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Abstract

The legume genus Vigna are grown in warm temperate and tropical

regions globally but are particularly crucial to human nutrition in large

parts of tropical Africa and Asia. It can also serve as forage crops. Among

the Vigna species, the Asian Vigna has received little research initiatives

than African Vigna such as cowpea and mung bean. From the last decade,

the research initiatives are getting increased for both the Vigna species in

the context of genetic resource analysis and genome mapping. The pro-

duction status has remained stagnant in many countries due to long list of

pest and pathogen attacks and abiotic stresses. Use of plant growth-

promoting microbes for improving the productivity of Vigna species is

still in its infancy, and there were very few field evaluation studies

conducted. This chapter brings an overview of several reports which

documented the various facets of plant growth-promoting microbes,

particularly of actinomycetes, in increasing growth performance and

productivity of Vigna.
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18.1 Introduction

Legumes belonging to the family Fabaceae or

Leguminosae are the second most important

crops next to cereals among the food crops.

Legumes are the third largest family among the

flowering plants, consisting of approximately

650 genera and 20,000 species (Doyle 1994).

They are the important sources of protein for
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vegetarians and comprise twice the amount on

average than cereals. It also provides significant

amounts of micronutrients, including iron, zinc,

calcium, and vitamins. In addition, legumes are

excellent sources of nutraceutical constituents

such as phenolics, flavonoids, isoflavones,

lignans, and tannins. These compounds have anti-

oxidant, antimutagenic, and anticarcinogenic

activities. Hence, their consumption is

recommended by several health organizations

for a broad spectrum of health benefits (Letreme

2002; Duranti 2006). Along with the nutritional

benefits, their accessibility and affordability to

lower-income populations and resource-poor

people around the world made them to be

recognized as “poor man’s meat” (Swaminathan

1974). A list of some legumes and their origin is

shown in Table 18.1 (Nene 2006).

As one of the strategies of “Green Revolu-

tion,” high inputs of artificial N fertilizers into

farmlands (up to 100 million tons per year) were

used for higher crop productivity. However, they

could not serve for sustainable aspect of food

production as they are produced using energy

from fossil fuels. On the other end, biological

nitrogen fixation (BNF) accounts for about

65 % of N currently used in agriculture. Due to

the N-fixing ability of legumes, they are used in

crop rotations which have a positive impact on

soil fertility and subsequent crop productivity.

Legumes meet their own N needs via BNF, and

major part of fixed N is harvested as grains,

while the soil and the succeeding crops benefitted

by N in the form of root and shoot residues

(Bhattacharyya and Jha 2012). Though

nonsymbiotic systems are also contributing for

N fixation, the contribution of legume-rhizobia

symbiosis (13–360 kg N ha�1) is far greater than

the nonsymbiotic systems (10–160 kg N ha�1)

(Bohlool et al. 1992). This leads to the substan-

tial reduction of the N requirement from external

sources. The quantity of N fixed by some

legumes is shown in Table 18.2. Hence, the pro-

duction and consumption of more legumes in

human diets could aid in the reduction of global

warming, eutrophication, acidification, and land

degradation besides reducing protein-energy

malnutrition and micronutrient deficiencies in

developing countries (Davis et al. 2010).

Even though legumes are high in numbers,

selected cash crops such as soybean, pea, and

cowpea alone have been exploited. Severe

genetic erosion of the legume species is occur-

ring currently due to anthropogenic activities and

also due to the introduction of genetically

modified crops. A total of 2206 legume species

have been listed in International Union for Con-

servation of Nature (IUCN) red list (Walters and

Gillet 1998). In addition, the production of

Table 18.1 Geographical origin and domestication of

various pulses grown in Indian subcontinent

Legume Binomial name

Geographical origin

and domestication

Chickpea Cicer
arietinum

Turkey-Syria

Pigeon

pea

Cajanus cajan India

Lentil Lens culinaris Southwest Asia

(Turkey-Cyprus)

Black

gram

Vigna mungo Indian subcontinent

Green

gram

Vigna radiata Indian subcontinent

Lablab

bean

Lablab
purpureus

Indian subcontinent

Moth

bean

Vigna
aconitifolia

Indian subcontinent

Horse

gram

Macrotyloma
uniflorum

Indian subcontinent

Pea Pisum sativum Southern Europe

Grass

pea

Lathyrus
sativus

Southern Europe

Cowpea Vigna
unguiculata

West Africa

Faba

bean

Vicia faba West Asia

Source: Nene (2006)

