostatistics (Webster and Oliver, 2001) and can be 

estimated from the observed values as follows: 

𝛾(ℎ) =  
1

2𝑁(ℎ)
∑ [𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ)]2𝑁(ℎ)

𝑖=1      [6-2] 
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Where h is the distance between point xi and x0 and (h) is commonly referred to as semivariogram 

(Webster and Oliver, 2001), N(h) is the number of data pairs within a given class of distance and 

direction.  

A plot of γ(h) against h is known as the experimental semivariogram, which displays several 

important features (e.g. nugget, sill and range) (Burrough and McDonnell, 1998). If the ratio of 

nugget to sill is close to 1, it reflects a weak degree of spatial dependency (Cambardella et al., 

1994). The “range” is a value of distance at which the “sill” is reached (Li and Heap, 2008) and 

the range provides information about the size of a search window used in the spatial interpolation 

methods (Burrough and McDonnell, 1998). GS+ was used to obtain the semivariogram model of 

each observed soil properties (Robertson, 2008) and model with the least reduced sum of squares 

(RSS) was further examined to find the number of neighbors that returned the best cross-validation 

result (Robinson and Metternicht, 2005). 

6.2.3.2 Inverse Distance Weighted (IDW) 

Inverse Distance Weighted (IDW) is a deterministic method that uses a weighted average of nearby 

locations, with closer points to the center of the cell being estimated having greater weight in the 

averaging process (Zeiler, 2010). The most important factor that affects the accuracy of IDW is 

the value of the weighting (the power) parameter (Isaaks and Srivastava, 1989). IDW is commonly 

used for estimating soil properties or (attributes) (Leenaers et al., 1990; Wollenhaupt et al., 1994; 

Gotway et al., 1996) using the following formula:  
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𝑧(𝑥0) =  
∑ 𝑧(𝑥𝑖 )𝑑𝑖𝑗

−𝑟𝑛
𝑖=1

∑ 𝑑𝑖𝑗
−𝑟𝑛

𝑖=1

     [6-3] 

Where x0 is the estimation point and xi are the data points within a chosen neighborhood. The 

weights (r) are related to distance by dij, which is the distance between the estimation point and 

the data points.  

One of the concerns with the IDW method is that higher or lower values of the site under 

consideration will be overlooked if they are not sampled (EPA, 2012) so if the peaks and valleys 

of the data are not represented in the sample, this technique may be wildly inaccurate in some 

locations. Since IDW is a deterministic technique, it does not take into account the spatial structure 

of the sample points. Thus, the results can be influenced by sampling density and sampling interval. 

In addition, if the sampling of input points is sparse or uneven, the results may not sufficiently 

represent the desired surface (Watson and Philip, 1985). 

6.2.3.3 Radial Basis Functions (RBF) 

Radial Basis Functions (RBF) is a family of five deterministic exact interpolation techniques: thin-

plate spline, spline with tension, completely regularized spline, multi-quadratic function and 

inverse multi-quadratic function (Zeiler, 2010). The differences among RBFs are small, so the 

generated surfaces are almost similar (Burrough and McDonnell, 1998). Unlike IDW (which is 

also an exact interpolator), RBF can predict values above the maximum or below the minimum of 

the measured values (Zeiler, 2010). RBFs are used to produce smooth surfaces from a large number 

of sample points. The functions produce good results for gently varying surfaces such as elevation. 

However, the techniques are inappropriate when large changes in the surface values occur within 

short distances and/or when you suspect the sample data is prone to measurement error or 

uncertainty (Zeiler, 2010). 

6.2.4 Model Evaluation Techniques 

Spatial interpolation methods are increasingly used in a wide range of disciplines despite 

increasing concern about their accuracy and precision (Hartkamp et al., 1999; Huo et al., 2012). 

The concern about their accuracy and precision is because they were developed either for specific 

disciplines or even for specific variables based on the data properties modelled and each method 

has its own specific assumptions and features (global versus local, exact versus inexact, 

deterministic versus stochastic, and gradual versus abrupt) (Li and Heap, 2008). Therefore, several 
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error measurement methods have been used to assess the accuracy and precision of the 

interpolation methods (Li and Heap, 2008, 2011). 

In this study, cross-validation with a single variogram was used to assess the performance of each 

spatial interpolation method. Cross-validation is an appropriate method to evaluate models when 

two independent datasets (calibration and validation) cannot be built because of the reduced 

number of data points (jack-knifing) (Guisan and Zimmermann, 2000). The model is fit to a portion 

of the data, and then the attained equation is applied to the remaining data points to determine their 

estimated values (Davis, 1987; Li and Heap, 2008). The estimated values from cross-validation 

were used to calculate an error estimator (Willmott, 1982). The performance of each interpolation 

method was assessed quantitatively in terms of mean error (ME), mean squared error (MSE), root 

mean squared error (RMSE), Nash-Sutcliffe efficiency (E), coefficient of determination (R2) and 

index of agreement (d). 

6.2.4.1 Nash-Sutcliffe Efficiency (E) 

The Nash-Sutcliffe efficiency (E) is a normalized statistic that explains the relative magnitude of 

the residual variance (“noise”) associated with the observed data variance (Nash and Sutcliffe, 

1970; Moriasi et al., 2007). The efficiency E documented by Nash and Sutcliffe, (1970) is defined 

as follows:   

𝐸 = 1 −
∑ (𝐸𝑖−𝑂𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−Ō)2𝑛
𝑖=1

  [6-4] 

Where n is the number of observations or samples, Oi is the observed value of sample i, Ei is the 

estimated value of sample i, and Ō is the mean of observed values. 

The range of E lies between −∞ and 1.0 with E = 1 describing a perfect fit. Values between 0.0 

and 1.0 are generally viewed as acceptable levels of performance, whereas values < 0.0 indicate 

that the mean observed value is a better predictor than the estimated value (unacceptable 

performance) (Moriasi et al., 2007). The key weakness of the Nash-Sutcliffe efficiency is the fact 

that larger values in a dataset are strongly overestimated whereas lower values are neglected 

(Legates and McCabe, 1999).  



Hailu Kendie Addis: Watershed based land degradation modeling and soil property assessment 

33 

 

6.2.4.2 Coefficient of Determination (R2) 

The coefficient of determination, R2, is the squared value of the coefficient of correlation (Krause 

et al., 2005). It is defined as follows: 

𝑅2 = [
∑ (𝑂𝑖−Ō) (𝐸𝑖−Ē)𝑛

𝑖=1

√∑ (𝑂𝑖−Ō)𝑛
𝑖=1

2√∑ (𝐸𝑖−Ē)𝑛
𝑖=1

2
]

2

  [6-5] 

Where n is the number of observations or samples, Oi is the observed value of sample i, Ei is the 

estimated value of sample i, Ō is the mean of observed values and Ē is the mean of estimated 

values. 

The range of R2 lies between 0 and 1, and describes how much of the observed value is explained 

by the predicted value (Krause et al., 2005). A value of 1 means the predicted value is equal to the 

observed value, where a value of zero means there is no correlation between the predicted and 

observed values. 

6.2.4.3 Index of Agreement (d) 

The index of agreement, d, as reported by Willmott (1981) is a standardized measure of the degree 

of model accuracy. The range of d is the same as R2 ranging from 1 (perfect fit) to 0 (no correlation) 

(Moriasi et al., 2007).  The index of agreement is described as follows:  

𝑑 =  
∑ (𝐸𝑖−𝑂𝑖)𝑛

𝑖=1
2

∑ (|Ě𝑖|+|Ǒ𝑖|)𝑛
𝑖=1

2  [6-6] 

Where n is the number of observations or samples, Oi is the observed value of sample i, Ei is the 

estimated value of sample i, Ō is the mean of observed values, Ǒi is the difference between the 

observed value for sample i and the mean observed value (Oi–Ō), and Ěi is the difference between 

the estimated value of sample i and the mean observed value (Ei–Ō).  

Krause et al. (2005) have reported relatively high value of d (more than 0.65) even for poor model 

fits. It has also been found that d is overly sensitive to extreme values due to the squared differences 

(Legates and McCabe, 1999). 
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Table 6-1. Descriptive statistics summary for soil physical and chemical properties of the study sub-watersheds. 

Soil attributes No. of samples Minimum Maximum Range Mean SD[b] se (mean)[b] CV[b] Skewness Kurtosis 

SOC (%)[a] 75 0.13 5.22 5.09 1.81 0.97 0.11 0.53 0.67 0.81 

AP (ppm) [a] 75 0.32 155.92 155.60 22.98 38.95 4.50 1.69 2.32 4.92 

pH  75 5.68 7.37 1.69 6.57 0.34 0.04 0.05 0.18 -0.15 

Clay (%) 75 10 58 48 29.19 10.22 1.18 0.35 0.17 -0.22 

Silt (%) 75 18 62 44 35.64 6.51 0.75 0.18 0.49 2.96 

Sand (%) 75 16 62 46 35.17 10.55 1.22 0.30 0.73 -0.17 

[a]SOC is soil organic carbon and AP is available phosphorous. 

[b]SD is standard deviation, se (mean) is standard error of mean and CV is coefficient of variation.
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6.3  RESULTS AND DISCUSSION 

According to laboratory measurements soil texture was rather heterogeneous across the study area, 

primarily clay loams, loams and sandy loams with the clay contents ranging from 10% to 58%, 

and sand contents from 16% to 62%. The descriptive statistical summary of the measured soil 

physical and chemical properties of the study sub-watersheds is presented in Table 6-1. Variability 

of soil properties can be described by the minimum and maximum values, SD, and CV. Among 

these values, the CV is the most selective factor as it is a useful statistic for comparing the degree 

of variation from one data series to another, even if the means are drastically different from each 

other (Wei et al., 2008). According to the soil variability guidelines provided by Wilding (1985), 

the property shows low variability when CV is less than or equals to 0.15, moderate variability 

when the CV is between 0.15 to 0.35, and the most variable when the CV is greater than 0.35. 

Based on these guidelines, AP, SOC and clay contents were the most variable soil properties, while 

silt and sand contents had moderate variability, and pH was the least variable (Table 6-1). A similar 

study by Sun et al., (2003) and Addis et al. (2015) documented that AP showed the highest 

variation, while pH had the least, based on the CVs. The range of SOC increased from 0.13% at 

the outlet to greater than 3.2% at upper catchment areas. A lognormal ordinary kriging was used 

for AP as the coefficient of skewness is greater than 1 (Table 6-1). 
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Table 6-2. Coefficients of the theoretical semivariogram statistic produced for different ordinary kriging models of the selected soil 

properties. 

