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a  b  s  t  r  a  c  t

Detailed  prediction  of  end-use  water  demand  at multiple  spatial  and  temporal  scales  is  essential  for
planning  urban  water  supply  using  multiple  water  sources  based  on fit-for-purpose  criteria.  This  paper
presents  the  application  of  a  stochastic  model  to predict  urban  residential  end-use  water  demands  at
multiple  spatial  and  temporal  scales.  The  model  includes  an  improved  representation  of spatial  and
temporal  variability  of  urban  residential  water  use  by considering  the effect  of  a significant  number  of
water demand  drivers  such  as  household  size,  dwelling  type,  appliance  efficiency,  availability  of  water
end-uses/appliances  at dwellings,  presence  of  children,  presence  of people  at  home,  diurnal  behavioral
patterns  and  temperature.  A  stochastic  approach  is used  to  describe  the variability  of  residential  water
demand  that  is  not  captured  by these  known  explanatory  variables.  The  model  is validated  against  quar-
terly  meter  readings  and  hourly  water  use  data.  The  validation  of  household  water  demand  at  a  quarterly
scale  with  billing  data  shows  Correlation  coefficients  (R2) ranging  between  90%  and  96%  and  Nash-
Sutcliffe  coefficients  ranging  between  0.70 and 0.92  for the  four seasons  analyzed  which,  verifies  the

predictive  capacity  of the  model.  The  model  validation  also  demonstrates  the  statistical  stability  of the
selected  probability  distributions  used  in  modeling  the  unexplained  behavior  of  urban  residential  water
consumers.  The  hourly  scale  validation  also  demonstrates  a satisfactory  predictive  capacity  in  predict-
ing  household  water  demand.  This  also  evidences  the  effectiveness  of  the  modeling  approach  to predict
urban  residential  water  demand  at multiple  temporal  scales.

©  2016  Elsevier  B.V.  All  rights  reserved.
. Introduction

Integrated Urban Water Management (IUWM)  is an approach
hat has emerged in recent years to address the problem of water
carcity with sustainable solutions. Understanding water demand
y end-use at multiple temporal and spatial scales is a key consid-

ration for implementing IUWM.  This understanding is essential
or matching water demands to sources of appropriate quality
nd quantity (fit-for-purpose water supply) in which water sup-
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ply sources such as rooftop water, stormwater and recycled water
are available at various spatial scales (i.e. dwelling, development,
city) and temporal scales (i.e. sub-daily, daily, seasonal).

Detailed prediction of water demand requires the ability to
describe demand responses to changes such as demographics,
household characteristics and weather (Kenney et al., 2008; House-
Peters et al., 2010; Makki et al., 2015). Rathnayaka et al. (2014)
studied the variables explaining the significant variability in house-
hold water use and found that the variables household size,
typology of dwelling, appliance efficiency, presence of children
under 12 years of age, presence of end-uses/water use appliances
can explain about 40% of the variability among households. Further,
the same authors highlighted the importance of representing this

residual and unknown variability which can be attributed to behav-
ioral factors such as culture and personal preferences among water
users in demand modeling. Findings confirm that socio-economic
factors including ethnicity, education and income affect water use
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Fig. 1. Key com

ehavior (Makki et al., 2015; Garcia-Cuerva et al., 2016). However,
navailability of such data prevented these factors being studied in
etail. Rathnayaka et al. (2015) also studied the temporal variabil-

ty of water end-uses at multiple scales to understand dynamics of
ousehold water use over time showing that end-uses have sta-
istically significant differences between seasons. In a later study,
athnayaka et al. (forthcoming) also found that water demand of
ome end-uses vary between weekdays to weekends. The same
uthors conducted an extensive literature review that revealed
he lack of a model that integrates these complex water demand
ynamics and their underlying variables into a single framework
hat predicts end-use water demand at multiple scales, especially
t small scales, explores “what if” scenarios to support decision
aking and has a robust explanatory capacity to support IUWM

nd planning.
In order to represent these complex water demand dynam-

cs at multiple spatial and temporal scales, Rathnayaka et al.
forthcoming) have developed an improved model to predict urban
esidential water demand. This paper presents the application of
his modeling method to predict water end-use demand and the
alidation of the model against household water use. Section 2
riefly describes the modeling method while Section 3 presents
he application of the modeling method to water end-uses. Finally,
he validation of the model at different temporal scales is presented
n Section 4 followed by the conclusion.

. The urban residential end-use water demand model

The urban residential end-use water demand model applied
n this study is presented in detail in a companion paper by
athnayaka et al. (forthcoming) and briefly summarized herein. The
odel consists of several steps where different variables are con-

idered providing the capacity to predict end-use water demands
t multiple spatial and temporal scales. Fig. 1 shows the key com-
onents of the model.

The model consists of 23 User Groups (UG) based on household
ize, dwelling type and presence of children less than 12 years of
ge. This is a unique feature of this model, which also considers
he presence of end-uses and efficient appliances in households
nd behavioral differences between these different types of users.
nique end-use models developed for each user group describe the
nknown variability within each user group. The end-use models
redict demand of shower, toilet, tap, bath, dishwasher, clothes
asher, evaporative cooler and garden irrigation water end-uses.

ach end-use is modelled using predictor variables in which prob-

bility distributions are used to represent the unknown behavior
f water consumers. In addition, distinct probability distributions
re used to represent altered water use behaviors due to weather,
uration of people at home or appliance efficiency.
ts of the model.

3. Application of the modeling concept to water end-uses

The application of the model to different end-uses is described
here in detail followed by the validation of the aggregate result of
all the end-use models. The predictive capacity of individual end-
use water demand models could not be validated against end-use
data due to the lack of end-use data.

Household water demand is obtained by summing predicted
end-use water demands as described by Rathnayaka et al.
(forthcoming). End-use water demand is predicted by considering
whether the end-use is present in the household. The respective
volume of water demand is determined as described in detail next
(Rathnayaka et al., forthcoming).

