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Abstract 

Climate change and variability and soil fertility depletion are among the main biophysical 

limiting factors for increasing per capita food production for smallholder farmers in developing 

countries. To tackle these challenges, the adoption of sustainable agricultural practices (SAPs), 

has become an important policy topic among donors and development agencies in developing 

countries. This paper examines the adoption decisions for SAPs, using recent primary data 

collected in 51 villages in 3 districts of Zimbabwe. The article employs a multivariate probit 

regression to model simultaneous interdependent adoption decisions by farm households. The 

analysis reveals that education, farm experience, farm size, income, access to information and 

agroecology influence the adoption of SAPs. Policies that are aimed at improving household 

income and enhancing access to information can increase the uptake of SAPs by smallholder 

farmers. Extension messages should aim to emphasize the complementarities between different 

SAPs. This information could help policy makers and extension agents to formulate and promote 

a package of SAPs. 

Keywords: Sustainable agricultural practices, multiple adoption, multivariate probit, Zimbabwe
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Introduction 

Agricultural productivity in many developing countries including Zimbabwe is constrained by 

multiple and complex biophysical challenges, for example climate change and variability, low 

soil fertility, pest and disease prevalence (Shiferaw et al. 2014; Vanlauwe et al. 2014). In this 

connection, sustainable agricultural practices (SAPs) offers a practical pathway for farmers to 

enhance the productivity and resilience of agricultural production systems while conserving the 

natural resource base (The Montpellier Panel 2013; Teklewold et al. 2013; Kassie et al. 2013). 

The promotion of sustainable agricultural practices has become a major issue among donor, 

development and extension agencies to tackle the complex challenges affecting agriculture 

(Kassie et al. 2013). Examples of sustainable agricultural practices include conservation 

agriculture, agroforestry, legume intercropping, legume crop rotations, improved crop varieties, 

drought tolerant crop varieties, and integrated pest management, use of animal manure, and soil 

and water conservation (Pretty, Toulmin & Williams 2011; Kassie et al. 2013; Teklewold et al. 

2013; The Montpellier Panel 2013; Vanlauwe et al. 2014). 

Recent studies show that the adoption of SAPs provide higher yields and income (Teklewold et 

al. 2013; Manda et al. 2016). Despite the benefits of SAPs, their adoption rates remain low in 

sub-Saharan Africa (Kassie et al. 2015; Teklewold et al. 2013; Lee 2005). Understanding the 

factors that affect the adoption of SAPs can provide guidance into identifying key drivers and 

areas that enhance the use of these practices. However, the majority of earlier studies on the 

adoption of SAPs have focused on a single technology (Amsalu & Graaff 2007; Mazvimavi & 

Twomlow 2009; Arslan et al. 2014; Ghimire, Wen-chi & Shrestha 2015), ignoring 

complementarities and trade-offs between SAPs. 

There is an emerging body of literature analysing the adoption of multiple sustainable agriculture 

practices (Jara-Rojas et al. 2013; Kassie et al. 2013; Teklewold et al. 2013; Kamau, Smale & 

Mutua 2014; Wainaina, Tongruksawattana & Qaim 2014; Kassie et al. 2015; Manda et al. 2016). 

Kassie et al. (2013) analysed the determinants of the adoption of four sustainable agriculture 

practices in Tanzania. Wainaina, Tongruksawattana & Qaim (2014) analysed factors influencing 

the adoption of seven SAPs among smallholder farmers in Kenya. In another study, Kassie et al. 

(2015) analysed the determinants of adoption of five SAPs in Ethiopia, Malawi, Kenya and 

Zambia. However, relatively little empirical work has been done to examine the factors that 

facilitate or constrain the adoption of multiple SAPs, especially conservation tillage, winter 

ploughing, staggered planting, drought tolerant varieties, integrated pest management, inorganic 

and organic fertilizers. 

The contributions of this paper are threefold: First, we contribute to this strand of literature and 

analyse the adoption of seven SAPs among smallholder farmers in Zimbabwe -a different 

country context. This is important as the adoption of SAPs differ from one country to another, 

depending on local agro ecological, socioeconomic, and market conditions (Vanlauwe et al. 
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2014). Second, we consider different combinations of SAPs compared to earlier studies. Third, 

we identify complementarities and trade-offs between the seven SAPs. 