Variable Model type Nugget [Co]  Sill [Co+C] Range Ao (m) RSS[a] R2[a] 
nugget/sill ratio 

[Co /(Co+C)] 

SOC 

Linear 0.32 1.07 497.85 1.21 0.92 0.30 

Spherical 0.35 1.06 282 8.72E-03 0.97 0.33 

Exponential 0.23 1.88 711 0.01 0.94 0.12 

Gaussian 0.18 1.01 503 8.01E-03 0.97 0.18 

Lognormal 

AP  

Linear 1.64 3.17 497.85 5.35 0.65 0.52 

Spherical 0.001 2.85 246 0.11 0.93 0.00 

Exponential 0.001 3.03 119 0.17 0.9 0.00 

Gaussian 0.22 2.86 118 0.09 0.94 0.08 

pH  

Linear 0.09 0.41 497.85 2.04E-03 0.79 0.22 

Spherical 0.09 0.37 1979 1.06E-04 0.79 0.24 

Exponential 0.09 0.37 1097 1.13E-04 0.77 0.24 

Gaussian 0.09 0.39 1104 9.11E-05 0.92 0.23 

Clay  

Linear 0.0063 0.011 497.85 7.91E-07 0.93 0.57 

Spherical 0.006 0.014 1074 6.50E-07 0.94 0.43 

Exponential 0.0059 0.02 1110 5.58E-07 0.95 0.30 

Gaussian 0.0071 0.014 541 1.35E-06 0.88 0.51 

Silt  

Linear 0.0035 0.005 497.85 4.90E-06 0.85 0.70 

Spherical 0.0035 0.007 1634 1.64E-07 0.86 0.50 

Exponential 0.0034 0.007 749 1.30E-07 0.89 0.49 

Gaussian 0.0039 0.008 824 2.80E-07 0.75 0.49 

Sand  

Linear 0.0073 0.012 497.85 1.39E-06 0.86 0.61 

Spherical 0.007 0.014 1037 1.19E-06 0.88 0.50 

Exponential 0.0069 0.02 1067 1.07E-06 0.89 0.35 

Gaussian 0.0082 0.017 651 2.24E-06 0.77 0.48 
[a] RSS is residual sum squares and R2 is coefficient of determination. Bolded values were chosen as the best model. 
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6.3.1 Comparison of the Interpolation Methods 

The spatial variability of selected soil properties was assumed to be identical in different directions 

and the isotropic experimental semivariogram for each observed soil variable was calculated using 

Eq. [6-2]. The results of the experimental semivariograms show that the exponential and Gaussian 

models were best fitted and the model with the least RSS value was chosen (Table 6-2). Selecting 

an appropriate spatial interpolation method for a given input dataset is difficult, as they are data-

specific or even variable-specific. Therefore, the choice of spatial interpolation techniques is 

subjective (Furrer and Genton, 1999). This study did not overlook the possibility of anisotropy and 

directional semivariograms have been examined but the directional semivariograms do not 

properly describe the spatial variability of measured soil properties and the spatial structures of the 

directional semivariograms for each soil property were very week; thus, the study end up using an 

isotropic semivariogram. The isotropic semivariograms for the selected soil properties are shown 

in Figures 6-2a to 6-2f. The semivariograms of clay, silt and sand contents were best-fitted with 

the exponential function and each of their R2 is greater than 0.89, which suggested that clay, silt, 

and sand contents had stronger spatial structure.  

Typically, the nugget to sill ratio or relative nugget effect [Co/(Co+C)] reflects the spatial 

autocorrelation (Li and Reynolds, 1995). The relative nugget effect was calculated for each 

observed soil properties and used to assess the degree of spatial dependence and correlation related 

with each soil variables (Jabro et al., 2010). The relative nugget effect of each observed soil 

properties were then classified into one of the three classes to describe the spatial dependence 

(Cambardella et al., 1994). If the relative nugget effect was less than or equal to 0.25, the soil 

property was categorized as strongly spatially dependent; if the relative nugget effect was greater 

than 0.25 and less than 0.75, the soil property was categorized as moderately spatially dependent; 

and if the relative nugget effect was greater than 0.75, the soil property was categorized as weakly 

spatially dependent (Cambardella et al., 1994; Jabro et al., 2010). The relative nugget effect of 

clay, silt, and sand for the best fitted model ranged from 0.30 to 0.49, indicating moderately 

spatially dependent. 
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Figure 6-2. Fitted semivariogram for the selected soil property of (a) SOC using the Gaussian model, 

(b) AP using the Gaussian model, (c) pH using the Gaussian model, (d) clay using exponential model, 

(e) silt using exponential model and (f) sand using exponential model. 

The semivariograms of SOC, AP and pH were well fitted to the Gaussian model and each of their 

R2 is greater than or equal to 0.92, which suggest that SOC, AP, and pH had stronger spatial 

structure. The spatial analysis of SOC, AP and pH shows a clear structure with a strong to moderate 

relative nugget effect (0.18 to 0.52) (Table 6-2). A similar study by Cambardella et al. (1994) 

documented that pH and silt had strong spatial dependence. The ranges of spatial dependencies 
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were large and differ between 118m for AP to 1110m for clay indicating that the optimum 

sampling interval varies greatly among different soil properties. The choice of a suitable sampling 

interval depends on the scale of the variation that the research wishes to resolve e.g. plot, field, 

catchment, administrative region and so on scale (Oliver and Webster, 2015). Ideally a large 

number of data locations generated from a very small sampling interval can be best but this 

increases the cost of collecting the data. As a rule of thumb, the sampling interval of less than half 

the range of the semivariogram can be used to guide the optimum sampling interval (Oliver, 2010; 

Oliver and Webster, 2015). Therefore, a 100m by 100m sampling interval could illustrate the 

variability of measured soil properties in the study area because all of the ranges of the observed 

soil properties except AP were greater than 200m (Table 6-2). 

The quantitative summary of the performance of each interpolation method is shown in Table 6-

3. In this study, 5 to 25 neighboring points were considered for each interpolation method as the 

numbers of neighboring points have a strong effect on the accuracy of the interpolation methods 

(Robinson and Metternicht, 2005; Li and Heap, 2008). Meanwhile, a power of 1, 2, and 3 were 

tested and the best weighting parameter for IDW was found to be a power of two. With regards to 

RBF, the five kernel functions were tested although the best kernel function was found to be 

completely regularized spline. Ordinary kriging for observed soil property and lognormal ordinary 

kriging for available phosphorous were also tested. 

The ME, MSE and RMSE were calculated as measures of accuracy and the E, R2 and d were 

determined as measures of effectiveness for each observed soil property (Table 6-3). The lowest 

RMSE for clay, silt and sand contents were found with a neighborhood of 15, 5 and 16 points, 

respectively. The lowest RMSE for SOC, AP and pH were found with a neighborhood of 5, 8 and 

15 points, respectively. The predictions of the selected soil properties except AP were relatively 

unbiased as the ME was almost equals to 0 (Table 6-3). 
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Figure 6-3. Best interpolated soil map of (a) SOC using ordinary kriging, (b) AP using RBF, (c) pH using IDW, (d) clay using RBF and (e) 

sand using ordinary kriging.
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The interpolated maps generated based on the highest value of the E resulted from the cross-

validation of the selected soil properties can be seen in Figure 6-3. Interpolation of SOC using the 

Gaussian model with the highest Nash-Sutcliffe efficiency value of 0.44 is shown in Figure 6-3A. 

The study area had SOC ranging from 0.13% to 5.22% and the highest SOC (> 3.17%) was 

occurred in northwest of Aba-Kaloye sub-watershed. The lowest SOC (0.13% to 1.54%) values 

occur on the central to the outlets of the sub-watersheds which were intensively cultivated. 

Interpolation of AP using RBF with the highest Nash-Sutcliffe efficiency value of 0.51 is shown 

in Figure 6-3B. AP content in the central part of the study area was less than the mean value (22.98 

ppm), and area where AP content was twice the mean value was observed in northeast of Ayeye 

sub-watershed (Figure 6-3B). Interpolation of pH over the study sub-watersheds using IDW 

technique with E equals to 0.45 is shown in Figure 6-3C. These results disagreed with those found 

by Laslett et al. (1987) and Robinson and Metternicht (2005) where topsoil pH was better estimated 

by using OK than by using IDW. The observed soil pH data had a value ranged from 5.68 to 7.37 

which suggests the area is very good for crop production. The area where pH was lower than the 

mean value (6.57) was observed in northwest of Aba-Kaloye sub-watershed, and area where pH 

was greater than the mean value was found around the outlets of the sub-watersheds (Figure 6-

3C). Meanwhile, RBF proved to be the better method for interpolating clay content of the study 

sub-watersheds with the Nash-Sutcliffe efficiency value of 0.17 (Figure 6-3D). The area where 

clay contents was lower than the mean value (29.19%) was observed in northwest of Aba-Kaloye 

sub-watershed, and area where clay contents was greater than the mean value was found at the 

outlets of the sub-watersheds (Figure 6-3D). Exponential ordinary kriging proved to be the best 

method for interpolating sand contents with E equals to 0.17 (Figure 6-3E). The Nash-Sutcliffe 

efficiency for all measured soil properties except silt showed a positive value (Table 6-3). Silt was 

the only measured soil property for which the resulting Nash-Sutcliffe efficiency of each 

interpolation method had a negative value (less than –0.34), that suggested the prediction would 

have been more reliable if the sample mean had been used instead. The study showed the potential 

of various spatial interpolation methods as a tool for spatial continuous surfaces map generation 

but also the need for further studies. Overall, the cross-validation statistics for all of the spatial 

interpolation methods showed there was no single interpolation method that significantly 

outperformed the others which agreed with previous studies (Robinson and Metternicht, 2005; 

Karydas et al., 2009). Therefore, one of the interpolation methods could probable be applied for 
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spatial continuous surfaces map generation of the measured soil properties in future studies of 

similar regions.
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Table 6-3. Quantitative summary of the performance of the three interpolation methods for the study sub-watersheds. 

  

  

Variable 

Interpolation methods 

OK[a] IDW[a] RBF[a] 

ME[b] RMSE[b] MSE[b] d[b] E[b] R2 ME RMSE MSE d E R2 ME RMSE MSE d E R2 

SOC 0 0.72 0.51 0.78 0.44 0.44 -0.01 0.73 0.53 0.75 0.43 0.43 0 0.72 0.52 0.76 0.44 0.44 

AP  1.48 32.35 1046.8 0.67 0.30 0.30 0.09 31.04 963.69 0.72 0.36 0.36 0.01 27.2 739.67 0.83 0.51 0.51 

pH  0 0.32 0.1 0.58 0.16 0.17 0 0.3 0.1 0.65 0.18 0.19 0 0.33 0.11 0.59 0.17 0.17 

Clay 0.06 9.34 87.17 0.58 0.15 0.17 0.04 9.28 86.09 0.61 0.16 0.17 0.04 9.23 85.21 0.62 0.17 0.18 

Silt 0.03 7.49 56.17 0.33 -0.34 0 0.07 7.58 57.48 0.32 -0.37 0 0 7.49 56.15 0.33 -0.34 0 

Sand -0.08 9.51 90.44 0.64 0.17 0.18 -0.44 10.08 101.66 0.54 0.11 0.13 -0.09 9.99 99.89 0.57 0.14 0.16 

[a] OK is ordinary kriging, IDW is inverse distance weight and RBF is radial base function.  