Table 18.2 Reported quantum of nitrogen fixed by

legumes

Legume Fixed nitrogen quantity (kg N ha�1)

Soybean 33–643

Groundnut 126–319

Black gram 125–143

Cowpea 25–100

Pigeon pea 77–92

Green gram 71–74

Source: Peoples and Crasswell (1992)
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common legumes has remained unmet with the

consumption rate (Ali and Kumar 2000). The

crop yield is constrained due to limited adaptabil-

ity of available cultivars and by a long list of

pathogen attacks like powdery mildew, downy

mildew, rust, Ascochyta blight, Botrytis gray

mold, white mold, damping-off, anthracnoses,

root rot, collar rot, and vascular wilts and pest

attacks from chewing and sap-sucking insects

followed by attacks from parasitic weeds,

viruses, bacteria, and nematodes (Rubiales

et al. 2015).

Pesticides and fertilizers of chemical origin

can overcome yield losses by pathogen and pest

attacks and increase the productivity. However, it

also has safety risks, loss of natural enemies,

outbreaks of secondary pests, insect resistance,

environmental contamination, and biodiversity

loss (Lacey and Shapiro-Ilan 2008). The

increasing costs, negative effects of pesticides,

fertilizers, and consumer preference on pesticide-

free food products necessitate the idea of

biological options for crop protection and pro-

duction. Usage of animal manure, crop residues,

composts, and microorganisms (Rhizobium, Azo-

tobacter, Azospirillum, blue-green algae, Pseu-

domonas, Bacillus, and actinomycetes) can play

key roles as it provides natural nutrition, reduces

the use of inorganic fertilizers, develops biodi-

versity, increases soil biological activity,

maintains soil physical properties, and improves

environmental health (Hue and Silva 2000;

Vessey 2003). This book chapter will bring a

note on one of the legume genus Vigna and the

importance of microbial inoculum, in particular

actinomycetes, in its exploration.

18.2 Vigna

The genus Vigna are hot weather herbaceous

legumes first evolved in Africa as the major

species (Vaillancourt et al. 1993). Recent report

of Thulin et al. (2004) further suggests this

through molecular studies that Vigna may have

evolved from Wajira, the African genus as it is

basal compared to Vigna and Phaseolus.

Detailed description on taxonomy of Vigna

documents that there are 98 species and six

subgenera in which the subgenus Vigna has the

highest number of species of about 38 (Maxted

et al. 2006). Most of the Vigna species are nutri-

tionally enriched and are particularly crucial to

human and animal nutrition in large parts of

tropical Africa and Asia (Vijayakumari

et al. 1998; Ullah et al. 2014). However, the

domesticated Vigna species such as cowpea

(Vigna unguiculata) and mung bean (Vigna

radiata) are vital in terms of production. The

production stands at about 4.5 million metric

tons/10 million ha for the former and is 2.5–3

million metric tons/5 million ha for the latter

species (Tomooka et al. 2005). Other species of

interest in specific countries are listed in

Table 18.3. A complete description on genetic

resources of available Vigna species was given

by Tomooka et al. (2011), and it is understood

that Vigna has huge biodiversity of wild and

cultivated species.

The genus Vigna is also peculiar for its resis-

tance against many abiotic stresses. Reports of

Iwasaki et al. (2002) and Singh et al. (2015)

registered tolerance of Vigna species such as

V. umbellata and V. unguiculata for the heavy

metals Al and Mn. They are well tolerant for

salinity (Sehrawat et al. 2015; Win et al. 2011),

and many crops were developed with enhanced

salt tolerance using proline biosynthetic pathway

genes PSCS and PSCSF129A of V. aconitifolia

and the list is given in Table 18.4. Besides this,

recent report of De-Abreu et al. (2014) brought

the involvement of various proteins for salt stress

tolerance in V. unguiculata through proteomic

approaches. The proteome data registered that

cowpea cultivars adopt different strategies to

Table 18.3 Representatives of other Vigna species of

interest and their producing countries

Common

name

Binomial

name Producing country

Azuki bean V. angularis China and Japan

Rice bean V. umbellata Northern India and

Southeast Asia

Moth bean V. aconitifolia South Asia

Bambara

groundnut

V. subterranea Africa
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alleviate salt stress. In salt-tolerant cultivar

Pitiúba, proteins involved in photosynthesis and

energy metabolism, such as rubisco activase,

ribulose-5-phosphate kinase (Ru5PK), glycine

decarboxylase, and oxygen-evolving enhancer

(OEE) protein 2, were profoundly expressed. On

the other hand, in salt-sensitive cultivar TVu,

downregulation of OEE protein 1, Mn-stabilizing

protein-II, carbonic anhydrase, and Ru5PK was

noticed which led to energy reduction and hence

decline in plant growth.

