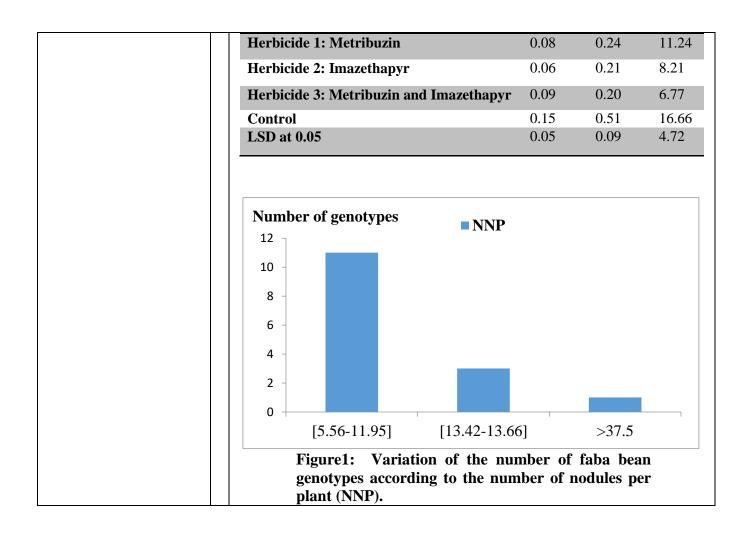
Identification of genetic sources of improved responses to nitrogen fixing rhizobacteria and other plant growth promoting microbes (Planned deliverables #2)

Title	:	Studies on $(G_L \times G_R) \times E \times M$ for N ₂ -fixation in chickpea
Objectives	:	Determination of the best combination of variety x rhizobia x fertilization
-		for SNF
		Effectiveness of strains on N ₂ -fixation under different growing conditions
Activities	:	New
Expected outcomes	:	Factor(s) limiting SNF in different production environments identified
_		Agronomic practices for enhancing SNF developed
Observations to be	:	Crop phenology
taken		Growth and yield attributes
		Yields and harvest index
		Nodulation
		Efficiency SNF
		NDVI, SPAD and hyperspectral imaging
Genotypes	:	Arifi; Moubarak; FLIP09-213C; FLIP09-314C
Results	:	The experiment was conducted at ICARDA-Marchouch, Morocco during
		winter and spring 2015-16. Application of recommended dose of fertilizer
		(RDF) in chickpea along with Rhizobium inoculation and seed treatment
		with ammonium molybdate 1 g/kg of seed, significantly increased number
		and dry weight of nodule, plant height and pods/plant, chlorophyll content
		in leaves over control (RDF alone).

Activity 1: Symbiotic nitrogen fixation (SNF) in chickpea- I

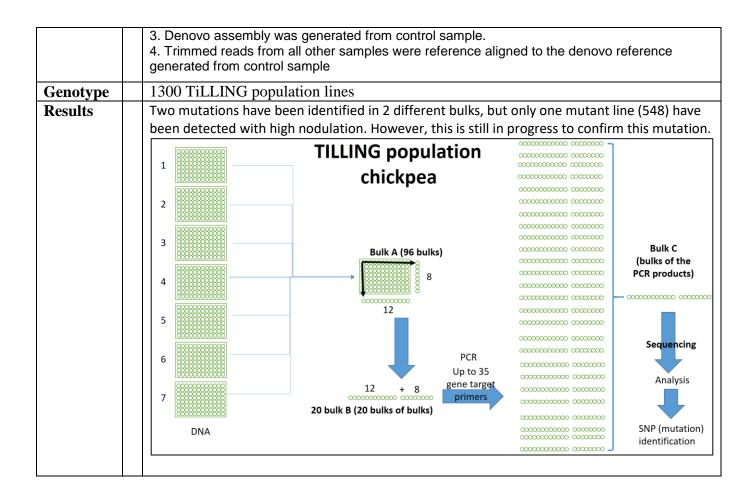
Activity 2: Symbiotic nitrogen fixation (SNF) in chickpea-II

Title	:	Improving biological nitrogen fixation (BNF) capacity and productivity of kabuli			
		chickpea (Cicer kabulinum L.) varieties by molybdenum and PSB applications			
Objectives	:	Determine the effect of PSB and Molybdenum on growth, yield and quality o			
-		Kabuli chickpea varieties			
		Study the effect of PSB and Molybdenum on root nodulation behavior and SNF			
		efficiency in Kabuli chickpea varieties			
		Work out the economics of the systems			
Activities	••	New			
Expected	:	Legume-rhizobium symbiosis for SNF determined			
outcomes		Agronomic practices for enhancing SNF developed			
Observations to	:	Crop phenology			
be taken		Growth and yield attributes			
		Yields and harvest index			
		Plant and soil nutrient content			
		Nodulation			