[b] ME is mean error, RMSE is root mean square error, MSE is mean square error, d is index of agreement and E is Nash-Sutcliffe 

efficiency. 
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The spatial interpolation techniques used for each soil properties indicated that values of R2 range 

from 0.00 to 0.51. The highest value of R2, E and d (0.51, 0.51, and 0.83, respectively) resulted 

from the spatial interpolation of AP using RBF (Table 6-3). A comparison of E with R2 displays 

the fact that the two criteria had a strong positive correlation with the correlation coefficient (r) 

equals to 0.92. The correlation between E and d was also significantly positively correlated (r = 

0.98). Similarly, the correlation between R2 and d was also significantly positively correlated (r = 

0.96).  

6.4  CONCLUSIONS 

This study aims to analyze the performance of frequently used spatial interpolation techniques 

(IDW, OK and RBF) and determine the optimum spatial interpolation method for mapping of 

selected soil properties, which were sampled in mountainous agricultural sub-watersheds, 

Ethiopia. The descriptive analyses revealed that AP, SOC and clay contents were the most variable 

soil properties, with CV greater than 0.35 while, silt and sand contents were moderately variable, 

with CV vary from 0.18 to 0.30. Cross-validation was used to get the best agreement between the 

observed data and the predicted values of selected spatial interpolation methods. This study 

considered 5 to 25 neighboring points for each interpolation method. Meanwhile, the five kernel 

functions and a power of 1, 2, and 3 were tested for RBF and IDW, respectively. The best kernel 

function for RBF was found to be completely regularized spline, while the best weighting 

parameter for IDW was found to be a power of two. 

The predictions of the selected soil properties except AP were relatively unbiased as the mean 

errors were almost equals to 0 and the Nash-Sutcliffe efficiency for each soil property except silt 

showed a positive value (E ≥ 0.17). When comparing the resulting values of the efficiency criteria, 

for each interpolation technique, the OK method was best performed for SOC and sand contents. 

RBF method was produced more accurate maps for AP and clay contents, while IDW performed 

best for interpolating topsoil pH. The surface maps for the selected soil properties indicated that 

values of R2 range from 0.00 to 0.51. The highest value of R2, E and d (0.51, 0.51, and 0.83, 

respectively) resulted from the spatial interpolation of AP using RBF. Overall, the results of the 

cross-validation statistics for each spatial interpolation method showed that there was no single 

interpolation method that can be considered significantly outperformed the others; hence, one of 
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the interpolation method could be applied for surface map generation of a soil property in future 

studies of similar regions. 

General, the study shows the potential of various spatial interpolation methods as a tool for surface 

map generation but also the need for further studies. Therefore, future research in the area should 

consider the different approaches which include various spatial interpolation methods, land 

management practices, landuse and topographic conditions to improve the performance of each 

spatial interpolation method. Finally, environmental models which use soil map as an input might 

consider the influence of the soil map produced by different spatial interpolation techniques.      

6.5  References 

Addis, H. K., & Klik, A. (2015). Predicting the spatial distribution of soil erodibility factor using 

USLE nomograph in an agricultural watershed, Ethiopia. Int. Soil and Water Conserv. Res., 3(4), 

282-290. http://dx.doi.org/10.1016/j.iswcr.2015.11.002 

Addis, H. K., Klik, A., & Strohmeier, S. (2015). Spatial variability of selected soil attributes under 

agricultural land use system in a mountainous watershed, Ethiopia. Int. J. Geosci., 6(6), 605-613. 

http://dx.doi.org/10.4236/ijg.2015.66047 

Batchelor, W. D., Basso, B., & Paz, J. O. (2002). Examples of strategies to analyze spatial and 

temporal yield variability using crop models. Eur. J. Agron., 18(1-2), 141-158. 

http://dx.doi.org/10.1016/S1161-0301(02)00101-6 

Birrell, S. J., Sudduth, K. A., & Borgelt, S. C. (1996). Comparison of sensors and techniques for 

crop yield mapping. Comput. Electron. Agric., 14(2), 215-233. http://dx.doi.org/10.1016/0168-

1699(95)00049-6 

Blackmore, S. (1999). Remedial correction of yield map data. Precis. Agric., 1(1), 53-66. 

http://dx.doi.org/10.1023/A:1009969601387 

Burrough, P. A., & McDonnell, R. A. (1998). Creating continuous surfaces from point data. In P. A. 

Burrough, M. F. Goodchild, R. A. McDonnell, P. Switzer, & M. Worboys (Eds.), Principles of 

Geographic Information Systems. Oxford, U. K.: Oxford University Press. 

Buttafuoco, G., Conforti, M., Aucelli, P. P. C., Robustelli, G., & Scarciglia, F. (2012). Assessing 

spatial uncertainty in mapping soil erodibility factor using geostatistical stochastic simulation. 

Environ. Earth Sci., 66(4), 1111-1125. http://dx.doi.org/10.1007/s12665-011-1317-0 

Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., & 



Hailu Kendie Addis: Watershed based land degradation modeling and soil property assessment 

46 

 

Konopka, A. E. (1994). Field-scale variability of soil properties in Central Iowa soils. SSSAJ, 

58(5), 1501-1511. http://dx.doi.org/10.2136/sssaj1994.03615995005800050033x 

Davis, B. M. (1987). Uses and abuses of cross-validation in geostatistics. Math. Geol., 19(3), 241-

248. http://dx.doi.org/10.1007/bf00897749 

De Vos, B., Lettens, S., Muys, B., & Deckers, J. A. (2007). Walkley-Black analysis of forest soil 

organic carbon: Recovery, limitations and uncertainty. Soil Use Manag., 23(3), 221-229. 

http://dx.doi.org/10.1111/j.1475-2743.2007.00084.x 

EPA. (2012). Developing spatially interpolated surfaces and estimating uncertainty. Washington, 

DC: BiblioGov. 

Furrer, R., & Genton, M. G. (1999). Robust spatial data analysis of Lake Geneva sediments with S+ 

SpatialStats. Syst. Res. Information Sci., 8, 257-272. 

Gee, G. W., & Or, D. (2002). 2.4 Particle-size analysis. Methods of Soil Analysis. Part 4, 255-293. 

Madison, Wisconsin, American Society of Agronomy. 

Goovaerts, P. (1999). Geostatistics in soil science: State-of-the-art and perspectives. Geoderma, 

89(1-2), 1-45. http://dx.doi.org/10.1016/S0016-7061(98)00078-0 

Gotway, C. A., Ferguson, R. B., Hergert, G. W., & Peterson, T. A. (1996). Comparison of kriging 

and inverse-distance methods for mapping soil parameters. SSSAJ, 60(4), 1237-1247. 

http://dx.doi.org/10.2136/sssaj1996.03615995006000040040x 

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecol. 

Modell., 135(2-3), 147-186. http://dx.doi.org/10.1016/S0304-3800(00)00354-9 

Hartkamp, A. D., White, J. W., & Hoogenboom, G. (1999). Interfacing geographic information 

systems with agronomic modeling: A review. Agron. J., 91(5), 761-772. 

http://dx.doi.org/10.2134/agronj1999.915761x 

Huo, X.-N., Li, H., Sun, D.-F., Zhou, L.-D., & Li, B.-G. (2012). Combining geostatistics with 

Moran’s I analysis for mapping soil heavy metals in Beijing, China. Int. J. Environ. Res. Public. 

Health, 9(3), 995-1017. http://dx.doi.org/10.3390/ijerph9030995 

Isaaks, E. H., & Srivastava, R. M. (1989). Appl. Geostatistic. New, York, NY: Oxford University 

Press. 

Jabro, J. D., Stevens, W. B., Evans, R. G., & Iversen, W. M. (2010). Spatial variability and 

correlation of selected soil properties in the Ap horizon of a CRP grassland. Appl. Eng. Agric., 

26(3), 419-428. http://dx.doi.org/10.13031/2013.29957 



Hailu Kendie Addis: Watershed based land degradation modeling and soil property assessment 

47 

 

Karydas, C. G., Gitas, I. Z., Koutsogiannaki, E., Lydakis-Simantiris, N., & Silleos, G. N. (2009). 

Evaluation of spatial interpolation techniques for mapping agricultural topsoil properties in Crete. 

EARSeL eProceedings, 8(1), 26-29. 

Kavianpoor, H., Ouri, A. E., Jeloudar, Z. J., & Kavian, A. (2012). Spatial variability of some 

chemical and physical soil properties in Nesho Mountainous Rangelands. American J. Environ. 

Eng., 2(1), 34-44. http://dx.doi.org/10.5923/j.ajee.20120201.06 

Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for 

hydrological model assessment. Adv. Geosci., 5, 89-97. http://dx.doi.org/10.5194/adgeo-5-89-

2005 

Kravchenko, A., & Bullock, D. G. (1999). A comparative study of interpolation methods for 

mapping soil properties. Agron. J., 91(3), 393-400. 

http://dx.doi.org/10.2134/agronj1999.00021962009100030007x 

Laslett, G. M., McBratney, A. B., Pahl, P. J., & Hutchinson, M. F. (1987). Comparison of several 

spatial prediction methods for soil pH. J. Soil Sci., 38(2), 325-341. 

http://dx.doi.org/10.1111/j.1365-2389.1987.tb02148.x 

Leenaers, H., Okx, J. P., & Burrough, P. A. (1990). Employing elevation data for efficient mapping 

of soil pollution on floodplains. Soil Use Manag., 6(3), 105-114. http://dx.doi.org/10.1111/j.1475-

2743.1990.tb00818.x 

Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of “goodness-of-fit” measures in 

hydrologic and hydroclimatic model validation. Water Resour. Res., 35(1), 233-241. 

http://dx.doi.org/10.1029/1998WR900018 

Li, H., & Reynolds, J. F. (1995). On definition and quantification of heterogeneity. Oikos, 73(2), 

280-284. http://dx.doi.org/10.2307/3545921 

Li, J., & Heap, A. D. (2008). A review of spatial interpolation methods for environmental scientists. 

