

Earth observation and big-data analytics for building resilient agro-ecosystems

Innovation, Investment, Intervention and Impact

Chandrashekhar Biradar, PhD Principal Scientist (Agro-Ecosystems) Head-Geoinformatics Unit c.biradar@cgiar.org

> Nov 21-23, 2016 Hyderabad, India

International Conference on

Statistics & Big Data Bioinformatics in Agricultural Research

Droughts in Drylands and the consequences and conflicts

Drought in middle east is worst of past 900 years

Source: NASA, 2016

Water Stress Around the World

Baseline Water Stress

Low (<10%)

Low to medium (10-20%)

Medium to high (20-40%)

High (40-80%)

Extremely high (>80%)

Arid & low water use

(Source: World Resources Institute)

Land and Soil Degradation

Impact of on agriculture

Global Drylands and CGIAR tropical and nontropical drylands

Green Water Resources

rainwater per capita (m³/person/year)

Changing Water Balance

Increasing deviation from long-term averages

Increased land, water and system productivity while safe guarding the environmental flows and ecosystem services

- more <u>crop</u> per <u>drop</u> -water focus
- in a inch of land and a bunch of crop

-multi dimensions-integrated systems

Knowledge based prioritization (space & time) for better strategy for investment, intervention, implementation and impact

Genes and Gains Eco-Crop Zoning Input Use Efficiency Bridging Yield Gaps Conservation Practices Carbon Sequestration Land Degradation Technology Scaling

- food and environmental security
- resilience and risk reduction
- adaption and mitigation
 - citizen science and collective actions
- trade, social security and stability

Role of Geospatial Science, **Technology and Applications** (GeSTA) in Dryland Systems

uring Security poo

Specific mutual-interaction & synergies between plant and animal species and management practices

Integrated agroecosystems: innovative approaches and methods for sustainable agriculture, while safeguarding the integration environment

Red. Vul.

A/Ss TAs

Sus. Int.

M&E

Cooperative Research and **Partnerships**

Gender Address social inequities, greater roles and priorities

Safeguarding Invironmental

Flows and ESs

Geospatial commons, KM sharing, stakeholder feedback

41% Earth's land area Measuring the

Measuring Impacts impact at spatial scales, rate, magnitude, synergy among the systems, CRPs, cross-regional synthesis

Assessing the impact of outcomes in Action Sites, Farmers, stakeholders, post-project policymakers, implementation, &

Efficiency

Productivity

mobilization, & marketing

Youth Engaging and empowering young gen. by creating

opportunities

Remote sensing missions in orbit^o Sensors potential in CRPs/IRPs, etc. >6 are free Quantification

Mapping present, Emerging, future land use /land cover dynamics, land degradation and desertification, changing demographics, climate change adaptation Reducir

and impacts

characteristics of crops, pattern, productivity, water use, livestock, biodiversity, soils, & climate

Current status,

trends, extent,

of dryland

agricultural

production and

livelihood

systems

ood production potential sources

Cropping Intensity 21%

Increase in **Arable Land**

Sustainable Intension Location specific and ecological intensification

Agricultural

Intensification

72%

Nutrition Changing diet patterns, nutrition and health

Urvlands

Integrated Production

Systems for Improving

Livelihoods in

Drv Areas

Delineation of potential, suitable areas for sustainable intensification. diversification of production systems

Improved ivelihoods geoagro.icarda.org

1) Ecological intensification, 2) Bridging vield gaps, 3) Input use efficiency, 4) Reduced land degradation, and 5) Location specific interventions.

> Characterization of vulnerable areas for increasing resilience and assist in identifying mitigation pathways with biophysical, socioeconomic and stakeholder feedback as well as specific needs & constraints

> > Biodiversity Spatial enrichment and its role in food security, risk mitigation, & sustainability

Mapping the extent of existing & traditional practices, indigenous knowledge, diversity, potential areas for modern & improved, productive, profitable, and diversified dryland agriculture, & linkages to markets

뽑2.5b Live in Drvlands Livestock Depend on

D Drylands

Assessment of present, emerging & future droughts, floods, pests & diseases. extreme events, infrastructure, migration

Earth Observation Systems for Agro-Ecosystem Research

High Resolution (1 to 5 m)

1		 19"11	
	12		
i i			
1		1111	
4			
	and a	I	

Stelling Resolution Spatial (m)* Temporal (days) Spectral (Bands) CARTOSAT-1 (2-5) 5 P 30 CARTOSAT-2 8 (2) 1 B, G, R, IR, P 24 SPOT-5 5, 20 (25, 5) 2-3 G, R, IR, SW, P 60 to 80 SPOT-6 (1.5) 6 (1.5) 2-3 B, G, R, IR, P 60 RapidSys 5 1 B, G, R, IR, P 60 RapidSys 5 1 B, G, R, IR, P 60 ColVICRESAT 5.8 5 G, R, IR, SW, P 20 GOKTURK-2 10, 20 (2-5) 2-5 B, G, R, IR, SW, P 20 Th42 10 (20 B, G, R, IR, SW, P 20 14 Theos 15 (2) 3 B, G, R, IR 96 BELJING-1 32 (4) 1 R G, IR 96 BELJING-1 15 (2) 3 B, G, R, IR 96 BELJING-1 32 (4) 1 R G, IR 6000 PROBA/HRC