		Efficiency SNF						
		Chlorophyll content						
		Economics						
Genotypes	:	RVSJKG 102; Phule G 0517; PKV	΄ Λ					
Results	•	The trial was conducted at ICARD		laha	India du	rina	winter 20	15-16 The
Nesuits	•	seed inoculants with Rhizobium						
		inoculants in respect to productivit						0
		higher values of growth and yield	•	-	•		•	-
		yields of kabuli chickpea (Table 1						
		PSB+ Mo with Phule G 0517 on see						
		production.		1				U
		•						
		Table 1: Yield attributing traits infl	luence	d by i	noculant	s an	d varieties	
			Po	ds/	Seeds/	bod	Seed	Seed
		Treatments	-	nnt	(No.		yield/plan	
			(N	0.)	(1.0.	,	t (g.)	(g)
		Seed inoculants (I)	24		1.00		17.5	10
		I1 : ControlI2 : Molybdenum Seed inoculants	26		1.06		17.5	46
		I3 : <i>Rhizobium</i> + PSB Seed	29	9.6	1.07		17.9	48.4
		inoculants	3	2	1.07		18.4	48.9
		I4 : <i>Rhizobium</i> + PSB + Mo seed	5	2	1.07		10.4	-10.7
		Inoculants	34	.2	1.08		19.9	51.1
		SEm±	0	5	0.003	3	0.50	1.03
		CD @ 5%	1	.4	0.00)	1.5	3.01
		Varieties (V)						
		V1 : RVSJKG 102	29	.8	1.06		17.17	55.4
		V2 : Phule G 0517	30	.5	1.07		17.88	54.7
		V3 : PKV 4	31	.5	1.08		20.18	35.8
		SEm±	0	.4	0.003	3	0.43	0.9
		CD @ 5%	1	.2	0.008	3	1.3	2.6
		Table 2: Response of seed inocular	nt and	variet	y on see	d yie	eld kg/ha,	straw yield
		kg/ha and harvest index (%).		9		D '		
					d yield		ological	Harvest
		Treatments		(kg	g/ha)		yield	index
		Cooline colorite (I)				(kg/ha)	(%)
		Seed inoculants (I)		1	252		2400	25.0
		I1 : Control			253		3490	35.9
		I2 : Molybdenum Seed inoculants I3 : <i>Rhizobium</i> + PSB Seed inocul	onto		402 599		4037 4315	35.1 37.2
			ants	1	599		4313	51.2
		I4 : <i>Rhizobium</i> + PSB + Mo seed Inoculants		1	878		5224	36.1
		SEm±			878 43		5224 152	36.1 0.7
		CD @ 5%			.25		445	NS
		Varieties (V)						

		V1 : RVSJKG 102	1435	3895	37.0
		V2 : Phule G 0517	1539	4321	35.9
		V3 : PKV 4	1625	4584	35.4
		SEm±	37	131	0.6
		CD @ 5%	108	385	NS
Thesis	:	Master thesis entitled "Improving biol	logical nitroge	en fixation ca	pacity and
		productivity of kabuli chickpea (Cicer	kabulinium I	L.) varieties by	y PSB and
		molybdenum applications" submitted	to Jawahar	lal Nehru A	gricultural
		University, Jabalpur, India by Mr. Rahul	Badole.		

Activity 3: Effect of herbicides on Rhizobium Nodulation in faba bean


Title	:	Evaluation of the effect of herbicides on rhizobium nodulation in faba
		bean
Objectives	:	Evaluate the effect of imazethapyr and metribuzin
Activities	:	New
Observations to be	:	Number of nodules per plants
taken		Fresh weigh of nodules per plant
		Dry weight of nodules per plant
Genotypes	:	15 genotypes
Expected Outcomes	:	Effect of herbicides on rhizobium nodulation evaluated.
Results		 15 faba bean genotypes with different tolerance level for both Metribuzin and Imazethapyr were evaluated at Terbol station for rhizobium nodulation in alpha design with two replication and three treatments (T1: Metribuzin, T2, Imazethapyr, T3: combined Metribuzin and Imazethapyr) and control. Analysis of variance showed significant differences among treatments for number rhizobium nodulation, wet and dry weight of rhizobium nodulation. Also significant differences among genotypes for number of rhizobium nodulation has been detected (Table 1). a. Number of Nodules per Plant: Number of nodules per plant varied significantly among evaluated genotypes (G) and among the three treatments (T) and control (C) (Table 1). It varied between 5.56 to 37.75 among genotypes. 11 genotypes were considered to have a less number of nodules per plant between 5.56 and 11.95, 3 genotypes were considered to have an intermediate number of nodules per plant (13.42 and 13.66) and 1 genotype was considered to have a high number of nodules per plant equal to 37.5 (Fig. 1). The accessions (C10006 callested from Marcess eheured high new plant between the plant is plant to a plant to
		nodules per plant (13.42 and 13.66) and 1 genotype was considered to have