The African Vigna, cowpea, is a mandate crop

of the International Institute of Tropical Agricul-

ture (IITA) and subsequently receiving consider-

able attention from the international agricultural

research community by the initiatives such as

Cowpea Genomics Initiative (Chen et al. 2007),

Bean/Cowpea Collaborative Research Support

Program (http://www.isp.msu.edu/CRSP), Gen-

eration Challenge Programme (http://www.

generationcp.org), and Network for the Genetic

Improvement of Cowpea for Africa – NGICA

(http://www.entm.purdue.edu/NGICA/). How-

ever, the Asian Vigna is called as “slow runners”

by Borlaug (1973) as its research and develop-

ment is not focused by international institutes.

However, the importance for the Asian Vigna has

recently increased with some significant scien-

tific advances in particular to genetic resource

analysis and genome mapping (Kaga

et al. 2005, 2008; Tomooka et al. 2006). A

detailed review by Nair et al. (2013) on one of

the Asian Vigna mung bean conveys its key role

in enhancing the food and nutritional security via

breeding and other agronomic practices. Besides

the magnitude of research attention, seed yield of

cowpea and other Asian and African Vigna spe-

cies remains low in farmer’s fields except few

countries (Singh 2005; Matsunaga et al. 2008;

Saxena 2011) due to various biotic and abiotic

stresses (Kumar and Kumar 2015).

18.3 Plant Growth-Promoting
Microbes

Microbes with agriculturally favorable traits

categorized as plant growth-promoting (PGP)

microbes are of great importance in agricultural

practice. In case of legumes, the practice of

mixing natural rhizospheric soil with seeds is

the recommended method of legume inoculation

during the nineteenth century. The reason behind

this practice is that rhizospheric soil is an

enriched source of microorganisms (10–100-

folds than the bulk soil) such as bacteria, fungus,

algae, and protozoa. Rhizospheric soil is usually

rich in nutrients than bulk soil as it accumulates

Table 18.4 Genes of V. aconitifolia used for developing
transgenic plants and its developed traits

Genesa Target plant

Enhanced tolerance and

phenotype of transgenic

plants

PSCS Tobacco Enhanced biomass,

flower and seed

development

Proline accumulation

and increased enzyme

activities

Wheat Enhanced proline

accumulation

Carrot Salt stress tolerance

Larix
leptoeuripaea

Enhanced tolerance for

cold and salinity

Medicago Enhanced proline

accumulation

Chickpea Enhanced proline

accumulation and salt

stress tolerance

Sugarcane Enhanced proline

accumulation and salt

stress tolerance, lesser

oxidative damage

Rice Enhanced salt stress

tolerance

Enhanced salt and

drought stress tolerance

Enhanced salt stress

tolerance up to 200 mM

NaCl

PSCSF129A Enhanced proline

accumulation and salt

stress tolerance

Pigeon pea Enhanced proline

accumulation and salt

stress tolerance

Source: Kumar et al. (2015)
aGenes involved in proline biosynthetic pathway
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organic acids, amino acids, fatty acids, phenols,

nucleotides, putrescine, sterols, vitamins, sugars,

and plant growth regulators/promoters released

from the root exudates (Uren 2007).

The rhizobacteria were categorized depending

on their proximity to the roots as (i) bacteria

living near the roots (rhizosphere), (ii) bacteria

colonizing the root surface (rhizoplane), (iii) bac-

teria residing in root tissue (endophytes), and

(iv) bacteria living inside cells in specialized

root structures or nodules; the latter group is

further divided into two groups – the legume-

associated rhizobia and the woody plant-

associated Frankia sp. Microbes belonging to

any of these categories and improving plant

growth either through direct (N fixation, phos-

phate (P) solubilization, iron chelation, and phy-

tohormone production) or indirect (suppression

of plant pathogens and induction of host plant

resistance against phytopathogens and abiotic

stresses) mechanisms are referred as plant

growth-promoting rhizobacteria (PGPR). This

includes the genera Bacillus, Pseudomonas,

Erwinia, Caulobacter, Serratia, Arthrobacter,
Flavobacterium, Chromobacterium, Agro-

bacterium, Rhizobium, Streptomyces, and

Rhodococcus (Glick 1995).

The microbial flora present in soil and other

sources such as vermicompost and farmyard

manure (FYM) plays an important role in plant

growth promotion. Application of organic

manure such as FYM and phosphate solubilizer

significantly increased the rhizospheric microbial

flora and yield of green gram (Chesti and Tahir

2012). Application of microbial species isolated

from vermicompost enhanced the growth of

green gram in terms of shoot length, root length,

number of leaves, and yield (Gopinath and

Prakash 2014; Geetha et al. 2014). Rhizobium
was found to enhance germination of seed of

green gram (Vaishali et al. 2014). Fernandes

and Bhalerao (2015) reported that the seed treat-

ment of green gram with Azotobacter enhanced

the plant morphological and biochemical

parameters. As compared to green gram, the

combination of Rhizobium, phosphobacteria,

and Azospirillum increased the plant growth,

morphology, and biochemical constituents of

cowpea (Sivakumar et al. 2013). Besides this,

indirect growth-promoting effects were also

observed. Aswini and Giri (2014) evaluated

Trichoderma viride, Bacillus subtilis, and Pseu-

domonas fluorescence for the control of seed-

borne root diseases in green gram and achieved

86 %, 65 %, and 47 % control, respectively.

Similarly, a combination of T. viride and

P. fluorescence was utilized to control green

gram root pathogen Macrophomina phaseolina

in vitro, under glasshouse and field conditions.

In this combination, the defense-related enzymes

of green gram such as peroxidase, polyphenol

oxidase, and phenylalanine ammonia-lyase were

significantly increased (Thilagavathi et al. 2007).

In addition, Siddiqui and Mahmood (1999)

reported that the microbes such as Streptomyces,

Agrobacterium, Alcaligenes, Bacillus, Clostrid-
ium, Desulfovibrio, Pseudomonas, and Serratia

were used for the control of nematodes in soil.

Among the PGP microbes, actinobacteria are

one of the key groups because, as per the litera-

ture survey, they account for ~60 % of new

antibiotics among the microbial compounds of

about 60–80,000. In specific, the single genus

Streptomyces is the major producer of secondary

metabolites (39 % of all microbial metabolites)

(Berdy 2012). Streptomyces spp. were reported

as potential biocontrol agents against root

fungal pathogens (Bhattacharyya and Jha

2012). Actinomycetes isolated form herbal

vermicompost including Streptomyces tsusi-

maensis, Streptomyces caviscabies, Streptomy-
ces setonii, Streptomyces africanus, and a

Streptomyces sp. were found to reduce disease

symptoms up to 20 % on Fusarium wilt of chick-

pea grown in wilt-sick plots (Gopalakrishnan

et al. 2011). But the potential of actinomycete

group has not been much explored in Vigna in

specific at field conditions. Use of such microbial

inoculum in exploring the productivity of Vigna

is discussed below.
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18.4 Role of Phosphate Solubilizers
on Vigna

Plant P availability is limited particularly in trop-

ical soils, despite its high soil content (Collavino

et al. 2010). Usually, most soil P exists as

insoluble metal chelates and requires substantial

amounts of chemical phosphate fertilizers which

are rapidly converted into insoluble P sources.

This leads to regular application of P fertilizers,

which are costly and environmentally undesir-

able (Vassilev et al. 2006). It is noted that

unavailability of P has more influences on

growth performance of Vigna because tropical

soil is the optimal soil for growing Vigna species.
In this context, microbial solubilization of soil-

insoluble P into soluble forms is considered by

various researchers. Phosphate-solubilizing bac-

teria (PSBs) belonging to the genera Bacillus,

Pseudomonas, Xanthomonas, and Serratia

enhanced the nodule, root, and shoot parameters

of green gram under greenhouse conditions

(Vikram and Hamzehzarghani 2008). Microbes

with the phosphate-solubilizing potential and

additional trait of phytohormone production are

other key resources. This was noticed by

Muthezhilan et al. (2012) using Pseudomonas
sp. AMET1148 for increased shoot and root

length on V. radiata and V. mungo. Shahab

et al. (2009) also noticed similar effects in

V. radiata by the inoculation of PSB Pseudomo-

nas aeruginosa CMG860 with additional capac-

ity of producing auxin (IAA, 57–288 μg/ml; IBA,

22–34 μg/ml). Nonsymbiotic PGPR belong to

Pseudomonas, Escherichia, Micrococcus, and

Staphylococcus with IAA-producing capacity

(1.16–8.22 μg/ml), and other PGP traits such as

P solubilization and siderophore or hydrogen

cyanide production are evaluated for growth-

promoting effects of V. radiata. Significant posi-

tive correlation was noticed for bacterial IAA

production and endogenous IAA content of

roots (r ¼ 0.969; P ¼ 0.01) and leaves

(r ¼ 0.905; P ¼ 0.01) under axenic conditions.

Bacterization of V. radiata seeds significantly

enhanced shoot length (up to 48 %) and shoot

biomass (up to 43 %) under axenic conditions.

Bacterial strains applied under wire house

conditions also improved shoot length, pod

number, and grain weight up to 58 %, 65 %,

and 17 %, respectively, over the control

treatments. It is understood that free-living

PGPR have the ability to influence endogenous

IAA content and growth of leguminous plants

(Ali et al. 2010).

Zaidi and Khan (2006) studied the effect of

microbial treatment including PSB (B. subtilis),
phosphate-solubilizing fungus (Aspergillus

awamori), and AM fungus (Glomus

fasciculatum) along with nitrogen-fixing

Bradyrhizobium sp. (Vigna) on V. radiata under

glasshouse conditions. The triple inoculation of

AM fungus, Bradyrhizobium sp., and B. subtilis
significantly increased dry matter yield, chloro-

phyll content in foliage, and N and P uptake

along with the seed yield of 24 % than the con-

trol treatment. Nodule occupancy was observed

between 77 and 96 % but with a greater variation

in the rhizobial populations. In a similar study,

two potential PSBs, Pantoea agglomerans and

Burkholderia anthina, with the maximum P sol-

ubilization of 720 μg/ml were identified among

the 31 PSB isolates. Inoculation of these P

solubilizers enhanced shoot and root length,

shoot and root dry matter, and P uptake of

V. radiata under greenhouse conditions (Walpola

and Yoon 2013). Benefit of microbial

co-inoculation is further supported by Bahadur

and Tiwari (2014) who studied the effect of

nutrient management in mung bean through sul-

fur (S) and biofertilizers. Though significant

increase of growth performance was noticed on

S treatment, it decreased the soil PSB and acti-

nomycete population. Co-inoculation of Rhizo-
bium and PSB showed significant growth

response along with the significant increase of

microbial counts for total bacterial population

(41.7 � 106/g soil), Rhizobium-like organism

population (13.9 � 103/g soil), and Azotobacter

population (12 � 103/g soil).
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18.5 Role of Siderophore Producers
on Vigna

Iron, an essential micronutrient for plants, is

present in soils ranging from 0.2 to 55 %

(20,000–550,000 mg/kg) and occurs as either

the divalent (ferrous or Fe2þ) or trivalent (ferric
or Fe3þ) forms which is determined by redox

potential of the soil and the availability of other

minerals (Bodek et al. 1988). Under aerobic

environments, iron exists as insoluble hydroxides

and oxyhydroxides, which are not accessible to

both plants and microbes. Generally, microbes

have the ability to synthesis low molecular

weight compounds called siderophores which

are capable of sequestering Fe3 and also other

metals at high affinity and influence their avail-

ability to plants. In addition, the siderophores

help for antagonistic activity by depriving the

availability of Fe to the pathogens (Rajkumar

et al. 2010). Sharma and Johri (2003) and Sharma

et al. (2003) observed that inoculation of

siderophore-producing Pseudomonas sp. GRP3

is documented to reduce chlorosis, the iron defi-

ciency symptom in V. radiata under pot

conditions, with and without iron-limiting

nutritional status. Significant increase of chloro-

phyll content and catalase and peroxidase, the

key protoheme enzymes, was noticed. This

indicates net physiologically available iron to

the plant. In a study by Sindhu et al. (1999),

Pseudomonas sp. was isolated from the rhizo-

sphere of V. radiata with a wide range of anti-

fungal activities against Aspergillus sp.,

Curvularia sp., Fusarium oxysporum, and Rhi-
zoctonia solani in vitro. Culturing with

Fe-deficient succinate medium, Luria-Bertani

and King’s B medium, suggested that the anti-

fungal activity was supported in two ways, by

competing for nutrients especially through

siderophore and by producing antifungal

metabolites. Co-inoculation of green gram with

these antagonistic Pseudomonas MRS13 and

MRS16 and Bradyrhizobium sp. (Vigna) S24

registered a significant increase in nodule weight,

plant dry weight, and total plant N as compared

to single inoculation with Bradyrhizobium S24.

