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Estimating the area, timing and duration of rice fallows for agricultural intensification in 

India: A pilot study for developing geospatial datasets and improved algorithms 

 
I. Introduction 

Agricultural intensification and crop diversification are essential in order to meet the 

rising demands for food production and security in India, driven by increasing populations and 

changing food consumption. Fallowing croplands has been a common agricultural practice and 

serves to accumulate soil moisture in dry regions (dryland farming), or to control weeds and 

plant diseases. Recently, rotation of crops is considered an alternative method and preferred to 

fallowing, due to agricultural intensification (growing another crop during the fallow period) and 

crop diversification (mainly short duration lentils and oil seeds). Rice croplands is widely 

distributed in India, however, there is no geospatial datasets (maps) about the area, timing and 

duration of fallowing rice croplands in India. Therefore, there is a need to develop satellite-based 

technologies that estimate the area, timing and duration of fallowing rice croplands in India. The 

resultant information can be used to support those studies that assess the potential of agricultural 

intensification and crop diversification (cultivating short-duration crops) in the fallowing rice 

croplands. 

The long-term and overall goal is to map rice fallows (area and spatial distribution) and 

to assess feasibility for cropping intensification in rice fallow areas. In this pilot and short-term 

project, the specific objectives are the followings: 

 Develop algorithms to map cropping intensity and crop fallows using MODIS data 

during 

2000 – 2014 (250-m, 500-m and 1000-m spatial resolution, 8-day temporal resolution). 

 Develop algorithms to map rice fallow areas at selected sites (Landsat image 

path/row) in India, using Landsat images during 2000-2014 (30-m spatial 

resolution, 16-day temporal resolution). 

 Develop feasibility plans for crop intensification and diversification in rice fallow 

areas. 

 

The main purpose of the proposed pilot study is to map rice fallows and identify 

potential areas (fallow hotspots) for agricultural intensification (growing another crop 

during fallow period) and crop diversification (legume and oil seeds) at the pilot test sites 

covering a few districts in West Bengal and Odisha (Orissa) to demonstrate technology for large-

scale assessment. This case study is to develop operational algorithm to map rice fallows and 

feasibility analysis at the pilot study for crop intensification and crop diversification in the rice 

fallow areas. The resultant datasets and algorithms from the pilot study could be applied to large 

area mapping. This consultant project in satellite remote sensing will also contribute to the CRP 

Drylands Systems on innovative tools and technology for monitoring and mapping agro-

ecosystems at field and landscape scales. 

 
II. Materials and Methods 

 
II.1. Study Areas of the Pilot Study 

India is a country with extensive and diverse agriculture, and major crops include paddy 

rice, wheat, maize and soybean crops. We carried out the pilot study using satellite images from 

two sensors such as MODIS and Landsat. As these sensors have different spatial resolutions, we 
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selected our pilot study area in the state of West Bengal and Orissa (Odisha). 

When MODIS image data are used, the pilot study area covers an area of 20-degree 

longitude and 10-degree latitude as the case study area, for example, the area covered by MODIS 

H25V06 and H26V06 tiles, which covers parts of north and eastern India (e.g., Orissa, west 

Bengal). 

When Landsat image data are used, the pilot study area covers dozen of representative 

districts in the state of West Bengal 

(Bardawan, Birbhum, Bankura, South 24- 

Pargana, Purulia, West Mednapur) and Odissa 

(Balasore, Bhadrak, Kendrapada, 

Jagatsinghpur and Puri). Specifically, we 

acquired Landsat images from 2000-2013 for 

the path/row P139/R044. 
 

II.2 Image data from MODIS sensors 

II.2.1. Land surface temperature data 

(MYD11A2) 

The MODIS Land Science Team 

provides 8-day composite MODIS land 

surface temperature & emissivity products at 

1-km resolution, such as MOD11A2 (from the 
Terra satellite) and MYD11A2 (from the 

Aqua satellite). The land surface temperature 

(LST) data include daytime (local time 

∼10:30am from Terra and ∼13:30pm from
 

Aqua) and nighttime (∼10:30pm from Terra 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. A schematic graph to show 

Landsat path/row in the state of West 

Bengal and Orissa, India 
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and ∼1:30am from Aqua) temperature observations.
 

In this study, MYD11A2 data during 2003-2014 were downloaded from the USGS 
EROS Data Center (https://lpdaac.usgs.gov/). The digital number values (DN) from MYD11A2 

were converted to LST with centigrade unit values based on the following formula: LST (°C) = 

DN × 0.02 – 273.15 (Wan 2008; Wan et al. 2002). The LST data with bad observations in a time 

series were gap-filled using the linear interpolation approach (Equation 1). 

VI
(t + j −1)  

= VI
(t −1)  

+ j / (n + 1) × (VI
(t +n )  

− VI
(t −1) 

) …………………… (1) 

where T(t+j-1) is the LST to be interpolated, t is the index of the first bad-quality observation of the 

n continuous bad observations (n ≤ 3), j is the order of the bad-quality observation from 1 to n, 
and t-1 and t+n are the indices of the reliable observations before the first bad-quality 

observation and after the last bad-quality observation, respectively. We did not interpolate bad- 

quality observations if they occurred at the beginning and ending 8-day composites in a year. 
Deliverable products: (1) daytime LST datasets in 2010 - 2014, and (2) nighttime LST 

datasets in 2000 – 2014. 