 b. Fresh Nodule Weight per treatments (T) and control weight per plant: 0.51 g, then treatment 2 (Imazetha and Imazethapyr): 0.19. (T c. Dry Nodule Weight per treatments (T) and the contweight per plant: 0.15 g Imazethapyr): 0.086 g, the all treatment 2 (Imazethapyr) d. Conclusion The application of The application of The application of The application of The second secon	r plant varied sign (C). The control I followed by treatin pyr): 0.21 and last of Cable 2) Fr Plant (DNWP): plant varied sign trol (C). The control g, followed by treating n treatment 1 (Met yr): 0.06. (Table 2)	had the highes nent 1 (Metrib of all treatment of had the high eatment 3 (M ribuzin): 0.081	st fresh nodule buzin): 0.23 g, t 3 (Metribuzin ong the three hest dry nodule fetribuzin and 1 g, and last of	
treatments (T) and control weight per plant: 0.51 g, then treatment 2 (Imazetha and Imazethapyr): 0.19. (T c. Dry Nodule Weight per Dry nodule weight per treatments (T) and the com weight per plant: 0.15 g Imazethapyr): 0.086 g, the all treatment 2 (Imazethapy d. Conclusion	(C). The control I followed by treatm pyr): 0.21 and last of Table 2) Fr Plant (DNWP): plant varied sign trol (C). The control g, followed by tre n treatment 1 (Met yr): 0.06. (Table 2)	had the highes nent 1 (Metrib of all treatment of had the high eatment 3 (M ribuzin): 0.081	st fresh nodule buzin): 0.23 g, t 3 (Metribuzin ong the three hest dry nodule fetribuzin and 1 g, and last of	
Dry nodule weight per treatments (T) and the com weight per plant: 0.15 g Imazethapyr): 0.086 g, the all treatment 2 (Imazethapy d. Conclusion	plant varied sign trol (C). The contro g, followed by tro n treatment 1 (Met yr): 0.06. (Table 2)	ol had the high eatment 3 (M ribuzin): 0.082	nest dry nodule Ietribuzin and 1 g, and last of	
treatments (T) and the com- weight per plant: 0.15 g Imazethapyr): 0.086 g, the all treatment 2 (Imazethapy d. Conclusion	trol (C). The contro g, followed by tro n treatment 1 (Met yr): 0.06. (Table 2)	ol had the high eatment 3 (M ribuzin): 0.082	nest dry nodule Ietribuzin and 1 g, and last of	
	Metribuzin and Im	azethapyr hert	hioidos os	
d. Conclusion The application of Metribuzin and Imazethapyr herbicides as post-emergence treatments in faba bean reduced the root nodulation for most of evaluated genotypes and consequently the nitrogen uptake from the soils.				
Table 1: ANOVA table Fresh Nodule W Nodules per Pla	eight per Plant (FN			
	DNWP	FNWP	NNP	
Replication	0.001	0.07	6.53	
Replication x Bloc	0.016*	0.09 ***	295.28 ***	
Genotype (G)	0.002	0.01	196.22 *	
Treatment (T)	0.041 **	0.60 ***	571.47 ***	
GxT	0.008	0.03	81.65	
Residual	0.008	0.03	78.49	
Total	0.01	0.05	135.78	
*** Highly significant a Significant at p < Table 2: means of rhiz the control.	0.05.			
Treatment		DNWP FN	WP NNP	

Activity 4: TILLING mutants reveal hyper-nodulation in chickpea

Title	:	Identification of hyper nodulation mutant lines in chickpea using TiLLING population
Objectives		Identify new source of hyper nodulated line in chickpea.
Activity		New
Expected		New source of genotype (mutant line) for hyper-nodulation in chickpea
outcomes		
Method of		For genotyping the following steps were performed for 1300 TiLLING lines:
evaluation		1. Fresh leaf tissue was collected from 1300 mutant lines
		2. DNA was extracted.
		3. DNA quality and quantity was measured by using NanoDrop, and test agarose gels
		4. DNA concentration was fixed and bulked in a systematic structure
		5. PCR was conducted to for 43 primer pairs to cover 8 genes reported as genes related
		to hyper-nodulation in legumes.
		6. Samples were sent then to Australia for genotyping.
		Genotyping was conducted by the following steps:
		1. Libraries were prepared and run on Miseq
		2. Data was trimmed for adaptors and primer sequences

Activity 5: Drought/nodulation interaction in chickpea

Title	:	Chickpea nodulation response to drought in different locations.
Objectives	:	Identify the best genotypes performing the nodulations under drought stress
Activities	••	New
Expected	:	New genotypes to be identified producing nodules under drought stress under
outcomes		natural inoculation.
Observations to	:	Size, wet and dry weight of nodules
be taken		
Genotypes	:	200 chickpea subset (drought) selected by using FIGS
Results:		Five genotypes (IG114795, IG70270, IG70278, IG70293, IG70764) showed
		better nodulation than the average under drought stress and non-stress
		environments