The remainder of this article is organized as follows. In the next section we describe the 

methodology including the description of survey data. We then discuss the empirical model 

specification and estimation issues. Empirical results are presented and discussed. The last 

section concludes and discusses policy implications. 

Methodology 

Study area and sampling 

The study used data from the baseline household survey conducted within the auspices of 

Extension and Training for Rural Agriculture (EXTRA) project in three districts of Zimbabwe 

namely Gokwe South, Kwekwe and Shurugwi. A stratified random sampling technique was used 

to select respondents. In the first stage, wards were selected with the objective to cover the 

varying agro ecological regions found in the district. In each ward all villages hosting the 

EXTRA project were listed and survey villages were chosen purposively to include diversity in 

agroecology. Once specific villages were selected, systematic random sampling at household 

level was done, whereby enumerators picked 6
th

 or 7
th

 homestead from the first point of entry in 

a particular village. From this sampling strategy, a total of 495 households were interviewed 

(Table 1). A pretested structured household questionnaire was administered to sampled 

households in March 2015 by trained enumerators. The questionnaire collected the following 

information: household demographics, crop and livestock production, sustainable agricultural 

technologies, income and access to information. In this article, we however analyse data from 

398 households which had consistent responses on sustainable agricultural practices. 

Table 1. Survey sample  

District Number of wards covered Number of villages Households interviewed 

Shurugwi 2 12 81 

Kwekwe 4 16 168 

Gokwe South 6 23 246 

Total 12 51 495 

Description of the technologies 

A total of seven sustainable agricultural practices (SAPs) were included in this study. These 

SAPs were sub-classified into climate risk management, crop protection and soil fertility 

management practices. The climate risk management practices included conservation agriculture, 

winter planting, staggered planting and drought tolerant varieties. The crop protection practice 

included in this study is integrated pest management. The last category was soil fertility 

management practices which included inorganic fertilizers and manure application. We 

hypothesized that farmers adopt SAPs that complement each other. We discuss each of these 

SAPs in the next sub-section. 
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Conservation agriculture is a practice that combines three principles: minimum tillage, 

permanent organic soil cover and crop diversification (including crop rotation) to sustainably 

improve farm productivity, profits and food security (Kassam et al. 2009; Arslan et al. 2014). 

Conservation agriculture offers sustainable farming options that address a broad set of farming 

constraints, such as low crop productivity, vulnerability to drought, limited access to draft power, 

soil degradation and loss of fertility (Kassam et al. 2009). The use of soil cover with crop 

residues or cover crops reduces soil moisture loss and increases infiltration. Crop rotation with 

nitrogen fixing legumes helps to improve soil fertility, crop diversity and to break the life cycle 

of pests and diseases. This helps to reduce farmers use of purchased external inputs (Teklewold 

et al. 2013). In this study, conservation agriculture adoption is defined as the practising of any of 

the three principles or any combination of the three. Winter ploughing is a practice where 

farmers till the land soon after harvesting to conserve moisture. This practice captures and 

conserves the first rains that fall in winter. Winter ploughing also prevents weeds, pests and 

diseases building up by breaking their life cycles. It is also thought to enable early planting due 

to early land preparation. During winter ploughing, crop residues are buried and when they 

decompose, they add organic matter to the soil. Staggered planting involves the planting of the 

same crop on different planting dates to hedge against the risk of poor crop germination and crop 

failure due to erratic and unreliable rainfall. Another climate risk management practice 

considered in this study is the use of drought tolerant varieties. The use of drought tolerant crop 

varieties is one of the strategies for managing water limitation in agriculture (Shiferaw et al. 

2014). The use of drought tolerant varieties of maize have been found to have at least 30–40% 

yield advantage over other commercial varieties under severe stress, and similar performance 

under optimal conditions (Shiferaw et al. 2014; Xoconostle et al. 2010). 

In terms of crop protection, farmers were asked whether they use integrated pest management. 

Integrated pest management are pest control strategies that tend to reduce costs of pesticide 

application through the use of non-chemical  methods such as resistant varieties, maintaining 

clean fields, pheromone traps and chemical methods which avoid the use of same chemicals to 

control pest resistance (Kabir & Rainis 2015; The Montpellier Panel 2013). This SAP reduces 

the use of pesticides without causing harm to the yield and as such lowers production costs. Soil 

fertility management practices used in this study include inorganic fertilizer and manure 

application. Soil nutrient depletion is one of the major causes of low crop productivity and food 

insecurity in Africa (Shiferaw et al. 2014; Vanlauwe et al. 2014).The use of inorganic fertilizers 

and animal manure to improve nutrient supply and organic matter in the soil and is associated 

with yield increase.  

Description of variables 

The explanatory variables used in this study are drawn from adoption literature (Marenya & 

Barrett 2007; Mazvimavi & Twomlow 2009; Mariano, Villano & Fleming 2012; Kassie et al. 

2013; Kamau, Smale & Mutua 2014; Kassie et al. 2015). We capture household characteristics 

by including age, gender, household size and education level of the household head. These 
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variables are relevant in that they influence adoption decisions where there are market 

imperfections and institutional failures (Kassie et al. 2015). Older household heads tend to have 

more experience in production practices and of the local environment and a greater accumulation 

of physical and social capital, which enhances technology adoption. On the other hand, age can 

be associated with loss of energy, short-term planning and being more risk averse. Therefore the 

effect of age on technology adoption is ambiguous (Kamau, Smale & Mutua 2014; Kassie et al. 

2015). Education may increase farmer’s ability to acquire information and practice new 

technologies, and increase returns from the adoption of these technologies. 

Farming experience is related to the history of past investments on the land and to knowledge 

gained through experience. Labour supply is captured by household size and full time labour. We 

expect households with greater availability of family labour to be more likely to adopt 

technologies, which requires farmers to carry out labour-intensive practices on their farms. We 

measured wealth using farm size, household income and cattle ownership. Wealth is expected to 

have positive effects on farmers' investment capacity and ability to bear risk and thus on the 

probability of adoption. However, the effect of wealth on some of the technologies is 

indeterminate because some investments such as conservation agriculture are known to be 

affordable to poorer households who lack draft power. Cattle ownership is also associated with 

the manure producing capacity of the household (Kamau, Smale & Mutua 2014).  

In addition, we included a number of variables capturing access to information and social 

networks like public extension, mobile phone, farmer group, radio, television ownership, which 

are expected to have positive effects on farmers' ability to weigh the economic returns of each 

technology and thus on the probability of adoption (Wainaina, Tongruksawattana & Qaim 2014; 

Kassie et al. 2015). To capture agro-ecological variation across households, we include a dummy 

variable that equals one if the household is located in natural region III and zero in natural region 

IV. This classification is based on rainfall where natural region III receives higher rainfall than 

region IV (Ndlovu et al. 2014). We expect that households located in higher-rainfall areas 

(natural region III) may be less likely to adopt soil and water conservation technologies 

compared to households in drier natural region IV. Farmers residing in natural region III are 

more likely to adopt IPM because of higher incidence of pests and diseases. Cotton growers are 

more likely to adopt IPM because this technology was mainly promoted among cotton growers 

in the country. To control for this, we included a dummy variable capturing the growing of 

cotton in our model. 

Estimation strategy 

The estimation strategy is based on the premise that farmers are more likely to adopt a 

combination of sustainable agricultural practices (SAPs), which may be adopted simultaneously 

and/or sequentially as a complement or supplement to each other. Various empirical studies 

(Kassie et al. 2013; Teklewold et al. 2013; Jara-Rojas et al. 2013; Wainaina, Tongruksawattana 

& Qaim 2014; Kassie et al. 2015) argued that farmers usually consider a portfolio of SAPs and 

therefore the adoption decision is multivariate. Studies focusing on adoption of a single 
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technology (Amsalu & Graaff 2007; Mazvimavi & Twomlow 2009; Arslan et al. 2014; Kabir & 

Rainis 2015; Ghimire, Wen-chi & Shrestha 2015) fail to consider the possible 

correlation/interdependence between different SAPs, thereby ignoring the fact that farmers are 

often faced by a set of choices. The use of univariate probit or logit models is inefficient when 

adoption decisions are inter-related since univariate models ignore the correlation in the error 

terms of adoption equations. The correlation arises because the same unobserved characteristics 

of farmers could influence the adoption decisions for different SAPs. Failure to capture such 

interdependence will lead to biased and inaccurate estimates. 