This suggests that the nodule-promoting effects

of Pseudomonas sp. lead to an increase in sym-

biotic N fixation and plant growth. In a similar

study, Saxena (2010)documented antifungal

activity of P. fluorescens BAM-4, Burkholderia
cepacia BAM-6, and B. cepacia BAM-12

isolated from the rhizosphere of V. radiata

against a range of phytopathogenic fungi. The

antagonistic activity might be exerted by

siderophores (BAM-4 and BAM-6 strains) and

chitinase (all the three strains). Morphological

abnormalities of pathogens such as fragmenta-

tion, swelling, perforation, and lysis of hyphae

were confirmed by scanning electron microscopic

images. Bacterization with these isolates provided

protection against Macrophomina phaseolina and

also enhanced seed germination, shoot length,

shoot fresh and dry weight, root length, root fresh

and dry weight, leaf area, and rhizosphere coloni-

zation. On par with the control treatments, yield

parameters such as pods, number of seeds, and

grain yield per plant are also significantly enhanced.

Co-inoculation of Pseudomonas along with

Bradyrhizobium reduced the disease symptoms

induced by Rhizoctonia solani in green gram

under greenhouse conditions. The nodule

parameters and vegetative biomass are enhanced

in infected plants also (Sahu and Sindhu 2011).

Actinomycetes, one of the key biocontrol

agents, use siderophores as one of the disease

control mechanisms. Siderophores such as

desferrioxamine B were produced by Strepto-
myces pilosus and Streptomyces coelicolor,

desferrioxamine E by S. coelicolor (Jurkevitch

et al. 1992), and peucechelin by Streptomyces
peucetius (Kodani et al. 2015). Streptomyces

griseoviridis is available in the market as a

biocontrol agent with trade name of Mycostop,

Subtilex, and System3 (Kumar and Pundhir

2009). Though some microbes are evaluated

for disease of Vigna species, the siderophore-

producing actinomycetes were not studied

extensively. Further studies in this context will

bring potential biocontrol agents for diseases in

Vigna.
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18.6 Role of PGPR Under Stress
Conditions on Vigna

The gaseous plant hormone ethylene plays a key

role in plant development, from seed germination

to fruit ripening. However, its triggered produc-

tion during stress environments ends in plant’s

premature death. Many rhizospheric microbes

are known to control ethylene through ACC

deaminase (ACCd) which cleaves ACC, the

immediate precursor of ethylene into ammonia

and α-ketobutyrate, and helps in alleviating

stress consequences of crops (Penrose and Glick

2003). Strains, such as Rhizobium legumino-

sarum bv. viciae, Rhizobium hedysari, Rhizo-
bium japonicum, Mesorhizobium loti,

Bradyrhizobium japonicum, Sinorhizobium

meliloti, Bacillus sp., and Pseudomonas sp., had
been known to produce ACC deaminase (Duan

et al. 2009; Glick 2014; Hafeez et al. 2008;

Uchiumi et al. 2004). Inoculation with these bac-

teria had shown to promote root elongation,

shoot growth, enhanced rhizobial nodulation,

and mineral uptake (Glick 2012). Shaharoona

et al. (2006) observed the similar traits by inocu-

lation of a rhizobacteria possessing ACC deami-

nase activity isolated from maize rhizosphere

along with the co-inoculation of Bradyrhizobium

on mung bean under pot conditions. Besides the

free-living microbes, Jaemsaeng et al. (2013)

documented the similar influences of endophytes

with ACC deaminase activity. Sixteen strains

among the 67 endophytic actinomycetes showed

ability of ACC deaminase production and the

expression of acdS, the ACC deaminase syn-

thetic gene. Native endophytic Streptomyces

sp. GMKU336 with ACC deaminase and a

mutant without ACC deaminase activity was

individually inoculated into mung bean plants

grown under stress conditions of salinity and

flooding. Mung bean plants inoculated with the

wild type could survive under salinity at 100 mM

NaCl and flooding stresses and significantly

enhanced root/shoot growth and leaf chlorophyll

content than un-inoculated and ACC deaminase-

deficient mutant treatments. The actinobacterial

strains such as Micrococcus, Corynebacterium,

Arthrobacter, Rhodococcus, and Streptomyces
spp. with exemplified ACC deaminase activity

were found to improve plant growth in other

crops also (Palaniyandi et al. 2013).