 
II.2.2. Surface reflectance data (MOD09A1) 

The MODIS Land Science Team provides an 8-day composite MODIS Surface 
Reflectance Product at 500-m spatial resolution, such as MOD09A1 from the Terra satellite 

(Vermote and Vermeulen 1999). It includes seven bands: bands 1 (red: 620-670 nm), 2 (near 

infrared 1: 841-876 nm), 3 (blue: 459-479 nm), 4 (green: 545-565 nm), 5 (near infrared 2: 1230- 

1250 nm), 6 (shortwave infrared 1: 1628-1652 nm), and 7 (shortwave infrared 2: 2105-215 nm). 

Standard MODIS products are organized in a tile system using a sinusoidal projection, 

and each tile covers an area of 1,200 km × 1,200 km (approximately 10° latitude by 

10°longitude at the equator). Our study area is covered within two tiles (H25V06 and 

H26V06) of MOD09A1 data. We downloaded these two tiles for 2000-2014 (46 composites 

per year) from the USGS EROS Data Center (https://lpdaac.usgs.gov/). 

Our MODIS preprocessing procedure included three components: (1) clouds and cloud 
shadows, (2) calculation of spectral indices, and (3) gap-filling of vegetation indices. 

We identified cloud cover and cloud shadows in two steps. First, we used the data quality 
information (the quality control flag layer) in the MOD09A1 products to extract the clouds from 

each image. Second, we applied an additional restriction in which pixels with a blue reflectance 

of ≥ 0.2 were also labeled as cloudy. Therefore, 46 maps of cloud cover were generated. For each 

pixel, any 8-day composite that was identified as cloud cover was excluded from further 

analyses. Figure 2 shows numbers of good-quality observations in 2014 over the study area in 

India. 
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Figure 2. The map of frequency (numbers) of good-quality observations (8-day 

composites) in 2014 in India. 
 

The individual spectral bands in each of the 8-day composite surface reflectance 

MOD09A1 datasets were used to calculate four spectral indices: (1) Normalized Difference 

Vegetation Index (NDVI), (2) Enhanced Vegetation Index (EVI), (3) Land Surface Water Index 

(LSWI), and (4) Normalized Difference Snow Index (NDSI) (see Equations 2 - 5): 

NDVI = 
ρnir − ρred 

ρnir + ρred 

LSWI = 
ρnir − ρswir 

ρnir + ρswir 

 

EVI = 2.5 × 

 
 
 
 
 
 
 

ρnir − ρred 

 

(2) 

(3) 

(4) 
ρnir + 6 × ρred − 7.5 × ρblue + 1 

ρ
green 

− ρ
nir

 

NDSI = 
ρgreen + ρnir 

 

 
 

(5) 

where ρ
blue 

, ρgreen , ρred 
, ρnir  

and ρswir are the reflectance for the blue (Band 3), green (Band 4), 

red (Band 1), NIR (Band 2), and SWIR (Band 6, shortwave infrared 1) bands, respectively. Both 

NDVI and EVI are related to the vegetation canopy. NDVI has a saturation issue when it is used 
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for closed canopies, and it is also sensitive to atmospheric conditions and soil background (Huete 
et al. 2002; Xiao et al. 2003). EVI accounts for residual atmospheric contamination and variable 
soil and canopy background reflectance (Huete et al. 2002; Huete et al. 1997) because the blue 
band is sensitive to atmospheric conditions. LSWI was shown to be sensitive to equivalent water 

thickness (EWT; g H2O/m
2
) (Maki et al. 2004; Xiao et al. 2002a, b) because the SWIR band is 

sensitive to leaf water and soil moisture. NDSI is widely used for snow detection (Hall et al. 

1995; Hall et al. 2002). 

Deliverable products: (1) 8-day surface reflectance data during 2000 – 2014, and (2) 8- 

day vegetation indices (NDVI, EVI, LSWI, and NDSI) data during 2000 – 2014 

 
II.3. Image data from Landsat sensors 

We downloaded Landsat TM, ETM+ and OLI images in 2000 – 2014 from the USGS 

EROS data center. Atmospheric correction was applied to these images to generate surface 

reflectance. We calculated four spectral indices: NDVI, EVI, LSWI and NDSI for each of the 

images. 