We employ a multivariate probit (MVP) model that recognizes the correlation in the error terms 

of adoption equations and estimates a set of binary probit models (in our case seven probit 

models) simultaneously (Cappellari & Jenkins 2003; Kassie et al. 2015). Our MVP model 

consists of 7 binary choice equations, namely conservation agriculture, winter ploughing, 

staggered planting, drought tolerant varieties, integrated pest management, inorganic fertilizer, 

and use of animal manure. The MVP model is specified as: 

𝑦𝑖𝑚
∗ = 𝛽𝑚 + 𝑋𝑖𝑚 + 𝜀𝑖𝑚 𝑚  = 1,2…… ,7      (1) 

𝑦𝑖𝑚 = (
1   𝑖𝑓 𝑦𝑖𝑚

∗  >0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
)      (2) 

where 𝑦𝑖𝑚
∗  is a latent variable that captures the unobserved preferences associated with the choice 

of practice 𝑚. This latent variable is assumed to be a linear combination of observed 

characteristics, 𝑋𝑖𝑚, and unobserved characteristics captured by the stochastic error term, 𝜀𝑖𝑚. 

The vector of parameters to be estimated is denoted by 𝛽𝑚. Given the latent nature of 𝑦𝑖𝑚
∗ , 

estimation is based on observable binary variables 𝑦𝑖𝑚, which indicate whether or not a farmer 

used a particular technology in the reference year. 

The error terms 𝜀𝑖𝑚, 𝑚  = 1,2…… ,7 are distributed multivariate normal each with mean 0 and a 

variance-covariance matrix V, where V has 1 on the leading diagonal, and correlations 𝜌𝑗𝑘 = 𝜌𝑘𝑗 

as off diagonal elements (Cappellari & Jenkins 2003): 

𝑉 =

(

  
 

1 𝜌12 𝜌13
𝜌21 1 𝜌23
𝜌31
..
𝜌𝑗1

𝑝32
..
𝜌𝑗2

1
..
𝜌𝑗3

 

. . 𝜌1𝑘

. . 𝜌2𝑘

.
1.
𝜌𝑗4

.

.
1
𝜌𝑗5

𝜌3𝑘
𝜌4𝑘
𝜌5𝑘
1

 

)

  
 

      (3) 

where 𝜌 (rho) denotes the pairwise correlation coefficient of the error terms corresponding to any 

two SAP’s adoption equations to be estimated in the model (Kassie et al. 2015). In the presence 

of error terms correlation (𝜌), the off-diagonal elements in the variance–covariance matrix of 

adoption equations become non-zero and Eq. (2) becomes an MVP model. In this model, 𝜌 is not 

just a correlation coefficient, and carries more information. A positive correlation is interpreted 

as a complementary relationship, while a negative correlation is interpreted as being substitutes. 
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Results 

Descriptive analysis 

Table 2 shows the summary statistics of the seven sustainable agriculture practices and 

independent variables. Our study found out that 98% of the households were aware of the 

conservation agriculture technology. However, only 28% adopted the technology in the 2014/15 

cropping season. We found out that all the sampled farmers in the three districts were aware of 

winter ploughing, staggered planting and drought tolerant varieties and 39%, 74% and 47% 

adopted these SAPs respectively. Although all the farmers were aware of integrated pest 

management, about 53% adopted this technology. Our study found out that all the sampled 

farmers were aware of use of inorganic fertilizers and manure. However, 56% and 71% adopted 

inorganic fertilizers and manure respectively. We find that most farmers were aware of the 

climate risk management, crop protection and soil fertility management strategies. These results 

may suggest that information is not a constraint for the adoption of these technologies. There are 

other factors constraining the adoption of conservation agriculture, winter ploughing, drought 

tolerant varieties, integrated pest management and inorganic fertilizers. Inorganic fertilizers are 

often expensive for poor smallholder farmers in Zimbabwe and this may be constraining its 

adoption. Vanlauwe et al. (2014) found that farmers in Africa apply 15 times less fertilizer and 

thus subsequently results in a huge yield gap.  

The average age of the household head is 53 years. About 76% of the sample households are 

male-headed. The average educational attainment of household head is 8 years of education. 