3.1. Shower water demand model

The volume of shower water demand is predicted considering
appliance efficiency, season and behavior of people. The penetra-
tion rate of efficient showers for each UG is considered in modeling
shower water demand at UG level while, shower water demand
per day per household is predicted using three predictor variables:
frequency, duration and flow rate (Eq. (1)):

WDs = Fr × Dur × G (1)

Where “WDS′′ is shower water demand per household per day, “Fr”
is the frequency of shower use per household per day, “Dur” is the
duration (Min) of a shower event and “G” is the flow rate (L/min) of
a shower event. Random values for shower frequency are generated
using a specifically identified probability distribution. If shower fre-
quency is greater than zero, then random numbers are generated
for flow rate and duration according to the identified Probability
Distribution Functions (PDF).

General regression analysis (Freund et al., 2006) was used to
determine the degree of correlation between predictor variables.
From this analysis, frequency, flow rate and duration are found to
be independent variables. Therefore, the volume of shower water
demand can then calculated by the product of the three predictor
variables.

Shower water use in winter shows a statistically significant dif-
ference from summer (Rathnayaka et al., 2014). Therefore, shower
water demand for the two  seasons is modelled separately using
probability distributions representative of frequency, flow rate and
duration variables for the season. The data used in identifying
these probability distributions, and methods used in selecting the
best-fit probability distribution are discussed by Rathnayaka et al.

(forthcoming). The specific probability distributions that have been
shown to describe each user group in winter are shown in Table 1.

The Poisson distribution fits shower frequency data for most
user groups particularly the user groups with larger household
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Table  1
Probability distributions selected to describe shower water demand predictors in winter.

User group Shower frequency Shower duration Shower flow rate
−Efficient

Shower flow rate-
Standard

1 Binomial
(n = 1,p = 0.70256)

GenExtreme(k = 0.1676,� = 1.4092,� = 4.1966) Nakagami
(m = 1.4832,� = 58.059)

Wakeby
(4.1244,
0.23201,0,0,15.811)

2  Binomial (1,0.70256) GenExtreme(0.1676,1.4092,4.1966)
3  Poisson (� = 0.68132) GenExtreme (0.18581,2.1292,3.9193)
4  Binomial(27,0.02564) JohnsonSB(� = −0.08409,ı = 0.69693,� = 6.9417,� = 1.5865)
5  Binomial(27,0.02564) JohnsonSB(−0.08409,0.69693,6.9417,1.5865)
6  Poisson (2.0784) JohnsonSB(2.2753,1.5152,21.367,1.5586)
7  Poisson (2.3077) JohnsonSB(1.3907,1.1428,13.179,2.1243)
8  Binomial (13,0.13762) JohnsonSB(2.9253,1.5111,48.691,0.15906)
9  Poisson (1.8097) JohnsonSB(2.8292,1.4843,47.207,0.17956)
10  Poisson (2.6) Triangular(m = 5.0833,a = 3.5288,b = 11.047)
11  Poisson (2.6) Triangular(5.0833,3.5288,11.047)
12 Poisson (2.6) Triangular(5.0833,3.5288,11.047)
13  Poisson (2.6) Triangular(5.0833,3.5288,11.047)
14  Poisson (2.3333) LogPearson3 (� = 13.201,� = −0.10329,� = 2.9232)
15  Poisson (2.3172) GenExtreme (0.13408,2.3988,6.0437)
16  Poisson (2.6538) GenLogistic (k = −0.0432,� = 1.1263,� = 7.0638)
17  Poisson (2.6538) GenLogistic (−0.0432,1.1263,7.0638)
18 Poisson (2.1963) GenLogistic(0.21149,1.5326,5.7424)
19  Poisson (3.6093) Dagum(k = 0.76588, � = 4.2196, � = 7.1042, � = 1)
20  Poisson (2.4103) Wakeby (� = 16.149,� = 7.8386,� = 3.9213,ı = 0.20712,� = 1.7041)
21  Poisson (4.2436) Wakeby(11.402,6.4897,1.4209,−0.08345,3.8139)
22  Poisson (3.7451) Dagum(0.82294,4.6915,5.5979,1)
23  Poisson (4.1538) GenLogistic(0.02646,0.7182,7.5854)
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ig. 2. Probability distributions fit into shower frequency per household (hh) per
ay  (d).

izes while the Binomial distribution fits shower frequency data
n rest of the user groups (Table 1). Binomial distribution is used
o explain integer events where number of trials seems fixed
ompared to Poisson distribution that explains events that seem
o take place over and over again in a completely haphazard
ay (Wolfram, 2016). For illustration purpose, Fig. 2 displays the
istogram obtained for winter shower frequency data of UG 9
Household size 2, detached house with no children) and it shows
hat the Binomial, Geometric and Poisson probability distributions
t to the observed data set.

Based on Anderson-Darling (A-D) test and histograms, the Pois-
on distribution is shown to be the best-fit PDF to describe shower
requency for UG 9.

Probability distributions such as the Burr distribution and
og-logistic distribution which commonly fit the winter shower
uration data for all user groups although it does not represent

he best-fit probability distribution for each user group. Depending
n distribution parameters, the Burr distribution and Log-logistic
istribution may  be unimodal with a single “peak” or monotone
ecreasing with a potential singularity approaching the lower
Fig. 3. Best-fit probability distribution for shower duration-UG 9, Winter
(min/event).

boundary of its domain (Wolfram, 2016). In addition, these proba-
bility distributions have tails that are “fat” in the sense that its PDF
decreases algebraically rather than exponentially for large values
(Wolfram, 2016). For example, the best-fit probability distribution
to describe winter shower duration for UG 9 is the Johnson SB distri-
bution as shown in Fig. 3. Johnson SB distribution is unimodal with
a single “peak”, though its overall shape (its height, its spread, and
its concentration near the axis) is completely determined by the
values of its arguments and it has “thin” tale in the sense that the
PDF decreases exponentially rather than decreasing algebraically
for large values of x (Wolfram, 2016). Accordingly, Johnson SB dis-
tribution explains the shower duration of UG 9 (Fig. 3).

Further, distinct probability distributions are identified for mod-
eling efficient and standard shower flow rates (Table 1). Standard
showers use 15 to 25 L/min specified in the Water efficiency

labelling and standards (Australian Government, 2013) although
flow rates can be smaller depending on user adjustment. Using
this criterion, shower flow rates of standard showers greater than
15 L/min occurring just once during the measurements are grouped
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Table  2
Descriptive statistics for flow rates of efficient and standard showers.

Descriptive statistics Efficient showers Standard showers

Mean (L/min) 6.99 19.16
Coefficient of Variation 0.43 0.14
Sample Variance 9.17 7.36
Range 15.79 9.07
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Minimum (L/Min) 0.17 16.13
Maximum (L/Min) 15.96 25.20
Count 5651.00 157.00

eparately from the water efficient showers that use less than
5 L/min. Table 2 shows the descriptive statistics for flow rates of
fficient and standard showers and their variability.

The Nakagami distribution closely fits the flow rates (L/min)
f efficient showers while the Wakeby distribution fits the flow
ate data from standard showers in winter (Table 1). These same
robability distributions fit the summer data albeit with different
istribution parameters (Table 3).

.2. Toilet water demand model

Frequency of toilet water use and flush volume are used to pre-
ict toilet water demand as shown in Eq. (2). Alternative probability
istributions are used to describe dual and single flush volumes
ith their specific penetration rates for each efficiency type at user

roup level (Rathnayaka et al., Forthcoming).

DToi = Fr × Vol (2)

here “WDToi” is water demand for toilet use in liters per house-
old per day, “Fr” is number of toilet use events per household per
ay and “Vol” is flush volume in liters per event.

Toilet use frequency is determined stochastically using the Neg-
tive Binomial and Poisson probability distributions as listed in
able 4.
A value for toilet flush volume is generated when the ran-
om number generated for frequency of toilet use is greater than
ero. Toilet flush volume varies according to their efficiency type
Rathnayaka et al., 2014). Households with toilet flush volume 9

able 3
robability distributions selected to describe shower water demand predictors in summe

User group Shower frequency Shower duration 

1 Poisson(0.95349) Dagum(0.56122a,2.2302,4.161

2  Poisson(0.95349) Dagum(0.56122,2.2302,4.161,1
3  Poisson(0.525) Wakeby(375.72,153.33,4.1619
4  Poisson(1) JohnsonSB(0.79363,0.53421,13
5  Poisson(1) JohnsonSB(0.79363,0.53421,13
6  Poisson(2.25) JohnsonSB(0.47119,1.3037,11.9
7  Poisson(2.6957) Wakeby(9.2562,3.2141,1.984,−
8  Poisson(2.1598) GenExtreme(0.09075,1.9927,4
9  Poisson(2.1825) GenExtrem(0.08839,2.0142,4.8
10 Poisson(2.1957) Weibull(� = 1.3905,� = 3.4792,�
11  Poisson(2.1957) Weibull(1.3905,3.4792,3.273)
12 Poisson(2.1957) Weibull(1.3905,3.4792,3.273)
13 Poisson(2.1957) Weibull(1.3905,3.4792,3.273)
14 Poisson(2.6555) Wakeby(7.0838,3.5141,1.4049
15 Poisson(2.9799) Weibull(1.5864,5.2206,2.0924)
16 Poisson(2.2727) GenLogistic(0.3001,1.6897,7.02
17 Poisson(2.2727) GenLogistic(0.3001,1.6897,7.02
18 Poisson(2.8652) Gaussian(� = 29.866,� = 5.3224
19 Poisson(3.9919) Burr(k = 1.1058,� = 4.0642,� = 5
20  Poisson(3.2873) InvGaussian(� = 24.988, � = 6.6
21  Poisson(3.1591) GenExtreme(0.30093,1.3403,5
22 Poisson(4.2754) Dagum(0.9349,4.0642,4.8931,1
23 Poisson(2.6) Wakeby(242.31,58.219,3.0675

a Sensitivity of these decimals are considerable.
tion and Recycling 118 (2017) 1–12

and 11 L/event are classified as single flush toilets while house-
holds with toilet flush volume 4.5/3, 6/3, 9/4.5, 11/6 L/event are
classified as dual flush toilets. Descriptive statistics for single and
dual flush volumes show the significant difference and the vari-
ability of flush volume for two  types of toilets (Table 5). These
statistical differences demonstrate the importance of using specific
probability distributions to describe this predictor variable based
on efficiency type. Comparatively few data points are available for
single flush toilets which explains the weak visual fit of the prob-
ability distribution with the observed data for single flush toilets
(Fig. 4).

The Gen-extreme value and Nakagami distributions show the
best-fit for dual and single flush volumes, respectively, which are
then applied based on the percentage of dual and single flush toilets
in each user group.

3.3. Tap water demand model

Tap water use includes bathroom, laundry and kitchen water
use. Tap water demand is predicted from frequency of tap use and
volume of tap use (Eq. (3)):

WDTap = Fr × Vol (3)

where “WDTap” is tap water demand in liters per household per
day, “Fr” is events of tap use per household per day and “Vol” is
event volume of tap use in liters.

Frequency values for tap use are first generated and if they are
greater than zero, a stochastic value for tap volume is generated to
calculate the volume of tap use. Table 6 summarizes the selected
best-fit probability distributions to describe tap frequency and vol-

ume  for each user group. Fig. 5 shows a typical example of the
probability distributions fit for frequency data of UG 14. It can be
observed that the Negative Binomial is the best-fit distribution for
UG 14 as shown by the application of the A-D test.

r.

Shower flow rate
−Efficient

Shower flow
rate-Standard

,1) Nakagami
(1.4313,55.631)

Wakeby
(21.188,28.002,3.
2996,0.05917,14.51)

)
,−0.16611,0)
.058,3.9338)
.058,3.9338)
84,0.75463)
0.22502,2.1686)

.8056)
111)

 = 3.273)

,−0.07539,2.2074)

14)
14)

,� = 0.21316)
.4761,� = 1.0151)
184,� = 0.29174))
.3609)
)

,−0.4029,0)
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Table  4
Probability distributions selected to describe predictor variables of toilet water demand in all user groups.

User group Toilet frequency Volume of toilet use-Dual flush toilets Volume of toilet use-Single flush toilets

1 NegBinomial(n = 9,p = 0.58266) GenExtreme value(0.0111, 1.881, 4.5242) Nakagami (2.2743, 97.134)
2  NegBinomial(9,0.58266)
3 Poisson(4.2067)
4 Poisson(7.825)
5 Poisson(7.825)
6 NegBinomial(5,0.38353)
7 NegBinomial(6,0.40528)
8 NegBinomial(3,0.26754)
9 NegBinomial(3,0.27352)
10 NegBinomial(6,0.38251)
11 NegBinomial(6,0.38251)
12 NegBinomial(6,0.38251)
13 NegBinomial(6,0.38251)
14 NegBinomial(3,0.27937)
15 NegBinomial(3,0.23443)
16 Poisson(9.9077)
17 Poisson(9.9077)
18 NegBinomial(5,0.3275)
19 NegBinomial(3,0.19162)
20 NegBinomial(6,0.3443)
21 NegBinomial(5,0.24745)
22 NegBinomial(9,0.35135)
23 NegBinomial(5,0.2393)

Fig. 4. Probability distribution fits for observed toilet flush volume data (L/event).

3

u
i

Table 5
Descriptive statistics for single and dual flush volumes.

Descriptive Statistics Single flush toilets Dual flush toilets

Mean (L) 9.24 5.63
Coefficient of Variation 0.37 0.43
Sample Variance 11.68 5.98
Range 20.67 20.79
Fig. 5. Best-fit probability distributions for tap frequency for UG 14.

.4. Bath water demand model
Bath water demand is predicted by the occurrence of bath
se and volume of bath water use variables (Eq. (4)). Consider-

ng the fact that half of the households with bath do not use bath
Minimum (L) 0.04 0.03
Maximum (L) 20.71 20.82
Sample size 1484 47446

(Rathnayaka et al., forthcoming), its volume is scaled by the number
of households in each user group and by half the bath penetration
rate in each user group to predict the bath water demand of each
user group.

WDBath = Occur × Vol (4)

where “WDbath” is bath water demand in liters per household per
day, “Occur” is a binary variables (1,0) that represents whether
household occupants use the bath within the day and “Vol” is vol-
ume  of bath water use in liters per household per day.
Values for occurrence of bath use are generated randomly using
the best-fit probability distribution. If bath use has occurred, a value
for bath volume is then generated. The bath water use data was not
grouped into user groups due to the small number of data points.
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Table  6
Probability distributions selected to describe frequency and volume variables of tap water demand for all user groups.

User group Tap frequency Tap volume/event

1 Negative binomial (n = 7,p = 0.32862) GenExtreme(k = 0.19457,� = 0.35975,� = 0.77299)
2  Negative binomial (7,0.32862) GenExtreme0.19457,0.35975,0.77299)
3  NegBinomial(3,0.07126) LogPearson3(� = 67.484,� = −0.06824,� = 4.3405)
4  NegBinomial(3,0.08095) Wakeby(� = 24.227,� = 23.557,� = 0.30506,	 = −0.14727,� = −0.06012)
5  NegBinomial(3,0.08095) Wakeby(24.227,23.557,0.30506,−0.14727,−0.06012)
6 Geometric(p = 0.0222) Wakeby(30.692,71.016,0.91058,−0.28526,0)
7  Geometric(0.01957) GenExtreme(−0.03479,0.47299,0.9963)
8  NegBinomial(2,0.03952) LogPearson3(137.31,0.04787,−6.5344)
9  NegBinomial(2,0.03977) LogPearson3(144.93,0.04675,−6.7338)
10  NegBinomial(5,0.08592) GenExtreme(0.1985,0.24683,0.69766)
11  NegBinomial(5,0.08592) GenExtreme(0.1985,0.24683,0.69766)
12  NegBinomial(5,0.08592) GenExtreme(0.1985,0.24683,0.69766)
13  NegBinomial(5,0.08592) GenExtreme(0.1985,0.24683,0.69766)
14  NegBinomial(2,0.05232) GenLogistic(0.33891,0.43888,1.2896)
15  Geometric(0.02133) GenExtreme(0.32658,0.45664,1.0407)
16  NegBinomial(3,0.04246) LogPearson3(35.385,0.06461,−2.4449)
17  NegBinomial(3,0.04246) LogPearson3(35.385,0.06461,−2.4449)
18  NegBinomial(3,0.05381) GenExtreme(0.11261,0.38155,0.84423)
19  Geometric(0.01308) LogPearson3(28.118,0.09957,−2.6569)
20  Geometric(0.01284) GenLogistic(0.25963,0.25224,1.0148)
21  NegBinomial(6,0.09215) Wakeby(1.8277,4.029,0.53135,−0.14942,0.47637)
22  NegBinomial(3,0.03239) LogPearson3(91.757,−0.04687,4.375)
23  NegBinomial(3,0.03162) GenExtreme(−0.09279,0.24918,1.0763)
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Fig. 6. Probability distributions fit for bath volume.

his led us to identify the best-fit probability distribution for bath
ccurrence and volume that are common for all residential users.
he Binomial distribution is the best-fit for occurrence of bath use
hat generates binary values. The Log-normal distribution is the
est-fit probability distribution to describe the volume of bath use
ccording to the A-D test, albeit the Pearson 6 and Log-Pearson 3
lso fit bath volume data equally well (Fig. 6).

.5. Dishwasher water demand model

Dishwasher water demand is predicted using the occurrence
nd volume predictor variables (Eq. (5)). To predict dishwasher
ater demand, data is generated randomly for occurrence of a dish-
asher event using the identified best-fit probability distribution.

f the event has occurred, then the volume of dishwasher water use
s generated in a similar fashion to occurrence:

DDish = Occur × Vol. (5)
here “WD Dish” is the dishwasher water demand in liters per
ousehold per day, “Occur” is a binary variable (0,1) that shows
hether the household operates the dishwasher on the day and

Vol” is dishwasher water use in liters per household per day.
Fig. 7. Probability distributions fit for occurrence of dishwasher use for UG 12 data.

The percentage of dishwasher ownership or the penetration rate
is applied to each user group when the model is used to predict
dishwasher water demand of a group of households. About 30% of
the households in CWW  (City West Water) and YVW (Yarra Valley
Water) data samples do not have a dishwasher at home. Therefore,
the amount of data to model dishwasher water demand of some
user groups is rather limited. Several user groups from UG 1 to
8 have no data while some of them have less than 5 records. To
overcome this limitation, it is assumed that households of size 1
and 2 behave similarly for dishwasher use and the combined data
is used to model dishwasher water demand for UGs 1 to 8.

The Bernoulli distribution fits the data of dishwasher use occur-
rence for all UGs albeit with different probability distribution
parameters. Table 7 presents the probability distributions selected
to describe occurrence and volume variables of dishwasher water
demand for each user group.

Other probability distributions such as Poisson, Geometric and

Uniform distributions also fit the occurrence data of dishwasher
use (Fig. 7). These probability distributions together with observed
data of UG 12 are displayed in Fig. 7.
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Table  7
Probability distributions selected to describe occurrence and volume variables of dishwasher water demand for each user group.

User group Occurrence of dishwasher Dishwasher volume (L/day)

1to 8 Bernoulli(p = 0.11111) Wakeby(33.063,3.6211,1.7957,0.29939,1.9337)
9  Bernoulli(0.302) GenLogistic(0.18561,3.6817,13.868)
10 Bernoulli(0.46429) Wakeby(139.75,9.233,2.5128,0.33236,0.37138)
11 Bernoulli(0.46429) Wakeby(139.75,9.233,2.5128,0.33236,0.37138)
12 Bernoulli(0.46429) Wakeby(139.75,9.233,2.5128,0.33236,0.37138)
13 Bernoulli(0.46429) Wakeby(139.75,9.233,2.5128,0.33236,0.37138)
14 Bernoulli(0.31481) Wakeby(48.111,7.4228,5.9416,0.10569,4.6363)
15 Bernoulli(0.41226) GenExtreme(0.08354,5.9746,14.568)
16 Bernoulli(0.69231) Wakeby(195.7,32.61,22,−1.0934,0)
17 Bernoulli(0.69231) Wakeby(195.7,32.61,22,−1.0934,0)
18 Bernoulli(0.4507) Wakeby(39.011,4.6321,3.0666,0.44524,2.1005)
19 Bernoulli(0.37161) Wakeby(78.14,15.014,13.99,−0.16433,1.7366)

GenGamma(1.0179,2.735,4.7865,1)
Wakeby(53.893,3.9658,0.56794,0.33346,1.0849)
GenLogistic(0.23234,5.31,15.078)
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20  Bernoulli(0.49049) 

21 Bernoulli(0.45872) 

22 to 24 Bernoulli(0.43966) 

.6. Clothes washer water demand model

Clothes washer water demand is predicted using occurrence and
olume predictor variables (Eq. (6)):

Dcloth=Occur×Vol (6)

here “WDcloth” is water demand for clothes washer per household
er day, “Occur” is a binary variable (0,1) that describes whether
he clothes washer is operated on the day, and “Vol” is the volume
f water used by the clothes washer per household per day.

Since clothes washer water use shows a statistically significant
ifference between weekdays and weekends (Rathnayaka et al.,
orthcoming), the occurrence of clothes washer use is modelled
istinctively for weekends and weekdays by alternative probabil-

ty distributions. If the clothes washer is operated, then a value
or volume of clothes washer water use is generated randomly
sing the respective probability distribution. The volume is deter-
ined using distinctive probability distributions identified for top

nd front loader clothes washers and they are used based on the
espective penetration rates in each user group (Rathnayaka et al.,
orthcoming). This grouping reduces the data available for model
lothes washer water use for each user group level due to the lim-
ted amount of data available for common water end-uses such
s clothes washer, dishwasher, evaporative cooler and irrigation
ompared to everyday water end-uses. To overcome this limita-
ion, data from similar household sizes were aggregated to have
ufficient aggregate data that allows the development of separate
odels for each household size.
Table 8 shows the best fit probability distributions for each

robability space of the clothes washer water demand model.
he Bernoulli distribution shows the best-fit for occurrence of
lothes washer use events, both for weekends and weekdays albeit
ith different distribution parameters for different household sizes

Table 8).

.7. Garden irrigation water demand model

The literature identifies maximum daily temperature, occur-
ence and magnitude of rainfall events as the main determinants
f irrigation water demand (Duncan and Mitchell, 2008; Maidment
nd Miaou, 1985, 1986). Rathnayaka et al. (2014) found that gar-
en size and irrigation equipment also explain summer water use of
ouseholds with gardens. In light of these findings, it is also impor-

ant to study the effect of alternative water supplies such as grey
ater and rainwater on irrigation water demand. However, lack

f sufficient data precluded this factor to be included in this study.
nstead, we take an alternative temperature-determined stochastic
Fig. 8. Daily irrigation water use of individual households vs. maximum daily tem-
perature (Celsius).

model approach based on actual observations to describe irrigation
water demand.

This model considers penetration rate of gardens and irrigation
volume based on three predictor variables – occurrence, duration
and flow rate – thus increasing the adaptability of the model to suit
the significant variability among individual households in the use
of alternative irrigation methods:

WDIrri = Occur × G × Dur (7)

Where “WDIrri” is the irrigation water demand per household per
day, “Occur” is a binary variable (0, 1) that describes whether occu-
pants irrigate their garden on the day, “G” is flow rate (L/min) and
“Dur” is total duration of irrigation water use (min/d). Fig. 8 shows
a scatter plot between daily irrigation water use data at household
scale and daily maximum temperature.

The variability of irrigation water use in summer above 20 ◦C is
significantly large among individual households for the same tem-
perature while this variability is smaller in winter. Both the CWW
and YVW end-use data show that water is used for garden irriga-
tion also during winter. The data sample contain 225 daily records
of winter irrigation events (9% of total records) showing that irri-
gation water use in winter is similar in magnitude to dishwasher
and bath water use.

Further analysis was  carried out using two  sample t-tests to
understand the difference in irrigation water use variables between
winter and summer and the results are shown in Table 9.
Although the three variables show a statistically significant dif-
ference between the two  seasons, only the duration and occurrence
variables show a considerable difference in magnitude compared
to their average values.
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Table  8
Probability distributions selected to describe occurrence and volume variables of clothes washer demand.

User group Occurrence of clothes washer event/day Volume of clothes washer use(L/day)

weekend Week day Front loader Top loader
1to  3 Bernoulli

(0.23265)
Bernoulli
(0.20606)

JohnsonSB(� = 0.89007,ı = 0.77908,
�  = 152.37,� = 22.925)

Burr (0.69356,4.863,137.24,1)

4 to 9 Bernoulli
(0.25349)

Bernoulli
(0.20849)

GenLogistic(0.2091,25.215,63.201) Dagum(0.78806,2.597,166.26,1)

10  to 15 Bernoulli
(0.56207)

Bernoulli
(0.42747)

Wakeby
(2163.2,75.327,65.007,0.43496,0)

Wakeby(2072.9,28.999,82.368,0.26005,0)

16  to 19 Bernoulli
(0.57929)

Bernoulli
(0.49275)

GenExtreme(0.34278,40.321,67.974) Wakeby(1207.1,15.052,104.78,0.12064,−8.1815)

20  and 21 Bernoulli
(0.5848)

Bernoulli
(0.49864)

FatigueLife
(� = 0.72467,� = 88.124,� = 1)

Frechet
(� = 2.0291,� = 167.24,� = 1)

22  and 24 Bernoulli
(0.58929)

Bernoulli
(0.64655)

LogPearson3(17.104,−0.14425,6.8264) Wakeby(309.98,2.7917,75.766,0.33174,−6.0009)

Table 9
Results of two-sample t-test of irrigation water use variables between winter and
summer.

Variable Mean difference T value P value DF

Occurrence/household/day 0.153 7.17 0.000 30
Duration/day 1688 s (28 min) 3.75 0.001 27
Flow rate/event 1.558 L/min 2.54 0.011 552

Table 10
Difference in irrigation water use between detached and other dwellings.

Variables Detached houses Flat/unit/
semidetached
houses

Average volume (L/hh/d) 53.7
(75.2 in summer,
16.3 in winter)

25.5
(40.7 in summer,
3.1 in winter)

Average occurrence/day
−Summer

0.2 0.3

Average duration
(Min/day) −Summer

43.9 11.7
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Average flow rate (L/min)
−Summer

11.5 11.4

Garden size varies between individual households, but such
etailed data is not commonly available. However, garden size is
ound to be a major causal factor governing the difference in house-
old water use between detached dwellings and other dwellings
ith gardens (Rathnayaka et al., 2014). This difference in irriga-

ion water use between dwellings was further studied using actual
nd-use data.

Table 10 shows that all variables except flow rate are sig-
ificantly different between detached and other dwellings, in
articular, the duration of irrigation water use that can be con-
idered to represent the effect of garden size. Based on these
bservations, the volume of irrigation water use is predicted for
etached and other dwellings by distinctly different probability
istributions for duration and occurrence (Eq. (7)).

To describe each predictor variable, the best-fit probability
istributions selected for irrigation water demand are shown in
able 11. Two probability distributions are identified for temper-
tures below and above 20 ◦C. If occupants irrigate their gardens,
alues are randomly generated for duration and flow rate variables.
hile the probability distribution for the duration variable is also

ased on temperature, the probability distribution for flow rate is
ot temperature dependant (Table 11). It is important to note that
he probability distribution for flow rate described herein repre-

ents the flow rates of hoses fitted with a trigger nozzle.

Lack of sufficient independent water end-use datasets to vali-
ate end-use models is still a limitation in studies of water end-use.
his is particularly relevant to irrigation end-use. Unlike other
Fig. 9. Scatter plot of maximum daily temperature and volume of evaporative cooler
use (L/hh/d).

end-uses, irrigation is an end-use that shows a significant tem-
poral variability. In this study, we  were compelled to use data
limited to two-week periods one from winter and another from
summer. This can be considered borderline to develop a model
that represents all four seasons characterized by different rain-
fall patterns, rainfall amounts, sunlight and temperatures. Notably,
the amount of rainfall that occurred during the end-use measure-
ments is lower (0.4 mm/day) than the annual average rainfall for
that period (1.5 mm/day) which may  not be sufficiently significant
to affect people’s decision on garden irrigation. Hence, collect-
ing water end-use data representative of all the four seasons and
for longer time periods to support modeling of irrigation water
demand is a high priority.

3.8. Water demand model for evaporative cooler

Evaporative coolers in residential water use may  only consume
10% of summer water use, but its peak water demand at a daily and
hourly scale can be significantly high, up to 336 L/hh/d on a hot day.
This attribute makes it important to consider the prediction of their
water demand at small scale.

Athuraliya et al. (2012) shows that maximum daily temperature
is a key determinant of evaporative cooler water use. Our data for
water use for individual households for the 2012 summer is shown
in the scatter plot of maximum daily temperature and volume of
evaporative cooler use (Fig. 9)
In Fig. 9, it can be observed that the volume of evaporative
cooler water use, its variability, and the number of households
operating evaporative coolers increase with increasing tempera-
ture. The evaporative cooler use datasets for 2005 and 2012 are
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Table  11
Probability distributions and their parameters for irrigation water demand model.

Variables Model for detached dwellings Model for other dwelling types

If daily maximum
temperature is above
or similar to 20 ◦C

If daily maximum
temperature is below
20 ◦C

If daily maximum
temperature is above
or similar to 20 ◦C

If daily maximum
temperature is below
20 ◦C

Occurrence Bernoulli (0.23106) Bernoulli (0.12954) Bernoulli (0.29677) Bernoulli (0.06731)
Duration PhasedBiWeibull

(�1 = 1.0385,�1 = 18.612,
�1 = 0,�2 = 0.68194,
�2 = 25.107,�2 = 10.5)

Wakeby
(−4.5182,0.47891,
9.1527,0.432,0.85407)

PhasedBiWeibull
(1.0979,7.1764,0,
0.73869,10.419,3.3333)

LogPearson3
(1.8119,0.63149,−0.11988)

Flow rate Wakeby
(19.17,3.5302,1.1377,−0.08021,5.5835)

Table 12
Percentage occurrence of evaporative cooler events by temperature range.

Temperature (T) range ◦C 20 = < T < 25 25 = < T < 30 30 = < T < 35 T = > 35

Occurrence% in 2005 19.6% 50.7% 66.7% 71.9%
Occurrence% in 2012 31.7% 38.5% 72.8% No data

Table 13
Probability distribution and their parameters for occurrence of evaporative cooler
events.