*=Resolution in parenthesis is panchromatic

+=Bands: B-Blue, G-Green, R-Red, IR-Infra Red, C-Coastal blue, Y-Yellow, SW-Shortwave Infrared, M-Mid infrared, P-Panchromatic, H-Horizonal, V-verticial

Medium resolution (5 - 30 m)

Satellite	Multispectral resolution (m)	B, s	Swath width (kr
ASTER (15m)			
VNIR (Visible Near Infrared)		VIR (4)	60
SWIR (Shortwave Infrared)		SW (6)	
TIR (Thermal Infrared) CBERS - 2	60	TIR (5)	60
WFI	260	R. IR	890
CCD	20	B, G, R, IR	113
IRMSS	(2.7)	P-	27
LANDSAT 5TM -7ETM	30 (14.8)	B, G, R, IR, SW1, TIR, SW2,	185
Nigeriasat-X	22	G, R, IR	
Resourcesat-2/Liss-III	23.5	R, G, IR, SW	
Deimos-1	22	G, R, IR	600
UK-DMC-2/SLIM6	22	G, R, IR	638
BILSAT-1	26 (12)	R, B, G, IR, P	640
Nigeriasat-1		G, R, IR	640
ALSAT-1	32	G. R. IR	640
UK-DMC/EC (DMC)	32	G, R, IR	600
EO-1/ALI-MS	30	B (2), G, R, IR (3), SW (2), P	
EO-1/ Hyperion	30	220 bands	7,7
ASTER (15m)	15, 30, 90	G, R, IR (2) SW(6), TIR (4)	60
LANDSAT 7ETM+	30m (14.5)	B, G, R, IR, SW (2), TIR, P	
SPOT-4	20 (10)	G, R, IR, SW, P	60
SPOT-3	20 (10)	G, R, IR+P	60
JERS-1	24 (18)	G, R, IR, IR	75
SPOT-2	20 (10)	G, R, IR	
SPOT-1	20 (10)	G, R, IR	60
Landsat 5/MSS	80	G, R, IR, IR	185
Landsat 5/TM	30, 120	B, G, R, IR, SW, SW, TIR	185
RESURS-01-1	45	G, R, IR	600

Low or Medium resolution

Satellite	Multispectral resolution	(m) B, s	Swath width (km)
Landsat 8	30 (14.8)	P, C, B, G, R, IR, SW (3)	185
MERIS			
SPOT5/VEGETATION 2		B, R, IR, SW (4)	
SPOT4/VEGETATION 1		B, R, IR, SW (4)	
Orbview-2/ SeaWiFS		B(2), G (3), IR (8)	
		G, R, IR	

Radar Satellites

Satellite	Bands	Band (Polarity)	Swath width (km)
Sentinel-1			
			10, 40, 30, 100
COSMO-SKYMED 4	1, 5, 15, 30, 100	X-B (HH, VV, HV, VH)	200
TanDEM-X		X-B (HH, VV, HV, VH)	
			10, 40, 30, 100
COSMO_SKYMED 2		X-B (HH, VV, HV, VH)	200
RADARSAT 2	100	C-B (HH, HV, VH, VV)	5 - 500
			10, 40, 30, 100
COSMO-SKYMED 1	1, 5, 15, 30, 100	X-B (HH, VV, HV, VH)	200
Terra SAR-X		X-B (HH, VV, HV, VH)	1500
		L-B (HH, VV, HH, HV,	
ALOS (PALSAR)	10, 20, 30, 100	VH)	70
ENVISAT (ASAR)		C-B (VV)	5 - 406
RADARSAT 1 (SAR)	8,25, 30, 35, 50, 100	C-B (HH)	50 - 500
ERS 2 (AMI)		C-B (VV)	100
ERS 1 (AMI)		C-B (VV)	100