Sampled households had on average 26 years of farming experience. These results suggest that 

the household heads were literate and have adequate farming experience. Education increases the 

farmer’s ability to acquire information about appropriate technologies and farming experience 

reflects knowledge on farming techniques and local environmental conditions gained through 

experience, thus enhances adoption of SAPs. On average, households own seven acres of arable 

land. In terms of access to information, 92% of the household have access to public extension 

while 62% and 14 % own a radio and a television respectively. Thirty five percent of the 

sampled households belonged to a farmer group. About 33% of the households reside in natural 

region III, which receives relatively higher rainfall compared to natural region IV.
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Table 2. Summary statistics of dependent and independent variables 

Variable Descriptions Observations Mean Std. 

Dev. 

Dependent variables    

Conservation agriculture 398 0.28 0.45 

Winter ploughing 338 0.39 0.49 

Staggered planting 348 0.74 0.44 

Drought tolerant varieties 303 0.47 0.50 

Integrated pest management 182 0.53 0.50 

Inorganic fertilizer 370 0.56 0.50 

Manure 389 0.71 0.45 

Independent variables    

Age Age of the household head (years) 398 53.42 15.73 

Gender 0 if female; 1 if male 398 0.76 0.43 

Education Household head years of schooling 398 7.53 2.32 

Farming years Farming experience (years) 398 26.13 15.32 

Household size Number 398 6.20 2.84 

Full time labour Number 398 2.64 1.46 

Job Head main occupation (1=farmer) 398 0.76 0.43 

Arable land Arable land (acres) 398 7.40 5.25 

Total income Total household income (USD) log 398 6.76 1.12 

Cattle Own cattle (1=yes) 398 0.74 0.44 

Public extension Access public extension (1=yes) 398 0.92 0.27 

Mobile phone Own mobile phone (1=yes) 398 0.42 0.49 

Farmer group Belong to farmer group (1=yes) 398 0.35 0.48 

Radio Own radio (1=yes) 398 0.62 0.49 

Television Own television (1=yes) 398 0.14 0.35 

Agroecology Reside in natural region III (1=yes) 398 0.33 0.47 

Cotton Grew cotton (1=yes) 398 0.27 0.45 

Econometric results 

The likelihood ratio test for the overall correlation of error terms is significant: 𝑋2(21) =

47; 𝑝 = 0.000 and means the error terms across the adoption equations are correlated. The result 

support the application of the MVP model. We utilized the multivariate probit regression while 

controlling for demographic characteristics, such as age, gender and education (Table 3). 

The coefficients that explain how each variable influence the probability of adopting each of 

these technologies are explained. The age of a farmer positively influenced the likelihood of 

adopting conservation agriculture and manure application. However, age squared has a negative 

and significant relation with the adoption of conservation agriculture. This result means that 

young farmers are more likely to adopt conservation agriculture but as farmers become too old 

the likelihood to adopt this technology falls. Older farmers are in most cases risk averse and less 

likely to adopt newer technologies compared to young farmers. Kamau, Smale & Mutua (2014) 

also found a similar result that young farmers are likely to adopt soil improving and natural 
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resource management technologies. The econometric results also show that age squared has a 

positive effect on winter ploughing. This result suggest that young farmers are less likely to 

practice winter ploughing, but as they grow older and possibly amass draft power and farming 

equipment they start practising the technology. 

Farming experience has a positive and significant relationship with inorganic fertilizer 

application. Farming experience usually increases the probability of technology adoption, 

because experienced farmers are more likely to have better access to information and knowledge 

of soil fertility technologies. In addition, farmers with better experience and information are most 

likely to take initiatives in adopting and testing new technologies. Targeting of such experienced 

farmers during the promotion of soil fertility technologies can, therefore, have a significant 

positive effect. One possible avenue to promote learning and increase adoption is to use 

inorganic fertilizer demonstration trials. Household size, which we use as an indicator of family 

labour availability has a positive and significant effect on the adoption of conservation 

agriculture and drought tolerant varieties. Full time labour has a negative and significant effect 

on conservation agriculture adoption. This is a bit surprising but can be explained by the fact that 

may be smallholder farmers are relying on part time labour on conservation agriculture than full 

time labour. 

The result that when the head’s main occupation is farming reduces the likelihood of adopting 

winter ploughing is quite surprising. It might be because during winter, most farmers in the study 

area devote most of their time and labour for horticulture activities and some go for holidays in 

urban areas. This results in few farmers practising winter ploughing. We include farm size in the 

model to assess its effect on the probability of adopting sustainable agricultural technologies. 

The positive and significant sign on farm size indicated that as farm size increased, the likelihood 

of adopting winter ploughing, staggered planting and drought tolerant varieties increased. This 

result is consistent with Kassie, Shiferaw & Muricho (2011), Mariano, Villano & Fleming (2012) 

and Ghimire, Wen-chi & Shrestha (2015) who found that farm size positively influence 

technology adoption. Household income was found to increase the likelihood of adopting 

integrated pest management. This result is expected as this technology require purchased inputs - 

pesticides. Policies that are aimed at improving household income can increase the uptake of 

SAPs by smallholder farmers. One obvious data limitation is that we could not distinguish 

between farm and off-farm income. We suspect that the bulk of household income among the 

sampled farmers is coming from off-farm income.  

Cattle ownership positively influenced the use of manure by smallholder farmers. This result 

may be associated with capacity to produce manure on-farm and is consistent with Kamau, 

Smale & Mutua (2014) who found that livestock had a significant effect on the use of soil 

amendments. However, cattle ownership has a negative influence on the adoption of integrated 

pest management. This could because cattle herding in summer may be diverting labour required 

for agricultural work such as crop protection. Access to public extension and television increased 

farmer’s likelihood of adopting staggered planting while mobile phone increased the likelihood 
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of adopting drought tolerant varieties. These results underlie the importance of information 

access on promoting adoption of sustainable agricultural practices (Mariano, Villano & Fleming 

2012; Ghimire, Wen-chi & Shrestha 2015). These results show that extension messages 

promoting the uptake of sustainable agricultural practices could be channelled through television 

and mobile phones. Access to radio reduced the likelihood of using inorganic fertilizers. Most of 

the study areas experienced erratic rainfall and midseason dry spells in the past season and 

farmers with radios could have accessed information in the midseason of the impending drought 

conditions and decided not to apply inorganic fertilizers fearing to burn the crops. 

After controlling for the growing of cotton, results show that agroecology had a negative and 

positive effect on adoption of drought tolerant varieties and integrated pest management 

respectively. Farmers in the relatively wetter natural region 3 were less likely to adopt drought 

tolerant varieties. This is expected as farmers in areas that receive above average rainfall tend to 

grow long season crop varieties. Farmers residing in natural region 3 are more likely to adopt 

integrated pest management. This is because in the relatively wetter natural region 3, there are 

higher pest populations compared to dry natural region 4, which warrant high investments in pest 

management. The econometric results show that farmers growing cotton are likely to practise 

winter ploughing and staggered planting and less likely use manure. 
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Table 3. Coefficient estimates of the multivariate probit model 

 

 

Climate risk strategies Crop protection Soil fertility 

CA WP SP DTV IPM IF MA 

b/se b/se b/se b/se b/se b/se b/se 

Age 0.158
**

 -0.123
*
 0.064 -0.010 0.054 0.043 0.155

*
 

 (0.077) (0.070) (0.074) (0.063) (0.072) (0.071) (0.084) 

Age squared -0.001
*
 0.001

*
 -0.001 -0.000 -0.001 -0.001 -0.001 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Male head -0.445 -0.264 0.567 0.061 0.113 0.600
*
 -0.165 

 (0.328) (0.371) (0.366) (0.340) (0.342) (0.338) (0.417) 

Household size 0.101
*
 0.056 -0.055 0.186

***
 -0.085 0.006 0.037 

 (0.056) (0.067) (0.063) (0.059) (0.060) (0.060) (0.077) 

Education  0.052 0.063 -0.044 -0.009 -0.001 0.047 0.036 

 (0.053) (0.057) (0.058) (0.051) (0.058) (0.050) (0.062) 

Farm experience -0.012 -0.003 0.001 0.010 0.006 0.041
**

 -0.018 

 (0.018) (0.020) (0.020) (0.018) (0.019) (0.017) (0.024) 

Full time labour -0.267
**

 -0.116 0.090 -0.123 0.071 0.034 0.047 

 (0.109) (0.116) (0.108) (0.101) (0.104) (0.109) (0.135) 

Job (1=farmer) -0.256 -0.706
**

 -0.222 -0.057 0.008 0.319 -0.432 

 (0.343) (0.336) (0.379) (0.314) (0.314) (0.316) (0.425) 