Geosci. Australia. 

Li, J., & Heap, A. D. (2011). A review of comparative studies of spatial interpolation methods in 

environmental sciences: Performance and impact factors. Ecol. Inf., 6(3-4), 228-241. 

http://dx.doi.org/10.1016/j.ecoinf.2010.12.003 

Meijerink, A. M., de Brouwer, H. A., Mannaerts, C. M., & Valenzuela, C. R. (1994). Introduction 

to the use of geographic information systems for practical hydrology. Paris, France: UNESCO. 



Hailu Kendie Addis: Watershed based land degradation modeling and soil property assessment 

48 

 

Mohr, P. A. (1963). The geology of Ethiopia. 1. Addis Ababa, Ethiopia: University College of Addis 

Ababa Press.  

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). 

Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. 

Trans. ASABE, 50(3), 885-900. http://dx.doi.org/10.13031/2013.23153 

Nalder, I. A., & Wein, R. W. (1998). Spatial interpolation of climatic Normals: Test of a new method 

in the Canadian boreal forest. Agric. For. Meteorol., 92(4), 211-225. 

http://dx.doi.org/10.1016/S0168-1923(98)00102-6 

Naoum, S., & Tsanis, I. K. (2004). Ranking spatial interpolation techniques using a GIS-based 

DSS. Global Nest, 6(1), 1-20. 

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part I. A 

discussion of principles. J. Hydrol., 10(3), 282-290. http://dx.doi.org/10.1016/0022-

1694(70)90255-6 

Nielsen, D. R., & Wendroth, O. (2003). Spatial and temporal statistics: Sampling field soils and 

their vegetation. Reiskirchen, Germany: Catena Verlag. 

Oliver, M. A. (2010). Geostatistical applications for precision agriculture. New York, NY: Springer 

Science & Business Media. http://dx.doi.org/10.1007/978-90-481-9133-8 

Oliver, M. A., & Webster, R. (2015). Basic steps in geostatistics: The variogram and kriging. New 

York, NY: Springer. 

Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium 

bicarbonate. 

Pandey, V., & Pandey, P. K. (2010). Spatial and temporal variability of soil moisture. Int. J. Geosci., 

1(02), 87-89. http://dx.doi.org/10.4236/ijg.2010.12012   

Robertson, G. P. (2008). GS+: Geostatistics for the environmental sciences. Plainwell, MI: Gamma 

Design Software.  

Robinson, T. P., & Metternicht, G. (2005). Comparing the performance of techniques to improve the 

quality of yield maps. Agric. Syst., 85(1), 19-41. http://dx.doi.org/10.1016/j.agsy.2004.07.010 

Sun, B., Zhou, S., & Zhao, Q. (2003). Evaluation of spatial and temporal changes of soil quality 

based on geostatistical analysis in the hill region of subtropical China. Geoderma, 115(1), 85-99. 

http://dx.doi.org/10.1016/S0016-7061(03)00078-8 



Hailu Kendie Addis: Watershed based land degradation modeling and soil property assessment 

49 

 

Wang, X. J., & Qi, F. (1998). The effects of sampling design on spatial structure analysis of 

contaminated soil. Sci. Total Environ., 224(1-3), 29-41. http://dx.doi.org/10.1016/S0048-

9697(98)00278-2 

Watson, D. F., & Philip, G. M. (1985). A refinement of inverse distance weighted interpolation. Geo-

processing, 2(4), 315-327. 

Weber, D., & Englund, E. (1992). Evaluation and comparison of spatial interpolators. Math. Geol., 

24(4), 381-391. http://dx.doi.org/10.1007/bf00891270 

Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists. Hoboken, NJ: John 

Wiley & Sons. 

Wei, J.-B., Xiao, D.-N., Zeng, H., & Fu, Y.-K. (2008). Spatial variability of soil properties in 

relation to land use and topography in a typical small watershed of the black soil region, 

northeastern China. Environ. Geol., 53(8), 1663-1672. http://dx.doi.org/10.1007/s00254-

007-0773-z 

Whelan, B. M., McBratney, A. B., & Minasny, B. (2002). Vesper 1.5: Spatial prediction software 

for precision agriculture. Proc. 6th Int. Conf. Precision Agric. 179. Madison, WI: 

ASA/CSSA/SSSA. 

Wilding, L. P. (1985). Spatial variability: It’s documentation, accommodation and implication to soil 

surveys. In D. R. Nielson, & J. Bouma (Eds.), Soil Spatial Variability (pp. 166-194). Pudoc, 

Wageningen, the Netherlands. 

Willmott, C. J. (1981). On the validation of models. Physical geography,, 2(2), 184-194. 

Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bull. Amer. 

Meteor. Soc., 63(11), 1309-1313. http://dx.doi.org/10.1175/1520-

0477(1982)063<1309:SCOTEO>2.0.CO;2 

Wollenhaupt, N. C., Wolkowski, R. P., & Clayton, M. K. (1994). Mapping soil test phosphorus and 

potassium for variable-rate fertilizer application. J. Prod. Agric., 7(4), 441-448. 

http://dx.doi.org/10.2134/jpa1994.0441 

Wong, D. W., Yuan, L., & Perlin, S. A. (2004). Comparison of spatial interpolation methods for the 

estimation of air quality data. J. Expo. Sci. Environ. Epidemiol., 14(5), 404-415. 

http://dx.doi.org/10.1038/sj.jea.7500338 

Yao, X., Fu, B., Y., L., Sun, F., Wang, S., & Liu, M. (2013). Comparison of four spatial interpolation 

methods for estimating soil moisture in a complex terrain catchment. PLoS One, 8(1), 1-13. 



Hailu Kendie Addis: Watershed based land degradation modeling and soil property assessment 

50 

 

http://dx.doi.org/10.1371/journal.pone.0054660 

Zandi, S., Ghobakhlou, A., & Sallis, P. (2011). Evaluation of spatial interpolation techniques for 

mapping soil pH. In S. Shanmuganathan, & P. Sallis (Ed.), MODSIM2011, 19th Int. Congress on 

Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, (pp. 

1153-1159). Perth, Western Australia, Modelling and Simulation Society of Australia and New 

Zealand. 

Zeiler, M. (2010). Modeling our world: The ESRI guide to geodatabase concepts. Redlands, CA: 

ESRI Press. 

Zhou, L., Dickinson, R. E., Tian, Y., Vose, R. S., & Dai, Y. (2007). Impact of vegetation removal 

and soil aridation on diurnal temperature range in a semiarid region: Application to the 

Sahel. Proc. Natl. Academy Sci., 104(46), 17937-17942. 

http://dx.doi.org/10.1073/pnas.0700290104 

 

  



Hailu Kendie Addis: Watershed based land degradation modeling and soil property assessment 

51 

 

7. Modeling Streamflow and Sediment using SWAT in the Ethiopian 

Highlands6 

Abstract 

The coincidence of intensive rainfall events at the beginning of the rainy season and the 

unprotected soil conditions after exhaustive dry spells expose the Ethiopian Highlands to severe 

soil erosion. Soil and water conservation measures (SWC) have been applied to counteract land 

degradation in the endangered areas, but SWC efficiency may vary related to the heterogeneity of 

the landscape. The Soil and Water Assessment Tool (SWAT) model was used to model hydrology 

and sediment dynamics of a 53.7 km2 watershed, located in the Lake Tana basin, Ethiopia. 

Spatially distributed stone bund impacts were applied in the model through modification of the 

surface runoff ratio and adjustment of a support practice factor simulating the trapped amounts of 

water and sediment at the SWC structure and watershed level. The resulting Nash-Sutcliffe 

efficiency (NSE) for daily streamflow simulation was 0.56 for the calibration and 0.48 for the 

validation period, suggesting satisfactory model performance. In contrast, the daily sediment 

simulation resulted in unsatisfactory model performance, with the NSE value of 0.07 for the 

calibration and –1.76 for the validation period and this could be as a result of high intensity and 

short duration rainfall events in the watershed. Meanwhile, insufficient sediment yield prediction 

may result to some extent from daily based data processing, whereas the driving runoff events and 

thus sediment loads occur on sub-daily time scales, probably linked with abrupt gully breaks and 

development. The calibrated model indicated 21.08 Mg ha-1average annual sediment yield, which 

is far beyond potential soil regeneration rate. Despite the given limits of model calibration, SWAT 

may support the scaling up and out of experimentally proven SWC interventions to encourage 

sustainable agriculture in the Ethiopian Highlands.   

 

______________________________________ 

6Addis, H.K., Strohmeier, S., Ziadat, F., Melaku, N.D., and Klik, A., 2016. International Journal 

of Agricultural and Biological Engineering, 9(5): 51-66. 
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7.1   INTRODUCTION 

The rise of the human civilizations is directly linked with the cultivation of the land and thus, 

inevitably, with land degradation[1]. Human interventions, such as deforestation for agricultural 

food production, the cultivation of marginal lands, overgrazing and the exploitation of soil fertility 

accelerate soil erosion[2] and subsequent soil depletion is accompanied with reduced crop 

productivity[3]. Ongoing land degradation endangers the agricultural productivity in many areas 

around the globe[4], and undoubtedly, the Ethiopian Highlands are among the most affected. 

Various impacts and consequences of the severe land degradation in the Ethiopian Highlands have 

been reported by Hurni[5]. The extensive famines in 1973 and 1984, as an alarming consequence 

of droughts and low crop productivity, initiated governmental rethinking concerning rural land 

management[6]. The Ethiopian government responded with large scale rehabilitation measures and 

the establishment of various soil and water conservation (SWC) interventions across the country 

to counteract the ongoing soil depletion[6,7]. 

From the beginning of agricultural activities different SWC techniques have been developed[8] 

mainly to retain soil fertility and thus crop productivity. Various SWC techniques and their 

variable impacts have been intensively discussed in the literature[7,9]. In particular for the Ethiopian 

Highlands SWC management through stone bunds was found as sound practice for soil erosion 

control[10]. Stone bunds are elevated structures intersecting a hillslope in specific intervals[7], 

resulting in decreased surface runoff and sediment yield through slope length reduction and the 

creation of a small retention area[11]. However, SWC interventions are often uniformly applied 

across landscapes but may only be reasonable for certain field conditions. In fact, field conditions 

are often highly variable in the Ethiopian Highlands[12]. Therefore, site specific assessment of the 

most influential watershed processes may be crucial for the development of efficient conservation 

measures. 