 
III. Results and Discussion 

 
III.1. Temperature-defined crop growing seasons, based on land surface temperature 

Air temperature and land surface temperature are important climatic variables that 

determine planting date, harvesting date and duration (length) of crop growing season. Where 

does temperature constrain crop cultivation in India? As there are a limited number of weather 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Starting date, ending date and duration of the plant growing season in 2010, as 

defined by the nighttime LST > 5 
o
C. 
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stations in India, there are very limited amounts of air temperature data in India. In comparison, 
MODIS-based LST data provide continuous spatial and temporal coverage in India, and make it 
possible to generate maps of crop growing seasons as defined by LST. Here we use nighttime 

LST > 0, 5, and 10 
o
C as threshold values to generate maps of starting dates in spring, ending 

dates in fall, and duration (length) of plant growing seasons. Considering the variation of LST 
retrieval, we assume 3 consecutive 8-day composites to meet the criterion of LST > 0, 5 and 10 
o
C. Figure 3 shows the spatial distributions of starting date and ending date of plant growing 

season as defined by the nighttime LST > 0, 5 and 10 
o
C. It suggests that temperature does not 

constrain crop cultivation in most of India. 

Deliverable products: (1) maps of plant growing seasons in 2000-2014, based on LST > 0 
o
C, which is appropriate for natural grasses, shrubs and trees; (2) maps of crop growing season in 

2000 – 2014, based on LST > 5 
o
C, which is appropriate for some crops such as winter wheat; 

and (3) maps of crop growing season in 2000 – 2014, based LST > 10 
o
C, which is appropriate 

for some summer crops. 

 
III.2. Map of cropping intensity (single and double cropping in a year) in 2014 

Vegetation canopies can be described by leaf area index (LAI), pigment concentration 

(e.g., chlorophyll content) and leaf/canopy water content. It is well known that NDVI is related 

to LAI, EVI is related to leaf/canopy chlorophyll content, and LSWI is related to leaf/canopy 

water content (Xiao et al., 2006). As shown in Figure 3, there are strong seasonal dynamics of 

vegetation indices in croplands over time. 

We analyzed NDVI, EVI and LSWI and used several metrics to describe the seasonality 

of 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Seasonal dynamics of EVI in a MODIS pixel. 
 
vegetation indices over the period of 2000 - 2014. Seasonal dynamics of EVI illustrates clearly 

two crops in a year over a MODIS pixel (Figure 4). We applied the TIMESAT software to EVI 

time series data and generated a map of cropping intensity in 2014 (Figure 5). 
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Figure 5. The map of cropping intensity in India in 2014, as generated from 

analysis of MODIS data. 
 

Deliverable products: map of the cropping intensity in India in 2014. 
 
III.3. Map of starting date, ending date and duration of crop fallow in 2014 

The seasonal dynamics of vegetation indices also illustrate well the starting date, ending 

date and duration of crop fallow in a MODIS pixel (Figure 3). We applied the TIMESAT to the 

EVI time series data of individual pixels and then generated maps of starting date and ending 

date of crop fallow in 2014 (Figure 6), and then the duration of crop fallow in 2014 at individual 

pixels (Figure 7). 
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Figure 6. The starting date and ending date of crop fallows in India in 2014 at individual 

MODIS pixels. 
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Figure 7. The duration of crop fallows in India in 2014 at individual MODIS pixels 
 
 

III.4. Map of crop fallow area in 2014 from Landsat images 
We conducted visual interpretation of individual Landsat images through various band 

composites and carried out exploratory data analysis for individual image within the period of 

cropland fallow in 2014. The visual interpretation results show that Landsat image in 12/2014 

clearly illustrates where crop fallow area in 2014 at 30-m spatial resolution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. The false color composite of Landsat images in 12/2014. The cyan 

color clearly illustrates fallowed croplands. 
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IV. Summary (interim) 

In this pilot study, we analyzed the seasonal dynamics of three vegetation indices (NDVI, 

EVI and LSWI) in the study area from MODIS sensors. We used the TIMESAT software and 

EVI time series data in 2014 to generate (1) map of cropping intensity, (2) maps of starting date, 

ending date and duration of crop fallows in 2014 at 500-m spatial resolution. The resultant maps 

need to be further evaluated through in-situ data collected by the researchers in the study area. 

Such evaluation task is beyond the scope of this pilot study, and we expect that it will be 

incorporated into the future study. 

In this pilot study, we also analyzed Landsat images acquired within the period of crop 

fallow as defined by the MODIS time series data. Visual interpretation of Landsat images in 

2014 shows that crop fallow at 30-m spatial resolution (Landsat) is a dynamic process, and 

reaches its large area in December 2014. This suggests that through integration of MODIS time 

series data analysis and Landsat multi-temporal image analysis, it is possible to characterize crop 

fallow in India at 500-m and 30-m spatial resolution. 

Based on the results and lessons from this pilot study, our recommendation is that there is 

a need to explore MODIS data at 250-m and 500-m spatial resolutions to better define cropping 

intensity, starting date (planting date), ending date (harvesting date) and duration of crop fallow 

in India. India has diverse and extensive crop cultivation, and cropland field size distribution is 

dominated with small farms, therefore, it remains a challenging task to track and monitor 

cropland dynamics. Second recommendation is that detail study need to conducted with 

incorporating  optical as well microware remote sensing data along with extensive in-situ 

observation to improve the algorithms and overcome the cloud cover during the monsoon 

season.    

 

First phase of the study is in progress, next phases of the study involves conducting analysis at 

higher spatial scales and develop feasibility plan for specific crops and crop varieties.  
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