Arable land 0.003 0.084
**

 0.084
**

 0.084
***

 0.025 0.008 0.010 

 (0.031) (0.033) (0.038) (0.032) (0.031) (0.031) (0.043) 

Income (log) -0.080 -0.215 0.093 -0.106 0.493
***

 0.186 -0.179 

 (0.138) (0.142) (0.146) (0.135) (0.146) (0.132) (0.163) 

Cattle 0.140 0.367 -0.259 0.372 -0.545
*
 0.521 1.021

***
 

 (0.326) (0.346) (0.346) (0.314) (0.326) (0.319) (0.377) 

Public extension 0.186 0.457 1.244
*
 0.198 -0.758 -0.444 -3.957 

 (0.662) (0.631) (0.651) (0.730) (0.740) (0.767) (109.850) 

Mobile phone 0.187 0.234 0.210 0.539
**

 -0.402 -0.156 0.464 

 (0.265) (0.285) (0.281) (0.254) (0.278) (0.278) (0.313) 

Farmer group -0.068 0.509 0.235 0.424 -0.366 0.473 0.186 

 (0.289) (0.323) (0.317) (0.303) (0.297) (0.320) (0.427) 

Radio 0.051 0.412 -0.446 0.127 -0.026 -0.529
*
 0.704 

 (0.317) (0.319) (0.344) (0.301) (0.296) (0.311) (0.443) 

Television 0.568 0.049 1.134
**

 0.344 0.201 0.153 -0.271 

 (0.379) (0.435) (0.508) (0.401) (0.372) (0.358) (0.512) 

Agroecology 0.090 0.274 0.168 -0.601
**

 0.995
***

 -0.434 0.759
*
 

 (0.305) (0.311) (0.335) (0.289) (0.312) (0.298) (0.403) 

Cotton 0.038 0.544
*
 0.740

*
 0.049 0.541 -0.335 -1.084

***
 

 (0.309) (0.330) (0.393) (0.317) (0.331) (0.306) (0.376) 

Constant -4.669
**

 2.395 -2.967 -0.729 -3.228 -2.871 0.330 

 (2.355) (2.183) (2.224) (1.981) (2.234) (2.296) (109.877) 

N 132       

Wald chi2(126) 185.39
***

       

Log likelihood -453.45       
*, **, *** significant at 10%, 5%, and 1% levels, respectively. Standard errors in parentheses. CA=conservation 

agriculture, WP=winter ploughing, SP=staggered planting, DTV=drought tolerant varieties, IPM=integrated pest 

management, IF=inorganic fertilizer and MA= manure.
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Complementarities and substitutes 

The binary correlations between the error terms of the seven adoption equations are presented in 

Table 4. These coefficients measure the correlation between the seven adoptions decisions after 

the influence of the observed factors are accounted for. We find that some practices are 

complements, while others are substitutes (compete for the same scarce resources). The 

correlation coefficients are statistically different from zero in 8 of the 21 cases, confirming the 

appropriateness of the multivariate probit model and technology adoption is not mutually 

independent. 

The highest positive correlation (58%) is between conservation agriculture and use of manure. 

Conservation agriculture conserves soil and moisture, while manure increases soil fertility, so 

combining both could lead to synergies. The use of drought tolerant varieties is positively 

associated with winter ploughing. Both technologies are aimed at maximizing soil water use 

efficiency and complement each other. Apart from conserving moisture, winter ploughing also 

break pest and disease cycles. The use of drought tolerant varieties is positively associated with 

staggered planting. This is plausible as both technologies involve managing and conserving soil 

water. The positive correlation (43%) between integrated pest management and drought tolerant 

varieties shows the positive synergies between the two technologies. Drought tolerant varieties 

maximize soil water and integrated pest management protects the crop from pest and diseases 

winter ploughing is explained by the fact that both are crop protection technologies. The use of 

drought tolerant varieties is positively associated with manure application. Overall our results 

show that the use of drought tolerant varieties complements winter ploughing, staggered 

planting, integrated pest management and manure application. Extension messages should 

promote the use drought tolerant varieties alongside soil conservation, pest management and soil 

fertility technologies. 

There are also a number of negative associations between adoption decisions, indicating 

technological substitutes. Conservation agriculture is negatively associated with staggered 

planting. In the majority of cases, the digging of planting basins and the actual planting 

(conservation agriculture) is done at the beginning of the rainy season thereby competing for the 

same scarce labour resource with staggered planting. Fertilizer and winter ploughing as well as 

fertilizer and staggered planting are found to be substitutes. This was not expected and the 

reasons for such relationship is not clear. This may be because the public extension heavily 

emphasize fertilizer use in its extension messages with minimal emphasis on winter ploughing 

and staggered planting. Wainaina, Tongruksawattana & Qaim (2014) argued that when farmers 

only get one information type, they get an incomplete picture and fail to exploit the synergies 

between different technologies. This might be the case for our results. The policy implication 

here is that extension staff need to promote all the different practices. 
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Table 4. Correlation coefficients for MVP regression equations  

  ρ
CA

 ρ
WP

 ρ
SP

 ρ
DTV

 ρ
IPM

 ρ
IF

 ρ
MA

 

ρ
CA

 1        

        

ρ
WP

 0.250 1       

  (0.177)        

ρ
SP

 -0.418
** 

-0.223 1      

  (0.182) (0.159)       

ρ
DTV

 0.230 0.343
**

 0.440
**

 1     

  (0.152) (0.151) (0.186)      

ρ
IPM

 -0.157 0.289 -0.033 0.425
***

 1    

  (0.183) (0.176) (0.159) (0.160)     

ρ
IF

 0.134 -0.436
***

 -0.362
**

 -0.103 0.192  1  

  (0.156) (0.165) (0.182) (0.148) (0.168)    

ρ
MA

 0.582
**

 0.001 -0.077 0.466
**

 0.176 -0.029 1 

  (0.236) (0.169) (0.187) (0.200) (0.188) (0.212)  

*, **, *** significant at 10%, 5%, and 1% levels, respectively. Standard errors in parentheses. CA=conservation 

agriculture, WP=winter ploughing, SP=staggered planting, DTV=drought tolerant varieties, IPM=integrated pest 

management, IF=inorganic fertilizer and MA= manure. 

Likelihood ratio test for the overall correlation of error terms:  chi2 (21) = 47.32   Prob > chi2 = 0.0009. 

Conclusions and implications 

This article examines factors affecting the adoption of multiple sustainable agricultural practices 

by smallholder farmers in Zimbabwe. We estimate multivariate probit regression to account for 

the possible correlation between different SAPs. From a policy perspective, understanding the 

determinants of SAP adoption could help design appropriate dissemination strategies. The 

empirical results show that various socio-economic, institutional and agro ecological influence 

smallholders farmers adoption decisions on SAPs. Empirical results show that young farmers are 

more likely to adopt conservation agriculture. This suggests that upscaling of conservation 

agriculture should target young farmers. It should be noted that the promotion of conservation 

agriculture should however not discriminate older farmers. Our result show that farming 

experience positively influences the adoption of inorganic fertilizers. The positive correlation 

between farming experience and the adoption of inorganic fertilizers suggests that increasing 

farmers’ exposure and experience to soil fertility management practices through demonstration 

trials and other extension methods may accelerate the uptake of soil fertility technologies. The 

size of arable land positively influences the adoption of winter ploughing, staggered planting and 

drought tolerant varieties. Income influences the adoption of integrated pest management. 

Access to information through public extension and television positively influenced the adoption 

of staggered planting. Policies that are aimed at improving household income and enhancing 

access to information can increase the uptake of SAPs by smallholder farmers. These results also 
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show that extension messages promoting the uptake of sustainable agricultural practices could be 

channelled through television and mobile phones 

We found that there were complementarities between SAPs and in some cases substitutability 

effects. These correlations have two important implications for the promotion of SAPs in 

developing countries. Firstly, policy changes that affect adoption of a given SAP can have spill 

over effects on adoption of other SAPs. Therefore extension messages and promotions should 

emphasize the complementarities and substitutability between different SAPs to broaden farmer 

options. Secondly, information on which SAPs are adopted together and which individually, can 

help policy makers and extension agents to formulate a package of SAPs (Kassie et al. 2015). 

For example, farmers could harness maximum benefits if they apply manure to their 

conservation agriculture plots. Farmers could realize positive synergies if the adoption of winter 

ploughing, staggered planting, manure application and integrated pest management can each be 

combined with the planting of drought tolerant crop varieties. These use of drought tolerant 

varieties is crucial considering the recurrent drought occurring in Zimbabwe. 
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