At present, many models with a broad spectrum of concepts, which were classified as spatially 

lumped, spatially distributed, empirical, regression, semi-distributed eco-hydrological model and 

factorial scoring models, are in use for modelling the rainfall–runoff–soil erosion and sediment 

transport processes at different scales[13]. The Soil and Water Assessment Tool (SWAT) is a semi-

distributed eco-hydrological model. SWAT is one of the most widely used watershed models, 

which was developed by the United States Department of Agriculture-Agricultural Research 
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Service (USDA-ARS)[14] and can be used to predict agricultural land management impacts on the 

hydrological regime of a watershed through simulation of variable soil, land use and management 

conditions over long periods[14,15]. In Ethiopia, SWAT has been used in a number of studies to 

predict streamflow and sediment yield[16–21] with different outcomes and recommendations 

concerning the usability of the semi-distributed eco-hydrological model for remote landscapes. In 

fact, large areas of the Ethiopian Highlands are still under investigated and therefore proper model 

input and particularly calibration data (such as streamflow and sediment yield) are scarce, which 

might impede proper model calibration and validation in many cases. Various studies[13,22] have 

shown that advanced erosion models suffer from the lack of available input data especially for 

large scale application. Conclusively, there remains extensive need to evaluate semi-distributed 

eco-hydrological watershed modeling in the Ethiopian Highlands.  

The study reported here was performed in the context of a multidisciplinary international research 

project that is being conducted within the Gumara-Maksegnit watershed which is located in the 

Lake Tana basin in the Amhara region of Ethiopia. Integrated watershed research is being 

conducted, including several soil, crop, hydrology and agro-environmental related analyses, to 

gain a deeper insight into watershed scale hydrology and land degradation issues, evaluate various 

soil and water conservation interventions and to aim for an improved livelihood of stakeholders 

living in the watershed. The spatial assessment of surface runoff and sediment yield within 

Gumara-Maksegnit study site using SWAT is a key component of the overall research project. The 

model case study was conducted: (1) to assess the applicability of SWAT for simulating the key 

watershed processes of a remote and mountainous agricultural watershed, and (2) to evaluate the 

impact of spatially distributed soil and water conservation (SWC) structures on surface runoff and 

soil erosion. Eventually, the study aims for the establishment of a well-calibrated semi-distributed 

eco-hydrological model as a tool for evaluating multiple land management practices suitable for 

reduction of sediment transport, which can be scaled up to assess proper SWC strategies and to 

counteract ongoing land degradation at a broader scale.  
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Figure 7-1. Overview of the project watershed area in the northwest Amhara region, Ethiopia 

7.2  MATERIALS AND METHODS 

7.2.1 Description of the study watershed 

The Gumara-Maksegnit watershed, is located in the Amhara region in northwest Ethiopia between 

37°33′00″–37°37′00″E and 12°24′00″–12°31′00″N (Figure 7-1). The confined watershed area is 

53.7 km2 based on an ArcGIS watershed delineation using a 90 m grid Digital Elevation Model 

(DEM) produced by SRTM (Shuttle Radar Topography Mission)[23]. The watershed elevation 

ranges from 1,920 m (outlet) to 2,850 m above sea level in the north, while the hillslopes range 

from nearly flat (< 2%) to extremely steep (> 70%) (Figure 7-2a). The northern part of the 

watershed, Denkez Mountain Ridge, borders to Tekezi Basin, while the Gumara-Maksegnit 

watershed is part of the Blue Nile River Basin. The watershed geology is dominated by a Trap 

Series of Tertiary volcanic eruptions[24], which are commonly described by their degree of 

oxidation as exemplified by the frequent dominance of ferric over ferrous iron and by the abundant 

water content[24]. The main soils are Cambisol and Leptosol in the upper and central part of the 

watershed and Vertisol in the lower part near the outlet. The Gumara-Maksegnit River is the main 

stream of the study watershed, which part of the Lake Tana drainage basin. Lake Tana is the origin 
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of the Blue Nile River and the largest lake in Ethiopia. The Gumara-Maksegnit River discharges 

continuously throughout the year and is characterized by several flood events during the rainy 

season versus drastically decreased flow during the dry season. The climate of the Gumara-

Maksegnit watershed is characterized by the ‘Woina Dega’ zone (cool semi-humid) between 1,920 

m to 2,400 m above sea level, and the ‘Dega’ zone (cool) above 2,400 m. The majority of the 

watershed area is located within the cool semi-humid zone at an elevation of 1,920 m to 2,400 m 

above sea level. The climate is dominated by distinct wet and dry periods. The wet season typically 

occurs from June to September and the dry season occurs from November to April, while May and 

October are transition months. The mean annual rainfall in the watershed is 1,200 mm of which 

more than 90% occurs during the rainy season (June to September). The average monthly 

maximum and minimum temperatures recorded from 1997 to 2013 were 31.8C for March and 

10.8C for January.   

7.2.2 SWAT model 

The SWAT model is a semi-distributed eco-hydrological continuous event watershed-scale model 

usable to evaluate the impact of different land management practices on surface and subsurface 

water movement, sediment, and agricultural chemical yields in complex watersheds with different 

soil, land-use and management conditions[25]. ArcSWAT, as an ArcGIS interface[26], uses GIS 

spatial algorithms to spatially link multiple model input data, such as watershed topography 

(DEM), soil, land use, land management and climatic data. During watershed delineation, the 

entire watershed is divided into different sub-basins. Then, each sub-basin is discretized into a 

series of Hydrologic Response Units (HRUs) as the smallest computation unit of a SWAT model, 

which are characterized by homogeneous soil, land use and slope combinations. Daily climate 

input data for defined locations (mostly related to ground weather stations) are spatially related to 

the different sub-basins of the model using a ‘nearest neighbor’ GIS algorithm. Different model 

outputs, such as surface runoff, sediment yield, soil moisture, nutrient dynamics, crop growth etc., 

are simulated for each HRU, aggregated and processed to sub-basin level results on a daily time 

step resolution.  

SWAT provides different runoff routing techniques for both surface runoff and streamflow. In this 

study, surface runoff was computed using the USDA (United States Department of Agriculture) 

NRCS (Natural Resources Conservation Service) approach[27], while channel routing was 
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processed by Muskingum routing method[28]. The NRCS method was chosen to enable user 

friendly and comprehensive consideration of soil and water conservation (SWC) impacts. A 

number of methods with varying data requirements for evapotranspiration (ET) estimation are 

incorporated in SWAT: for this study the Hargreaves formula[29] was used. In SWAT, up-land soil 

erosion is computed based on the Modified Universal Soil Loss Equation (MUSLE)[29], which 

allows the consideration of a support practice factor representing supposed SWC effects on 

sediment loss. 

 

Figure 7-2. Gumara-Maksegnit watershed maps showing (a) slope classes, and (b) elevation data and 

location of weather stations and subbasins included in stone bund experiment assessment discussed 

in Section 2.3.5. 

7.2.3 Input data 

SWAT input data in developing countries (such as Ethiopia) are usually not readily available and 

are often difficult to collect, and data availability is even more limited for good quality calibration 

and validation data. Amongst the acquisition of various remote sensing sources for DEM and land 

use input preparation, comprehensible field sampling and hydrological monitoring were a central 

task of the Gumara-Maksegnit watershed study. 
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7.2.4 DEM (Digital Elevation Model) 

For this study, the 90 m grid cell DEM, produced by SRTM (Shuttle Radar Topography 

Mission)[23] was used to obtain the topographic characteristics of Gumara-Maksegnit watershed. 

Then, the watershed had been divided into three slope steepness classes, namely: 0°–11° (18.77 

km2), 11°–28° (17.66 km2) and greater than 28° (17.26 km2) (Figure 7-2a).  

7.2.5 Climate 

Climate input data required by SWAT includes daily precipitation, maximum and minimum 

temperature, relative humidity, half hour rainfall, wind speed and solar radiation. Required daily 

precipitation and maximum/minimum air temperature data was collected at four different weather 

stations located within (three stations) and slightly outside (one station) the watershed (Figure 7-

2b).  Daily solar radiation, relative humidity, and wind speed data were recorded at a different 

metrological station slightly outside the study watershed (Figure 7-2b). The SWAT weather 

generator[30] was used for simulating missing daily weather data. The daily climatic data (from 

January, 1, 1997 to December, 31, 2013) recorded at the weather station, which was located 

slightly outside the watershed (Figure 7-2b) was used to create the monthly weather statistics using 

the weather generator.     

7.2.6 Land use 

Land cover map for this research was produced on the pixel based supervised classification of 10 

m spot satellite image (Figure 7-3a). The study watershed has three major land-use classes (Figure 

7-3b) and is mainly covered by agricultural land (63.5%) followed by mixed forest (24.3%), and 

grazing land (12.2%). The agricultural land was further subdivided into six major agricultural 

crops: tef (Eragrostis Tef) (30.0%), sorghum (13.2%), barley (6.9%), fava bean (5.6%), winter 

wheat (4.3%) and chickpea (3.5%). Tef is a minor cereal crop on a global scale, but a major food 

grain and lovegrass (lovegrass is commonly used as livestock fodder) in Ethiopia and Eritrea and 

this annual crop can be grown under a wide range of conditions[31]. Tef and sorghum are the main 

staple crops, whereas chickpea is grown in the lower regions and cannot be grown in the higher 

altitude. 
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7.2.7 Soil 

SWAT requires multiple soil physical and chemical attributes for various soil depths such as soil 

texture, bulk density, stone content, organic carbon, hydraulic conductivity, soil erodibility, 

etc.,[32]. At least one software package is available which can be used to calculate the spatial 

distribution of various soil properties for environmental modeling using selected input 

parameters[33]. Nevertheless, good quality field sampling data may be used preferentially. In this 

study, an intensive field sampling campaign was carried out to determine various soil properties 

in a 500 m by 500 m grid over the entire watershed. A total of 234 soil samples were collected 

using a bucket auger. At each location approximately 2 kg bulk soil samples from different soil 

layers (0–25), (25–60) and (60–100 cm) were taken for physical and chemical analysis. 

Undisturbed soil core cylinder samples were taken from the topsoil layer to determine bulk density 

following previously developed procedures[34]. Soil texture was measured based on an earlier 

published method[35], and organic carbon was determined by a wet oxidation method[36]. Available 

water content and hydraulic conductivity for each layer as well as bulk density for the second and 

third layer were assessed using a pedotransfer function developed by Saxton and Rawls[37]. 

Nevertheless, the most important soil data impacts were manually determined based on the 

previously described intensive field sampling results. The soil map that describes the distribution 

of different soil textural classes of the study watershed is presented in Figure 7-3c.   
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Figure 7-3. The Gumara-Maksegnit watershed: (a) spot satellite image, (b) three major land cover 

categories, and (c) soil textural class maps 

7.2.8 Soil and Water Conservation (SWC) Interventions 

Different SWC practices have been applied in the Gumara-Maksegnit watershed such as stone 

bunds, micro water harvesting ponds, trenches and semi-circular stone bunds (Figure 7-4). 

However, linear (slightly graded) stone bunds are the predominant practice, which affect large 

agricultural areas in the central and the lower part of the watershed. Locally installed harvesting 

ponds (four structures applied within the watershed), trenches and semi-circular stone bunds may 

have a positive effect on runoff and soil erosion at the field level, but based on their local or minor 

areal extent these structures have limited effect on watershed level hydrology or sediment 

dynamics. Thus, stone bunds were the only SWC interventions considered during watershed 

modeling and approximately 50% of the study watershed is presently treated with the stone bunds. 

As described by Bosshart[11], SWC impacts of stone bunds are mainly related to the reduction of 

surface runoff and sediment yield by intersecting hillslope lengths in specific intervals and the 

ponding effects that occur at each structure. In the course of the Gumara-Maksegnit watershed 

study, different plot level as well as sub-basin level experiments were carried out[38] to investigate 
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the effects of stone bunds on surface runoff and soil loss, and moreover, to enable the 

implementation of SWC impacted in SWAT modeling. SWAT provides various options to 

consider SWC impacts[32] including: (1) surface runoff may be modified through the adjustment of 

the runoff ratio (Curve Number) and/or the consideration of a micro-pond (pothole) at the related 

HRU level, which will also impact soil erosion, and (2) impacts on sediment yield levels via 

adjustment of the support practice factor (P-factor) and/or the slope length factor (LS) of the 

MUSLE[39]. The ideal factors that describe the effect of stone bunds are the USLE support practice 

factor (P-factor), the Curve Number and average slope length (SLSUBBSN). In this study, the 

SLSSUBSN value was modified by editing the HRU (.hru) input table, whereas the P-factor and 

Curve Number values were modified by editing Management (.mgt) input table.  

The 53.7 km2 Gumara-Maksegnit watershed was discretized into 15 sub-basins and 2799 HRUs 

for the SWAT simulations. The high number of HRUs for the study watershed occurred as a result 

of the 234 user defined soil name, the 3 slope classes and the 9 landuse type interactions. However, 

a coarse DEM mesh used as an input for this study was one of the limitations. The study watershed 

is composed of rugged topography with different management practices; thus, the 234 soil 

sampling points are considered totally different and the study did not set a threshold that eliminates 

minor soil types. Therefore, every HRU for the study watershed corresponds an average area of 

1.9 ha. Similarly, Zabaleta[40] used 165 HRUs for a 4.8 km2 watershed in Spain, which averaged 

about 2.9 ha per HRU. 
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Figure 7-4. Stone bund treated fields (a) and the small channel above the stone bund (b) 

The impact of stone bund SWC structures was simulated through reduction of the Curve Number 

(CN_2) for surface runoff ratio modification as well as the adjustment of the support practice factor 

(P-factor) to account for the amount of trapped sediments at the stone bunds. The effect of stone 

bunds on runoff and soil erosion was initially assessed during the erosion plot experimental 

campaigns in 2012 and 2013, based on the comparison of treated and untreated sub-basins located 

in the watershed (this activity is still ongoing). Based on the plot experiments carried out in 

2013[41], stone bund structures were found to reduce surface runoff by approximately 60 to 80% 

and sediment yield between 40 to 80%. This is consistent with other plot experimental findings 

reported by Adimassu[42], where stone bunds reduced sediment yield by roughly 50% compared to 

untreated plots. However, plot experiments tend to reflect optimized stone bund conditions for just 

a very limited area. In fact, the stone bund plot experiments carried out in Gumara-Maksegnit do 

not account for cumulative hillslope lengths or the overall length of the stone bund walls and thus 

how much total area those affect, which may lead to considerably lower SWC impacts at a farm 

or sub-basin level. For the sub-basin level experiment, (Figure 7-2b), where the area of each sub-

basin is approximately 30 ha, the difference of measured surface runoff between treated and 

untreated sub-basins was around 30%. However, the measured sediment yield declined by only 

approximately 10% during the 2012 rainy season, which is not consistent with the results reported 

by Gebremichael[43]. These results include a large range of uncertainty particularly for sediment 

yield, but also due to only a few synchronically recorded rainfall events in the treated and untreated 

sub-basins (Figure 7-2b). Moreover, the comparability of different sub-basins is limited as a result 

of the inherent landscape and rainfall related variability, even though the sub-basins border each 

other and the soil, slope, and landuse conditions are generally homogenous. However, the current 
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SWC impact research is ultimately designed to provide comprehensive SWC assessment and 

conclusive modeling parameters. Hence, as an early stage assessment, the CN_2 was reduced for 

agricultural HRUs in the treated areas with the target to achieve overall surface runoff reduction 

of about 30% on treated HRU’s compared to untreated conditions. The P-factor was set equal to 

0.85, because: (1) the CN_2 reductions already leads to reduced soil erosion on the treated areas, 

and (2) as a compromise between plot and sub-basin level sediment yield ratio outcomes. A small 

range of variability was assigned to the defined CN_2 and P-factor parameter sets during the 

calibration procedure, which allowed additional minor adjustments during the automated model 

optimization. These assumptions result in the stone bunds essentially replicating the effects of 

terraces[16], in terms of how the average slope length (SLSUBBSN) is modified to represent terrace 

effects in cropped landscapes.  

7.2.9 Calibration and validation data 

Different calibration approaches can be used in SWAT with respect to frequency and quantity of 

observation data available for model calibration. Nevertheless, the most powerful calibration is 

usually achieved through following a specific calibration order as suggested by Arnold[44]. In 

particular, streamflow data at the sub-basin or watershed level are required to perform accurate 

model hydrologic balance and streamflow calibration, followed by calibration of different 

pollutants such as sediment load, nutrient yields and other water quality variables. The calibration 

procedure is typically based on initial sensitivity analysis results (using a set of sensitive 

parameters) and is executed either manually or automatically[44,45]. Calibrations can be performed 

manually, which can be important for clearly understanding some processes[44]. However, 

automated calibration is more efficient for some applications[46], especially for complex hydrologic 

models. Different datasets may be required to evaluate model performance for different 

environmental conditions[45]. However, the number of attributes and the observation period 

required for proper consideration of the driving watershed processes may vary from site to site. 

Long term and good quality data is especially rare for the Ethiopian Highlands. In the present 

study, the entire simulation period is limited to field observation data from 2011 to 2012 

(calibration) and 2013 (validation). The calibration/validation model run was performed with a 

warm-up period of seven years to minimize the effect of non-equilibrium initial conditions such 

as soil moisture or residue cover[47]. In this research, daily streamflow and sediment yield recorded 

at the outlet of the watershed were used for both calibration and validation of the model. 
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Figure 7-5. Established rating curve at the outlet of Gumara-Maksegnit Watershed[48] 

Streamflow was obtained by converting quasi-continuous water level (m) records (using pressure 

transducer) into flow (m s-1) based on an experimentally developed water level and discharge rating 

curve[48] (Figure 7-5). The respective rating curve was established based on water level and manual 

flow velocity measurements using a one-dimensional flow velocity device analyzing several runoff 

events. The outlet of the watershed was constructed as a fixed cross section, which was built from 

stones, concrete and gabions to ensure an explicit and constant relationship between water level 

and discharge. Hysteresis effects related to the different stages of a peak wave (arriving and 

leaving) were found to have negligible impact on the calculation of the daily discharge, considering 

various sources of uncertainty (such as measurement errors and gaps). Moreover, a turbidity sensor 

was installed at the side wall of the fixed cross section to gain insight into sediment dynamics of 

the main stream. The turbidity meter was calibrated in the laboratory using on-site sediments to 

assess the fraction of suspended soil (g l-1) in water related to indirect light signal measurement. 

However, considerable data uncertainty has to be taken into account and the derived sediment 

concentrations may be used to describe general sediment dynamics solely. According to this, 

quasi-continuous turbidity readings were controlled and adjusted based on manual bottle sampling 

throughout the runoff monitoring period. Streamflow and sediment yield, which were derived 

through multiplying sediment concentration with the according flow volume, were compiled on a 
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daily basis usable for SWAT calibration. Figure 7-6 shows the derived hydrograph for the main 

outlet during approximately the four month rainy season in 2013. However, several unmeasured 

sediment concentration and streamflow data, mainly due to sensor failures or power supply errors, 

reveal the challenging monitoring conditions that exist at the site.  

 

Figure 7-6. Hydrograph at the main outlet and precipitation data of the four rain gauge stations in 

Gumara-Maksegnit watershed 

7.2.10   Model efficiency assessment 

Efficiency criteria are defined as a mathematical measure of how well a model simulation matches 

corresponding observed data[45]. SWAT calibration procedures, including the SWAT-CUP 

calibration tool, provide multiple model efficiency criteria to be used as an objective function for 

model calibration and validation[49]. The ‘Sequential Uncertainty Fitting 2’ (SUFI-2) procedure, 

available within SWAT-CUP software, was used to perform model sensitivity analysis, calibration 

and validation procedures[49] through iterative variation of user defined parameter sets. The SUFI-

2 algorithm accounts for various sources of uncertainty such as input data uncertainty, conceptual 

model uncertainty and parameter uncertainty[50]. In the present study, the goodness of the model 

fit related to streamflow and sediment yield was assessed based on root mean squared error 

(RMSE), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS) and coefficient of determination 

(R2). However, during the SWAT-CUP calibration multiple simulations are executed accounting 

for the user-adjusted set of parameters and related parameter ranges. This procedure can result in 

a very large set of simulations, depending on the number of parameters selected for calibration, 
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the user-adjusted range for parameter variation and the selected calibration methodology 

(including the number of iterations, parameter range discretization etc.).  

7.2.10.1  Root mean square error (RMSE) 

The root mean square error (RMSE) has been used as a standard statistical metric to measure model 

prediction error in meteorology, air quality, and climate research studies;  a smaller RMSE value 

indicates better model performance[51]. Although RMSE is sensitive to outliers as it places a lot of 

weight on large errors, it has been developed to confirm the reliability of models[52]. The RMSE 

does not provide information about the relative size of the average difference and the nature of 

differences comprising them[53]. The RMSE is calculated with the following equation: 

𝑅𝑀𝑆𝐸 = [
1

𝑛
∑ (𝐸𝑖 − 𝑂𝑖)

𝑛
𝑖=1

2
]

1/2

  [7-1] 

7.2.10.2  Nash-Sutcliffe Efficiency (NSE) 

The Nash-Sutcliffe efficiency is a normalized statistic that determines the relative magnitude of 

the residual variance (“noise”) compared with the measured data variance (“information”)[54]. The 

Nash-Sutcliffe efficiency is calculated as:  

𝑁𝑆𝐸 = 1 −
∑ (𝐸𝑖−𝑂𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−Ō)2𝑛
𝑖=1

   [7-2] 

The range of E lies between −∞ and 1.0 with E = 1 describing a perfect fit. Values between 0.0 

and 1.0 are generally viewed as acceptable levels of performance, whereas values < 0.0 indicate 

that the mean observed value is a better predictor than the model[55]. 

7.2.10.3  Percent bias (PBIAS) 

Percent bias (PBIAS) is defined as the average tendency of the observed data compared with their 

simulated counterparts[56]. The negative values of PBIAS indicate model overestimation bias, and 

positive values indicate model underestimation bias. The optimal value of PBIAS is 0.0, with low-

magnitude values indicating accurate model simulation[45]. PBIAS is calculated with the following 

equation:    
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PBIAS = [
∑ (𝑂𝑖−𝐸𝑖)∗100𝑛

𝑖=1

∑ (𝑂𝑖)𝑛
𝑖=1

]   [7-3] 

7.2.10.4  Coefficient of determination (R2) 

The coefficient of determination R2 is defined as the squared value of the coefficient of 

correlation[57]. It is calculated as follows: 

𝑅2 = [
∑ (𝑂𝑖−Ō) (𝐸𝑖−Ē)𝑛

𝑖=1

√∑ (𝑂𝑖−Ō)𝑛
𝑖=1

2√∑ (𝐸𝑖−Ē)𝑛
𝑖=1

2
]

2

  [7-4] 

Where n: Number of observations or samples; Oi: Observed value; Ei: Estimated values; Ō: Mean 

of observed values; Ē: Mean of estimated values; i: counter for individual observed and predicted 

values. 

The range of R2 lies between 0 and 1, and describes how much of the observed value is explained 

by the predicted value[55]. A value of 1 means the predicted value is equal to the observed value, 

where a value of zero means there is no correlation between the predicted and observed values. 

7.3  RESULTS AND DISCUSSION 

 In the Ethiopian Highlands, erratic and intensive rainfalls during the rainy season generate several 

peak runoff events (Figure 7-6), exposing steep sloped areas to potentially severe soil erosion. In 

SWAT, rainfall erosive impacts are estimated mainly as a function of the intensity and duration of 

rainfall events. The hydrograph at the outlet of the study watershed is dominated by the short 

period peak flows, occurring several times weekly whereas mean base flow was observed between 

1 and 2 m³ s-1 during rainy season of the calibration periods. Intense rainfall events correspond to 

peak flows on daily time scale which states that rainwater is routed through the watershed in sub-

daily time intervals. This refers to the steep sloped and the rugged mountainous watershed as well 

as the convective rainfall characteristics in the Ethiopian Highlands. At the outlet, peak discharges 

of about 30 m³ s-1 have been observed during the 2012 rainy season whereas extreme floods are 

expected to exceed this amount several times. In contrast, the SWAT model derives maximum 

mean daily discharges of less than 10 m³ s-1 for the whole calibration period of the 2011 rainy 

season. This may be due to the daily based runoff computation which can’t adequately account for 
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intense storms of short duration. Rainfall records for the Aba-Kaloye weather station (2011-2013); 

located in the lower central part of the watershed, suggest that more than 50% of the annual 

maximum daily rainfall occurs within 30 minute time periods during intense storms (Table 7-1). 

Considering the relatively small watershed area, Gumara-Maksegnit flood events are characterized 

by relatively short time periods (sub-daily) and distinct peak flows. Based on a simulation of the 

whole period of available climate input data (1997-2013), the calibrated model estimates 352 mm 

of average annual surface runoff, whereas recharge to the deep aquifer is approximately 19 mm, 

and entirely, more than 31% (373 mm) of rainwater balance is used for evapotranspiration. This 

low amount of ET in the study watershed was found to be attributable to land use/land cover 

change, mainly from expanding agricultural activities, as it was described by Alemu[60]. Generally, 

from field observation more water is drained out of the watershed as a result of the minimum soil 

conservation coverage, landuse change and the steep slope nature of the study watershed. In 

contrast, a similar studies by Yesuf[58] and Gebremicael[59] showed that 48% and 53% of the 

precipitation was converted to ET, respectively.  

Table 7-1. Annual maximum series rainfall in units of millimeters for Aba-Kaloye weather station 

Year 15m1* 30m 1h 3h 6h 12h 24h 48h 72h2* 

2011 20.2 38.6 42.6 47.4 54.6 68.2 74.6 94.4 119.2 

2012 16.8 29.6 37.2 40.4 42.8 54.6 58.8 69.6 83.6 

2013 15.6 27.8 31.4 36.6 40.2 49.6 52.4 64 79.2 

Durations in the table range from 15-minutes (15m1*) to 72 hours (72h2*). 

7.3.1 Model sensitivity analysis 

Sensitivity analysis supports the determination of the driving watershed processes and thus the 

identification of the most sensitive parameters through the assessment of the rate of change of 

model outputs with respect to defined changes of model inputs[44]. Fourteen hydrological (Table 

7-2) and eight sediment-related (Table 7-3) parameters were selected for the subsequent SWAT 

calibration on the bases of the sensitivity analysis. In this study, the CN_2 and channel cover factor 

were found to be the most sensitive parameters with respect to streamflow and sediment yield, 

respectively.   
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Table 7-2. List of model parameters sensitive to streamflow and fitted values in order of ranking 

Parameter name Description Adjusted or fitted parameter value Ranking  

r__CN2.mgt* Curve number -0.13 1 

r__RCHRG_DP.gw** Deep aquifer percolation fraction   0.3 2 

r__GWQMN.gw 

Threshold depth of water in the shallow 

aquifer required for return flow to occur (mm 

H2O) -0.13 3 

v__ALPHA_BF.gw Base flow alpha factor (days) 0.019 4 

r__GW_REVAP.gw Groundwater "revap" coefficient 0.4 5 

v__GW_DELAY.gw Groundwater delay time (days) 110 6 

v__CH_K2.rte 

Effective hydraulic conductivity in main 

channel alluvium (mm/hr) 82.49 7 

v__CH_N2.rte Manning’s "n" value for the main channel -0.00783 8 

v__ESCO.hru Plant uptake compensation factor  0.63 9 

r__SOL_K(1).sol Saturated hydraulic conductivity  -0.52 10 

r__REVAPMN.gw 

Threshold depth of water in the shallow 

aquifer percolation to the deep aquifer to 

occur (mm H2O) -0.2 11 

r__SLSUBBSN.hru Average slope length (m) 0.01 12 

v__SURLAG.bsn Surface runoff lag coefficient   0.3 13 

r__SOL_AWC(1).sol Soil available water storage capacity 0.28 14 
   *The qualifier (r__) refers to relative change in the parameter where the value from the SWAT database is multiplied by 1 plus the 

fitted value, while (v__) means the existing parameter value from the SWAT database is to be replaced by the fitted value.  

**The extension (e.g., .gw) refers to the SWAT input file where the respective parameter is located. 
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Table 7-3. Model parameters sensitive to sediment yield and fitted values in order of ranking 

Parameter name Description Fitted parameter value Ranking  

v__CH_COV2.rte* Channel cover factor  0.8 1 

v__CH_COV1.rte Channel erodibility factor 0.15 2 

v__SPCON.bsn** 

Linear parameter for calculating the 

maximum amount of sediment that can be 

reentrained during channel sediment routing 0.009 3 

v__PRF.bsn 

Peak rate adjustment factor for sediment 

routing in the main channel  1.4 4 

v__HRU_SLP.hru Average slope steepness (m/m) 0.18 5 

v__SPEXP.bsn 

Exponent parameter for calculating sediment 

reentrained in channel sediment routing 1.35 6 

r__USLE_P.mgt USLE equation support practice factor -0.01 7 

v__RSDIN.hru Initial residue cover (kg/ha) 3400 8 
*1The qualifier (v__) means the existing parameter value from the SWAT database is to be replaced by the fitted value, while (r__) refers 

to relative change in the parameter where the value from the SWAT database is multiplied by 1 plus the fitted value.   

**The extension (e.g., .bsn) refers to the SWAT file type where the parameter occurs. 
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7.3.2 Model calibration and validation 

The automated calibration (SWAT-CUP) for streamflow (Figure 7-7, top) leads to adequate daily 

calibration results, and validation (Figure 7-7, bottom) indicates satisfactory model fit according 

to the assessment criteria suggested by Moriasi[45,61]. For the calibration period NSE = 0.56, PBIAS 

= 6%, R2= 67 and RMSE = 0.62, while for the validation period NSE = 0.48, PBIAS = 18%, R2= 

53 and RMSE = 3.4. Meanwhile, the measured peak flows on the same day often over-predicted 

for the calibration period and under-predicted for the validation period (Figure 7-7). Some of the 

previously published SWAT studies for smaller watersheds in the northeast and northwest of 

Ethiopia tend to show weaker hydrologic results[18,21], which is an indication that it may be difficult 

to accurately represent processes and thus obtain better results for smaller watersheds. 

Nevertheless, obvious correspondence of the hydrographs of observed and simulated streamflow 

(Figure 7-7) for both, the calibration and validation period, indicates that SWAT is capable to 

simulate the hydrological regime of Gumara-Maksegnit watershed.  

 

Figure 7-7. Observed and simulated daily streamflow hydrograph at the outlet of Gumara-Maksegnit 

watershed, calibration (top) and validation (bottom) 
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In contrast, the sediment simulation results were unsatisfactory, especially during the validation 

period, which is shown by the low or even negative NSE values (i.e. 0.07 for the calibration period 

and –1.76 for the validation period). The low sediment yield fit is not surprising, particularly in 

highly erosive regions, where abrupt gully development may affect daily loads significantly. 

However, Betrie[16] reported that the fit between the model daily sediment predictions and the 

observed concentrations showed good agreement as indicated by very good values of the NSE = 

0.88 for the calibration period and NSE = 0.83 for the validation period at El Diem gauging station. 

During the calibration of streamflow about 39% of the data and during the validation period about 

31% of the data were bracketed by 95PPU, while during daily sediment yield simulation around 

18% of the data were bracketed for the calibration period and 13% of the data were bracketed for 

the validation period by 95PPU. The calculated R-factor[49] for the daily streamflow were 0.51 for 

the calibration periods and 0.49 for the validation period, whereas the R-factor[49] for the daily 

sediment yield were 0.23 for the calibration periods and 0.18 for the validation period. The daily 

sediment data show exceptionally large prediction uncertainties as compared to stream flow 

prediction. These model uncertainties might be as a result of some errors in the data input sources, 

data preparation and parameterization[62]. Moreover, the uncertainties might also be as a result of 

human and instrumental errors during data processing[63]. Even though kinematic wave runoff 

routing is used in the model, peaks of erosional forces of the channel runoff might be 

underestimated, especially in gully regions of changing flow directions because of gully meanders 

and/or locally changed flow conditions. Some of the potential reasons for such unsatisfactory 

sediment yield simulations could probably be, the length of overall measured data, which is quite 

short, strong hydrological heterogeneity and poor monitoring data as well as the use of USLE (or 

similar) equations in areas where rainfall happens under the form of short intense rainfall events. 

Nevertheless, calibration (and validation) of sediment yield on a monthly basis may give much 

better results, but due to plenty of gaps within the observed data, monthly balancing is not possible 

for this study. The trends as well as the order of magnitudes of sediment yield seem to be achieved 

through modeling, and therefore, the model may be able to describe long-term soil erosion 

characteristics, even if the event based predictions are uncertain. In this study, sediment 

concentration was also manually sampled at three stages of various flood events. Although 

selectively sampled sediment data may not be suitable for daily based model calibration, sediment 

data was used to establish a relation between runoff and sediment concentration (Figure 7-8). 
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Based on the manual bottle sampling upper and lower boundaries of the expected sediment yield 

for certain discharge was defined. Though it is commonly accepted that observed data are 

inherently uncertain[45], simulated sediment yield was compared to the expected sediment yield 

(Figure 7-9), and the observed sediment yield ranged from 2.9 to 27.6 Mg ha-1, whereas the 

calibrated model predicted 10.0 Mg ha-1 sediment yield for the observed period and 21.08 Mg ha-

1 annually. Similarly, Setegn[19] used SWAT to simulate the sediment yield simulations for the 

Anjeni, a small watershed in the northern highlands of Ethiopia, using different slope 

classifications and the results showed a very high spatial variability for the obtained annual 

sediment yields, which ranged from 0 to more than 65 Mg ha−1. 

 

Although stone bunds reduce the slope length, and decrease overland flow and sheet erosion, the 

calibrated model still predicted average annual sediment yields which were higher than the 

potential soil regeneration rate. This indicates a need for expanding SWC practices in the Gumara-

Maksegnit watershed to further mitigate soil erosion problems.  

  

Figure 7-8. Scatterplot of discharge and sediment concentration of the manual bottle sampling at the 

main outlet, where dashed lines indicate the lower and upper defined limit of the expected relation 

between discharge and sediment concentration 
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Figure 7-9. Comparison of the observed range of daily sediment yield (manual bottle sampling) and 

the simulated daily sediment yield at the main outlet of the watershed 

Compared to other studies from the literature, Gumara-Maksegnit watershed study may provide 

conclusive results, for example, SWAT was applied for streamflow simulation of Gedeb 

catchment, located at the upper Blue Nile River basin[12], which resulted in unsatisfactory model 

performance for both calibration and validation period. However, Koch[12] pointed out various 

reasons for unsatisfactory model results, which seem also valid for the Gumara-Maksegnit case 

study; i.e., poor monitoring data, strong hydrological heterogeneity and a difficult and remote 

terrain. In contrast, Setegn[19] reported very good SWAT model performance (NSE equal to 0.81 

during calibration) for monthly based sediment yield of Anjeni-gauged watershed. This may 

indicate a well performing model on one hand, but on the other hand the reasonable calibration 

result also demonstrates typical increasing accuracy of sediment yield prediction for monthly 

based assessment. Typically, model simulations show a much better fit as the comparison time 

scale increases[14,64,65]. There are also a number of previous SWAT studies in Ethiopia, which 

documented satisfactory streamflow results including studies that report daily comparisons within 

the Lake Tana drainage area[17,20]. However, these are for larger systems with longer overall 

observed data versus the smaller Gumara-Maksegnit watershed analyzed in this study with quite 

short measured data. 

Generally, this study documented insufficiencies for matching daily based sediment yield 

simulation with observed data; this might be a result of poor monitoring data (e.g. short observation 
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period, uncertain data inherent of the measurement technique, occasional data gaps, etc.). 

Moreover, missing records inhibit the model assessment on a larger time scale (such as monthly 

or yearly), which typically increases the goodness of the model fit. Hence, especially remote 

watershed modeling suffers from lack of continuous and good quality data, which has to be 

considered for semi-distributed eco-hydrological based modeling approaches for such areas.  

7.4  CONCLUSIONS 

In this research, SWAT watershed modeling was performed to describe the driving hydrological 

and sediment transport related processes of a 53.7 km2 watershed in the Ethiopian Highlands. The 

collected model input data, either from remote earth observation or direct field sampling, are 

supposed to match SWAT requirements, but limited monitoring data, strong hydrological 

heterogeneity and poor monitoring data as well as the use of USLE (or similar) equations in areas 

where rainfall happens under the form of short intense rainfall events are inevitably connected with 

a large model uncertainty. Another source of uncertainty is the simulated stone bund impacts 

applied through the surface runoff ratio (Curve Number) and support practice factor (P-factor) 

modification. However, model calibration executed through the SWAT-CUP software resulted in 

satisfactory model performance regarding streamflow. However, poor agreement between daily 

observed and simulated sediment yield resulted as indicated by the NSE =0.07 for the calibration 

period and –1.76 for the validation period. Nevertheless, overall sediment dynamics and the order 

of magnitude of various erosion events may be achieved through SWAT simulation. Because of 

acceptable streamflow simulation (NSE = 0.56 for the calibration period and 0.48 for the validation 

period), but considerable imprecise daily sediment yield prediction at the same time, it is possible 

that fluctuating sediment processes are influenced by abrupt gully bank breaks and gully network 

development. Highly variable sediment transport in the main stream may be also a result of distinct 

sub-daily runoff characteristics of the Gumara-Maksegnit River, and therefore, daily based rainfall 

and streamflow processing may be limited to describe variable sub-daily peak wave characteristics, 

inherently linked with variable sediment yield characteristics.  

Based on the calibrated SWAT model, the long-term average annual runoff at the main outlet was 

predicted to be 352 mm, while approximately one third of annual rainfall amount (373 mm) 

becomes evapotranspiration. The model predicts 21.08 Mg ha-1 as an average annual sediment 

yield, which is still alarming and far beyond the potential soil regeneration rate, especially for the 
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situation of largely applied SWC structures (mainly stone bunds) within the watershed. Thus, 

rethinking of performed land management strategies and intensification of SWC interventions may 

be needed to achieve sustainable agriculture. The Ethiopian Highlands are a fragile ecoregion 

worthy of protection and physically-based modeling may be one method to guide scaling up of 

efficient measures to counteract ongoing land degradation. Eventually, advanced SWC impact 

assessment may be needed to satisfyingly consider the interaction between various SWC structures 

and heterogenic landscape conditions to support proper decision making in the future. 
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8. Final conclusion 

In the present thesis, the linkages between selected soil properties across the different land uses as 

well as slope steepness classes were assessed in chapter 5 and the result showed that forested areas 

of the Gumara-Maksegnit watershed tend to have higher soil nutrients (SOC and TN) as well as 

higher silt and sand contents compared to agricultural lands, while bulk density is lower in the 

forest. The study also points out high levels of clay content and bulk density occurred on the gentle 

slope of agricultural lands. Higher clay content on flat agricultural areas might be due to the 

deposition of clay particles eroded from uphill slopes. The correlation statistics for some of the 

soil properties are significantly linked (correlated) to the others, which may support the allocation 

of the most endangered regions concerning land degradation. However, basic linkages valid for all 

land uses and slope steepness classes have not been detected. Meanwhile, the performance of three 

interpolation techniques for predicting the spatial distribution of selected soil properties at a sub-

watershed scale were discussed in chapter 6 and the study revealed that AP, SOC and clay contents 

were the most variable soil properties, with CV greater than 0.35 while, silt and sand contents were 

moderately variable, with CV vary from 0.18 to 0.30. Cross-validation was used to get the best 

agreement between the observed data and the predicted values of selected soil properties. This 

study considered 5 to 25 neighboring points for each interpolation method. Meanwhile, the five 

kernel functions and a power of 1, 2, and 3 were tested for RBF and IDW, respectively. The best 

kernel function for RBF was found to be completely regularized spline, while the best weighting 

parameter for IDW was found to be a power of two. 

The predictions of the selected soil properties except AP were relatively unbiased as the mean 

errors were almost equals to 0 and the Nash-Sutcliffe efficiency for each soil property except silt 

showed a positive value (E ≥ 0.17). When comparing the resulting values of the efficiency criteria, 

for each interpolation technique, the OK method was best performed for SOC and sand contents. 

RBF method was produced more accurate maps for AP and clay contents, while IDW performed 

best for interpolating topsoil pH. Overall, the results of the cross-validation statistics for each 

spatial interpolation method showed that there was no single interpolation method that can be 

considered significantly outperformed the others; hence, one of the interpolation method could be 

applied for surface map generation of a soil property in future studies of similar regions. 
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The results of chapter 7 showed that the SWAT model calibration executed through the SWAT-

CUP software resulted in satisfactory model performance regarding streamflow. However, poor 

agreement between daily observed and simulated sediment yield resulted as indicated by the NSE 

=0.07 for the calibration period and –1.76 for the validation period. Because of acceptable 

streamflow simulation (NSE = 0.56 for the calibration period and 0.48 for the validation period), 

but considerable imprecise daily sediment yield prediction at the same time, it is possible that 

fluctuating sediment processes are influenced by abrupt gully bank breaks and gully network 

development. Highly variable sediment transport in the main stream may be also a result of distinct 

sub-daily runoff characteristics of the Gumara-Maksegnit River, and therefore, daily based rainfall 

and streamflow processing may be limited to describe variable sub-daily peak wave characteristics, 

inherently linked with variable sediment yield characteristics. Based on the calibrated SWAT 

model, the long-term average annual runoff at the main outlet was predicted to be 352 mm, while 

approximately one third of annual rainfall amount (373 mm) becomes evapotranspiration. The 

model predicts 21.08 Mg ha-1 as an average annual sediment yield, which is still alarming and far 

beyond the potential soil regeneration rate, especially for the situation of largely applied SWC 

structures (mainly stone bunds) within the watershed. Thus, rethinking of performed land 

management strategies and intensification of SWC interventions may be needed to achieve 

sustainable agriculture. In general, this study had verified that different approaches which include 

spatial soil variability, erosion dynamics, land management, landuse as well as topographic 

conditions might help to gain a deeper insight into watershed scale hydrology, land degradation 

issues and evaluate various soil and water conservation interventions.  
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