Temperature range 20 = < T < 25 ◦C 25 = < T < 30 ◦C 30 < T < 35 ◦C
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Table 14 shows the distribution parameters for two identified tem-
Probability distribution Bernoulli Bernoulli Bernoulli
Distribution parameter (p) 0.34677 0.46457 0.75758

sed to observe these relationships, while the summer 2012 end-
se dataset is used to develop the model to predict evaporative
ooler water demand.

Evaporative cooler water demand model considers penetration
ate of evaporative coolers in user groups, occurrence of use (hh/d)
nd volume of evaporative cooler water use (hh/d). Since only 25%
f households in the data sample had evaporative coolers, end-use
ata from all user groups were combined to develop this demand
odel. This approach ignores the difference in water use behavior

etween users from different user groups.
The percentage of households that operated evaporative cool-

rs during the measurement periods in 2005 and 2012 for different
emperature levels was determined from observations of evapo-
ative cooler use (Table 12). The percentage of households that
perate evaporative coolers increases with increasing tempera-
ure, although it must be observed that a considerable number of
ouseholds do not use their evaporative coolers at any tempera-
ure level (Table 12). It is important, however, to note that about
0% of households do not operate evaporative coolers even at over
0 ◦C (Table 12). This may  be due to believing evaporative coolers
re ineffective at high temperatures or the presence of other cool-
ng methods or residents being absent from the house during day
ime.

Considering this variability in triggering evaporative coolers and
ts relationship with temperature (Table 12; Fig. 9), a temperature
ependent probability distribution is employed to model the occur-
ence of this event. This approach explains water use behavior of
ouseholds triggered by temperature. The threshold trigger tem-
erature level employed in this model is 20 ◦C. A range of discrete
robability distributions including Bernoulli, Binomial, Discrete
niform, Geometric, and Poisson were fitted to the observed values
f occurrence for each temperature level. The Bernoulli distribu-
ion with a binary variable was identified as the best-fit according
o the A-D goodness of fit test (Yap and Sim, 2011). Table 13 lists

he distribution parameters for the Bernoulli distribution for each
emperature range.

Eq. (6) is applied to describe the occurrence of an event applying
he temperature-determined stochastic approach using an “IF” log-
Fig. 10. Box plot between maximum daily temperature and evaporative cooler
water use (L/hh/d) observed from 2012 evaporative cooler water use data.

ical condition with the probability distribution parameters shown
in Table 13.

Occurrence = IF(T < 20,  0, IF(T < 25,  BernoulliRand(0.34677),

IF(T < 30,  BarnoulliRand(0.46457), BernoulliRand(0.75758))))

(6)

where T denotes that maximum daily temperature in degree Cel-
sius.

The relationship between volume of evaporative cooler water
use and maximum daily temperature is shown in Fig. 8 using a
box plot. In this figure, a clear difference in water use behavior
below and above 30 ◦C can be observed. The average evaporative
cooler use and its variability are greater for temperatures above
30 ◦C (Fig. 10). To reflect this temperature boundary, the volume of
evaporative cooler water use is predicted stochastically using alter-
native probability distributions to describe the evaporative cooler
water use for these two temperature ranges (Eq. (7)).

A Wakeby distribution is identified as the best-fit probability
distribution to explain the volume of evaporative cooler water use.
perature ranges.
Volumes of evaporative cooler water demand are generated ran-

domly by applying Eq. (7) based on deterministic daily temperature
data.
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Table  14
Distribution parameters for Wakeby distribution for two temperature ranges.

Temperature range 20 = < T < 30 ◦C 30 = < T ◦C

Distribution parameters � 59.362 290.02
�  0.1557 2.661
� 0 149.6
	  0 −0.1745

  −7.6532 −5.3473

Table 15
Key characteristics of the data samples.

Data sample Sample 1
(100 households)

Sample 2
(1131 households)

Average household size 3.05 3.00
Dwelling composition Flat-3%,

Semi-detached-11%,
Flat-11%,
Semi-detached-9%,
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Table 16
R2 and Nash-Sutcliffe coefficients for observed and predicted average water use at
user groups level.

Quarter R2 Nash-Sutcliffe coefficient
Winter 2009 0.75 0.64
Spring 2009 0.69 0.54
Summer 2010 0.68 0.48
Autumn 2010 0.82 0.79
Winter 2010 0.84 0.79
Spring 2010 0.73 0.72
Summer 2011 0.78 0.42
Autumn 2011 0.79 0.67
Winter 2011 0.72 0.70
Spring 2011 0.69 0.51
Summer 2012 0.63 0.49
Autumn 2012 0.57 0.43
Detached-86% Detached-79%
Presence of children

under 12 years
With children-29%,
With no children-71%

With children-31%,
with no children-69%

Ev = IF(T < 20, 0, IF(AND((T < 30)), (WakebyRand(59.362,

0.15567, 0, 0, −7.6532)), (WadebyRand(290.02, 2.661, 149.6,

−0.174478, −5.3473)))) (7)

here Ev denotes the volume of evaporative cooler water use per
ousehold per day and T is the temperature in ◦C.

The predicted evaporative cooler water demand for a particu-
ar user group (EUe) is determined by multiplying the volume of
ousehold evaporative cooler water demand (Ev) when it is oper-
ted, by the number of households with evaporative coolers in a
ser group as follows:

Ue = (N × PR%) × (IF (Occurence > 0) , (Ev) , (0)) (8)

here N denotes number of households in the user group and PR is
he associated penetration rate for evaporative coolers in the user
roup.

. Model validation

The model was validated with household water use data at
uarterly and hourly time scales. The quarterly scale validation
as carried out using two sets of household water use data from

010/12 YVW Residential End-Use Measurement study (Sample 1)
nd YVW 2011 Appliance Stock and Usage Pattern (ASUP) web-
ased survey (Sample 2). Key characteristics of the data samples
sed in quarterly scale validation are given in Table 15. While Sam-
le 2 consists of smaller average household size and more flats than
ample 1, data samples are more alike in presence of children.

.1. Quarterly scale model validation

The first sample of meter readings (Sample 1) was  obtained from
00 households that participated in the 2010/12 YVW REUM study.
n the other hand, the period of validation extends between the
inter 2009 and the autumn 2012, a period that is significantly

onger than each of the two-week periods from the winter 2010
nd summer 2012 from which end-use data was collected and
sed in the model development. Weather data from Melbourne
egional Office weather station (086071) was used for prediction
f demand. The change in penetration rates of appliance efficiency
nd presence of water use appliances at households for the periods

f validation is negligible and hence is assumed constant. For exam-
le, the stock change for uptake of efficient showers is 1% during the
eriod of validation (Integrated resource planning for urban water,
011). The average of quarterly water demand (L/hh/d) predicted
Fig. 11. Scatter plot between observed and predicted water use at UG level.

for each user group was validated against the average observed data
prepared using quarterly meter readings. As validation metrics,
Correlation coefficients (R2) and Nash-Sutcliffe model efficiency
coefficients (Vieux, 2004) were estimated for each quarter using
observed and predicted average water use for user groups as shown
in Table 16.

The model shows greater predictive capacity (i.e. R2 and Nash-
Sutcliffe coefficient ≈ 0.75) in some quarters while in other quarters
the predictive capacity is moderate (i.e. R2 and Nash-Sutcliffe
coefficient ≈ 0.50) (Table 16). User groups with fewer observa-
tions show a poor performance between observed and predicted
data. The percentage differences between predicted annual average
water use (L/hh/d) and observed annual average water use (L/hh/d)
across all user groups are 13.1%, 11.6% and 12.7% for years 2009/10,
2010/11 and 2011/12, respectively.

The second sample of data (Sample 2) was obtained from 1241
households that participated in the YVW 2011 ASUP web-based
survey. The meter readings from summer 2011 to spring 2011 are
used in this analysis. This analysis allowed validation of the model
with an independent set of data from a more representative sam-
ple of YVW customers. The scatter of the results shown in Fig. 11
demonstrates that the model slightly underestimates the predic-
tion of water demands for user groups. Roberts et al. (2011) show
that their end-use data measurement sample has more low users
and fewer high water users compared to their customer popula-
tion which results in a 15% difference in average water use. This is
a factor that can affect any data collection since low water users
may  be proud of their water usage and be willing to participate
in surveys and measurements (Quilliam, 2012). The R2 and Nash-
Sutcliffe Coefficient are estimated as 0.87 and 0.68, respectively,
between the predicted and observed daily water demands at UG
level.

2
The R and Nash-Sutcliffe coefficients show a significantly high
predictive capacity for the model in all four quarters for all tested
user groups (Table 17). Furthermore, the model shows 88% accuracy
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Table  17
R2 and Nash-Sutcliffe coefficient for summer 2011 to spring 2011.

Quarter R2 Nash-Sutcliffe coefficient

Winter 2011 0.94 0.73
Spring 2011 0.95 0.77
Summer 2011 0.98 0.95
Autumn 2011 0.95 0.85
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Fig. 12. Observed and predicted average hourly water use (summer 2011).

n predicting the annual average water use for residential water
emand.

The model validation carried out at a quarterly scale demon-
trates that the model can predict residential water demand with
igh accuracy. It also demonstrates the statistical stability of proba-
ility distributions used in modeling “unknown behavior” observed
uring two-week periods, one in winter 2010 and the other in
ummer 2012.

.2. Model validation at an hourly scale

The model development is based on end-use data collected from
he REUM 2010/12-YVW sample during summer 2012. Conversely,
he hourly validation of the model relies on an independent data
bserved at hourly scale collected during summer 2011 (1st of
ecember 2010 to 29th of February 2011). For the purpose of model
alidation, summer water demand was predicted using weather
ata from the same period. This average daily water demand for
ummer 2011 was disaggregated based on the percentage hourly
ousehold water use pattern for summer (Athuraliya et al., 2012).
he model predicted hourly water demand for an average summer
ay in 2011 is shown in Fig. 12 together with the observed data
sed to validate the model.

A Nash-Sutcliffe coefficient of 0.73 and R-square of 0.75 further
onfirm the model’s validity at an hourly scale. The overall predic-
ive capacity of the model for hourly scale is 85%. This comparison
eveals that the model prediction has a good fit with the observed
ata. A slight shift in the predicted peak to the left is observed in the
rst peak while the slight under estimation of the peak demand are
ell within the expected capability of this type of model, and pro-

ides sufficient confidence in the use of the model for the prediction
f water demand variations.

. Conclusions

Prediction of water end-uses at multiple spatial and temporal

cales is essential for planning and management of decentralized
ater supply systems. This paper presents the application of a pre-
iction model with aforesaid capacity to different water end-uses
nd its validation at different temporal scales.
tion and Recycling 118 (2017) 1–12 11

The model considers the effect of a large number of signifi-
cant water demand drivers such as household size, dwelling type,
appliance efficiency, availability of water end-uses/appliances at
dwellings, presence of children, temperature, presence of people
at home, and diurnal behavioral patterns affecting different spa-
tial and temporal scales. In addition, the effect of user behavior
that cannot be explained using these known water demand drivers
is incorporated into the model stochastically. A range of probabil-
ity distributions were tested and identified the best-fit probability
distributions to describe individual probability spaces for each pre-
dictor variable defined by factors such as efficiency, season and
presence of people which could affect its behavior.

The model was validated against two  sets of household data at
quarterly and hourly scale. Validation of household water demand
at a quarterly scale was  carried out with utility billing data yielding
a R2 ranging between 90% and 96% and Nash-Sutcliffe coefficient
ranging between 0.70 and 0.92 for the four seasons analyzed.
Hourly scale validation also demonstrated a satisfactory predic-
tive capacity (R2 = 0.75). The model validation demonstrates the
statistical stability of the probability distributions used in model-
ing the unexplained behavior of urban residential water consumers
and also the ability of the model to predict urban residential water
demand at multiple temporal scales.

The study recommends collecting more independent water end-
use datasets to validate end-use models which is still a limitation
of this study while collecting irrigation water use data representa-
tive of all the four seasons and for longer time periods to support
modeling of irrigation water demand is a high priority.
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