A nickel (Ni)-resistant Streptomyces

acidiscabies E13 simultaneously produced

three different hydroxamate siderophores, and

it was observed that they can bind nickel

besides binding with Fe. Culture filtrates

containing hydroxamate siderophores signifi-

cantly increased cowpea growth parameters,

irrespective of the iron status of the plants,

under Ni stress. The presence of reduced iron

was found to be high in siderophore-containing

treatments in the presence of Ni. Measurements

of Fe and Ni contents of cowpea roots and shoots

indicated that the siderophore-mediated plant

growth promotion reported here involves the

simultaneous inhibition of Ni uptake and solubi-

lization and supply of Fe to plants (Dimkpa

et al. 2008).

Ahmad et al. (2012a) conducted a pot trial to

evaluate the effect of combined application of

Rhizobium phaseoli (M6 and M9) and PGPR

(Pseudomonas syringae Mk1, P. fluorescens

Mk20, and P. fluorescens Biotype G, Mk25) to

improve the productivity of mung bean under

salt-stressed conditions. Inoculation with either

rhizobia or PGPR alone enhanced growth perfor-

mance and yield components significantly. How-

ever, the co-inoculation of rhizobia and PGPR

was more effective by increased shoot fresh

weight (145 %), root fresh weight (173 %), num-

ber of pods/plant (150 %), pod fresh weight

(182 %), total dry matter (269 %), relative

water content (19 %), water use efficiency

(51 %), K concentration in leaves (33 %), Na

concentration in leaves (56 %), and nitrogen

concentration in grains of mung bean (99 %),

compared with the un-inoculated control.

Pesticide accumulation in soils has occurred

as result of repeated applications beyond the

recommended doses and by their slow degrada-

tion rate. It affects plant growth by altering plant

root’s architecture and transformation of micro-

bial compounds to plants and vice versa. Besides

this, growth and activity of free-living or
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endophytic nitrogen-fixing bacteria have also

been affected (Mathur 1999). Several studies

have documented the effects of various

pesticides on the reduction of microbial

diversity and density on various soil types

(El Abyad and Abou-Taleb 1985; Moorma

1988; Martinez-Toledo et al. 1996). But several

microbes have the capacity to degrade the

pesticides and promote plant growth (Kumar

et al. 1996). Ahemad and Khan (2011) evaluated

the effect of fungicides (hexaconazole, kitazin,

and metalaxyl), insecticides (imidacloprid and

thiamethoxam), and herbicides (metribuzin and

glyphosate), at the recommended and the higher

dose rates on PGP activities of Bradyrhizobium
sp. MRM6 isolated from nodules of green gram

plants under in vitro conditions. The highest

toxicity was observed at three times higher

recommended doses along with decline of PGP

traits. In further studies, they observed that a PGP

P. aeruginosa PS1 with tebuconazole tolerance

increased the growth parameters of the green

gram plants, two and three times the

recommended field rate of tebuconazole. The

increased parameters are root N, shoot N,

root P, shoot P, and seed yield (Ahemad and

Khan 2012b).

18.7 Conclusion

The knowledge of using of microbial inoculum

has started many centuries ago as an agricultural

practice, but its application at field level is very

low in the current scenario. This is due to

variations in the microbial activity under field

conditions with the complex interaction of soil

nutrients, climatic factors, and stress conditions.

In the context of Vigna, very limited numbers of

reports are available for the use of PGPR and also

under field conditions, and the available reports

can bring only a bird’s-eye view. Despite this,

actinobacteria, one of the key groups in PGPR,

are not extensively studied in Vigna, though it

was evaluated in many leguminous crops such as

pea, chickpea, and soybean. So research

initiatives to explore the potential of PGP

actinobacteria have to be considered, and the

strains should be evaluated in intensive field

trials for developing biofertilizers to improve

the productivity of Vigna.
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