EO Matrix at Farmscape to Landscape

Science for Better Livelihoods in Dry Areas

Example of One Sensor in each Platform/Scale

	Platforms	Ground/	in-situ	Airb	orne	Spaceborne				
	Mode	Hyperspectral	Multispectral	Optical	Lidar		Optical		Lidar	SAR
ta istics	Sensor	ASD FieldSpec	M× Camera	APs/UAVs	Lidar	WorldView-2	Landsat	MODIS	ICESat*	PALSAR
	Spectral	350-2500nm	4 bands	3-4 bands	1264nm	8 bands	7 bands	7/36 bands*	1264 & 532nm	L band
	Spatial resolution	0.1-1.5m	0.1-0.2m	1-m	20 - 80cm	0.46m Pan;	15m Pan;	250m, 500m,	70m	10m, 20m,
RS						1.84m MS	30m MS	1000m MS		100m
cha	Swath	1-4m	2-10m		1-2km	16.4km	185km	2330km		35-250km
	Revisit			3-year		1.1 days	16 days	1 day	91 days	46 days
cal	Plant biomass	×	×		×	×	×	×		×
iysi	Plant height				×				×	×
Biophysical	LAI, fPAR, LST	×	×			×	×	×		
	NDVI, EVI, LSWI	×	×	×		×	×	×		
	Erosion, Salinity	×	×	×	×	×	×	×		
cal	Soil moisture	×	×	×		×	×		Leaf Area Index	×
emi	Chlolophyll	×	×			×	x	× 🚄	NDVI	
Biochemical	Nitrogen	×	×	×		×	×		1	eaf Wa
Bi	Phosphorous	×	×			×			caf Pigments	afWat
	Plant water	×	×			×		× Les	if Chlorophyll EVI	er
duc	GPP	×	×	×	•	×		×		
Produc tion	NPP	×				×	×	×		
	land cover/use	×	×	×		×	×	×		×
LULC	phenology	×	×				x	×		×
	Irrigation	×	×	×		×	×	×		×
ain	DEM		×	×	×	×			×	×
Terrain	Derivatives		×	×	×				×	×
	Tier 1 AOIs	×	×	×	×	×	×	×	×	×
e	Tier 2 action sites	×	×	×			×	×	×	×
Scale	Tier 3 AEZs	×	×	×				×	×	×
	Tier 4 Target			×				×		×

Across the scales

Scaling Trade-on/offs Farmscapes to Landscapes

Water, Nutrition, Ecology and Climate Change

More

Produce

and

LOSS

Reduce

Why dryland crops and crop diversification?

- Economically-Nutritious
- **Ecological-Soil Health**
- **Improved Productivity**
- **More Climate Resilient**
- **Reduce Virtual Water Trade**

Water-Efficient-Ecological **Food Production**

Daal/Falafel (1kg) 1,250 liters

Chicken (1kg) **4,325 liters**

Mutton (1kg) 5,520 liters

Beef (1kg) **13,000 liters**

Digital Agriculture Platform

Image Based, Open Source Precision Decision at Farm scales

Existing Agricultural Production Systems

EOS in Precision Decisions

Automated workflow for operational mapping, monitoring and rural advisory

Ag Intensification & Diversification

Cropping System Crop Intensity Crop Calendar Crop Rotation Cropped Area Fallow Dynamics -Fallow area -Duration -Start date -End date **Yield Potential** -Current -Achievable Suitable Crop/Variety -Legumes -Oil Seeds Soils Soil Health (SHC) Soil Moisture (SMAP) Water use Evapotranspiration Allocation/Irri. Sch. **Markets** -ePlatform -Ag Supply Chain -Access (I/O) Monitoring -Pest/Diseases

Bet

for

Near real-til

pixel to land

Crop Fallows

Lentil in Rice-b

Rice - EE Lentil -

Rice - Relay E Len

Irrigated

Variable

-Crop Stress **Citizen Science**

Cropping Intensity and land use dynamics

(Biradar et al., 2015)

Length of crop fallows

Duration (days)	81 - 90
1 - 30	91 - 100
31 - 60	110 - 120
61 - 70	130 - 140
71 - 80	150 - 300

(Biradar et al., 2015)

Inter and Intra Annual Dynamics over Decades

Staft and End Dates of Inter-annual Fallows

Start and End Dates of Intra-annual Fallows

Crop-fallows for intensification

On-farm water management

Where are those Yield Gaps?

Inter and Intra Field Variability

0.10 USD/m³

 0.50 kg/m^3

WP of Rice paddy

of yield produced/m³ of water used.

and the second second

Measuring Impact of Successful interventions

Soil Salinity, Dujaila, Iraq

Measuring Impact of Successful interventions

Soil Salinity, Dujaila, Iraq

Measuring Impact of Successful interventions

Soil Salinity, Dujaila, Iraq

Irrigation Infrastructure and land reclamation

Agricultural Intensification and Expansion

Irrigation Infrastructure and land reclamation

Agricultural Intensification and Expansion

Location specific Investment, Interventions and Impacts

Biradar, et al., 2016*

cience for Better Livelihoods in Dry Area

Connecting the dots of resilience

Agricultural production systems heavily compromised sustainable food production and health of the lives and planet earth by neglecting climate smart crops (dryland cereals and legumes)

Integrated farming systems with better soil, water, trees, and livestock management for nutritious food and agro-ecosystems for a sustainable future

in an inch of land and bunch of crop

Harvesting multiple gains

-genetic and breeding? 15-20 -management and agronomy? 50-60 -socio-economy and ecology? 20-35

> Thank You c.biradar@cgiar.org

avoid the unmanageable and manage the unavoidable

-IPCC Confronting Climate Change: