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Abstract
Several	factors	describe	the	broad	pattern	of	diversity	in	plant	species	distribution.	We	
explore	 these	 determinants	 of	 species	 richness	 in	 Western	 Himalayas	 using	
	high-resolution	species	data	available	for	the	area	to	energy,	water,	physiography	and	
anthropogenic	disturbance.	The	floral	data	involves	1279	species	from	1178	spatial	
locations	and	738	sample	plots	of	a	national	database.	We	evaluated	their	correlation	
with	8-environmental	variables,	selected	on	the	basis	of	correlation	coefficients	and	
principal	component	loadings,	using	both	linear	(structural	equation	model)	and	non-
linear	(generalised	additive	model)	techniques.	There	were	645	genera	and	176	fami-
lies	 including	815	herbs,	213	shrubs,	190	trees,	and	61	lianas.	The	nonlinear	model	
explained	the	maximum	deviance	of	67.4%	and	showed	the	dominant	contribution	of	
climate	on	species	richness	with	a	59%	share.	Energy	variables	(potential	evapotran-
spiration	and	temperature	seasonality)	explained	the	deviance	better	than	did	water	
variables	(aridity	index	and	precipitation	of	the	driest	quarter).	Temperature	seasonal-
ity	had	the	maximum	impact	on	the	species	richness.	The	structural	equation	model	
confirmed	the	results	of	the	nonlinear	model	but	less	efficiently.	The	mutual	influences	
of	 the	 climatic	 variables	were	 found	 to	 affect	 the	 predictions	 of	 the	model	 signifi-
cantly.	To	our	knowledge,	the	67.4%	deviance	found	in	the	species	richness	pattern	is	
one	of	the	highest	values	reported	in	mountain	studies.	Broadly,	climate	described	by	
water–energy	dynamics	provides	 the	best	explanation	for	 the	species	 richness	pat-
tern.	Both	modeling	 approaches	 supported	 the	 same	 conclusion	 that	 energy	 is	 the	
best	predictor	of	species	richness.	The	dry	and	cold	conditions	of	the	region	account	
for	the	dominant	contribution	of	energy	on	species	richness.
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1  | INTRODUCTION

Several	factors	describe	the	broad	pattern	of	diversity	in	plant	species	
distribution	of	which	climate	is	a	critical	factor	(Currie,	2004)	at	a	re-
gional	scale	(Ricklefs,	1987)	and	in	tropical	forests	(Clark	et	al.,	1999).	

The	water–energy	 dynamics	 hypothesis	 explains	 the	mechanism	 of	
climatic	 control	 and	 the	 positive	 relationships	 that	 ambient	 energy	
availability	and	water	have	with	species	richness	(O’Brien,	1993).	The	
energy	hypothesis	explains	energy	partitioning	among	species	where	
greater	availability	of	energy	in	a	usable	form	supports	more	species	
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(Turner,	Gatehouse,	&	Corey,	1987).	In	general,	there	is	a	proven	high	
positive	correlation	between	energy	and	species	richness	in	cold	cli-
mates.	However,	 there	are	variations	 in	 these	 relationships	 in	warm	
conditions	(Francis	&	Currie,	2003;	Kreft	&	Jetz,	2007).	Water	is	an	es-
sential	solvent	for	all	physiological	activities	in	plants	and	determines	
species	patterns	in	the	tropics,	subtropics,	and	warm	temperate	zones	
(Hawkins	 et	al.,	 2003).	The	 scarcity	 of	water	 adversely	 affects	 plant	
species	 richness	 in	arid	climates	 (Li	et	al.,	2013).	Water,	energy,	and	
their	dynamics	determine	plant	richness	at	high	latitudes	and	explain	
more	than	60%	of	the	variations	found	 in	plant/animal	species	rich-
ness	(Hawkins	et	al.,	2003).	However,	the	individual	contributions	of	
water	and	energy	vary	within	regions.	Vetaas	and	FerrerCastán	(2008)	
observed	 that	 energy	exerts	 greater	 control	 than	does	precipitation	
over	the	woody	plants	of	the	Iberian	Peninsula.	In	contrast,	Hawkins,	
Diniz-	Filho,	 Jaramillo,	 and	 Soeller	 (2006)	 demonstrated	 a	 stronger	
	influence	of	precipitation	relative	to	energy	in	high	to	mid-	latitudes.

Physiography	describes	the	geographic	complexity	and	regulates	
species	 diversity	 at	 both	 local	 and	 regional	 scales	 (Moeslund,	Arge,	
Bøcher,	Dalgaard,	&	Svenning,	2013).	Several	physiographic	variables	
are	 used	 to	 quantify	 its	 impacts	 on	 species	 richness.	 Elevation	 reg-
ulates	species	 richness	by	controlling	 the	effects	of	climate	and	soil	
(Day	&	Monk,	1974),	and	it	strongly	influences	the	vegetation	of	most	
mountain	 ecosystems	 (Zhang	 et	al.,	 2009).	 The	 terrain	 ruggedness	
index	obtained	by	the	differences	between	the	elevation	values	of	ad-
jacent	cells	 relative	 to	a	central	 cell	 (Riley,	Hoppa,	Greenberg,	Tufts,	
&	Geissler,	2000)	describes	the	 impacts	of	heterogeneity	 in	species’	
niche	differentiation	(Whittaker,	Levin,	&	Root,	1973).	Aspect	distrib-
utes	the	solar	radiation	affecting	the	microclimate	and	vegetation	at	a	
local	scale	(Kirkby	et	al.,	1990).	Slope	correlates	with	the	spatial	pat-
tern	 of	 tree	 species	 by	 controlling	 solar	 radiation	 (Bianchini,	Garcia,	
Pimenta,	&	Torezan,	2010).

Disturbance	is	a	critical	factor	for	community	composition	and	di-
versity	in	the	species-	rich	landscapes	of	Western	Himalaya	(Kharkwal,	
2009).	Roy	et	al.	 (2002)	used	patch	density,	porosity,	 fragmentation,	
and	 juxtaposition	 to	 assess	 the	 disturbance	 regime	 of	 the	 region.	
Sharma,	 Gairola,	 Ghildiyal,	 and	 Suyal	 (2009)	 found	 a	 positive	 cor-
relation	 between	 poor	 socio-	ecological	 status	 of	 villagers	 and	 fuel-
wood	 collection	 in	 the	 temperate	 forests	 of	 the	Garhwal	Himalaya.	
Overgrazing	is	reported	to	be	another	factor	in	the	alpine	grasslands	
of	 the	Tibetan	plateau	 (Yu	et	al.,	 2012).	Both	 the	human	appropria-
tions	of	net	primary	productivity	and	the	global	human	footprint	index,	
which	assess	the	intensity	of	human	intervention	in	ecosystems	and	its	
sustainability,	have	been	used	as	socio-	ecological	indicators.	Crowther	
et	al.	(2015)	studied	the	effects	of	these	variables	to	quantify	human	
interference	when	mapping	 tree	density	 at	 a	 global	 scale.	Here,	we	
emphasize	 their	 influence	 to	monitor	 impacts	of	human	disturbance	
on	 species	 richness.	 This	 has	 never	 been	 attempted	 previously	 in	
Western	Himalayan	studies.

Western	Himalaya	 is	geomorphologically	complex	with	an	altitu-
dinal	extent	of	>8,000	m.	Its	rich	species	diversity	is	broadly	charac-
terized	by	physiography,	climate,	soil,	and	anthropogenic	disturbance	
(Shah	et	al.,	2011).	Its	biogeography	is	climatologically	distinct.	It	lies	in	
a	rain	shadow	region	and	receives	little	rainfall	(Singh	&	Singh,	1987).	

Western	Himalaya	 gets	 rainfall	 during	winter	 due	 to	 nonmonsoonal	
precipitation	 of	 westerlies.	 Overall,	 a	 temperate	 climate	 prevails.	
However,	 the	 region	experiences	a	broad	 range	of	 temperature	and	
precipitation	 anomalies	with	 a	mean	 annual	 temperature	 of	 ca.	 5°C	
and	annual	precipitation	of	2,500	mm	 (Chitale,	2014).	The	 southern	
parts	of	the	region	are	species-	rich.	For	example,	the	angiosperm	di-
versity	of	Himachal	Pradesh	comprises	about	19,395	species	or	7%	
of	the	world	total	(Karthikeyan,	2000).	In	contrast,	the	northern	part	
is	 species	 poor	 due	 to	 the	 very	 low	 rainfall	 it	 receives	 (10–70	mm)	
and	extremely	cold	temperature	(≤45°C).	The	published	literature	fo-
cuses	on	the	species	diversity,	community	structure,	and	distribution	
pattern	of	 its	different	forest	types	 (Khan,	Page,	Hahmad,	&	Harper,	
2013;	Shaheen,	Khan,	Harper,	Ullah,	&	Allem	Qureshi,	2012;	Sharma,	
Rana,	Devi,	 Randhawa,	&	Kumar,	 2014;	 Singh,	 2008).	 Some	 studies	
have	been	carried	out	on	species–environment	relationships	in	adja-
cent	areas	(Oommen	&	Shanker,	2005;	Wang,	Tang,	&	Fang,	2007;	Yan,	
Yang,	&	Tang,	2013).	However,	no	specific	study	has	been	performed	
in	Western	Himalaya	due	to	nonavailability	of	floral	data.	In	this	study,	
we	took	advantage	of	a	scientifically	designed	national	database	to	in-
vestigate	the	influence	of	the	abiotic	environment	on	species	richness.	
Understanding	high	species	richness	in	a	dry	and	cold	climate	of	the	
understudied	Himalaya	remains	interesting,	and	little	research	has	fo-
cused	on	disentangling	the	effects	of	abiotic	and	human	impacts.	This	
study	may	provide	better	insights	into	ecologists	and	planners	dealing	
with	plant	distribution	patterns	vis-	à-	vis	climate	change	projections.

In	this	study,	we	explored	the	determinants	of	species	richness	in	
Western	Himalayas.	We	used	 high-	resolution	 species	 data	 available	
for	the	area	to	energy,	water,	physiography,	and	anthropogenic	distur-
bance	to	explain	distribution	of	species	richness.	Because	of	geomor-
phological	complexity,	we	expected	a	greater	control	of	physiography	
on	 the	 species	 richness.	The	general	dry	and	cold	conditions	of	 the	
area	may	posit	significant	impacts	of	water	and	energy	on	species	dis-
tribution.	We	speculate	anthropogenic	disturbance	has	some	control	
on	the	plant	richness	because	of	the	proximity	of	the	region	to	densely	
populated	 areas.	We	 applied	 predictive	models	 to	 assess	 the	 influ-
ences	of	 environmental	variables	 and	human	 impact	on	 the	 species	
richness.

2  | METHODS

We	 selected	 two	 Indian	 Himalayan	 states,	 Himachal	 Pradesh	 and	
Uttarakhand	(28.5–33°N	and	75.5–82°E),	for	the	study	(Figure	1).	We	
obtained	plant	species	richness	data	from	a	national	database	devel-
oped	during	the	project	 “Biodiversity	Characterization	at	Landscape	
Level”	(bis.iirs.gov.in).	The	field	sampling	involving	all	the	forest	classes	
was	carried	out	using	a	stratified	random	sampling	approach	for	the	
vascular	 plant	 species	 richness	 (Roy	 et	al.,	 2012).	 A	 nested	 quadrat	
of	20	×	20	m	was	 laid	for	trees	or	 lianas,	which	accommodated	two	
5	×	5	m	 quadrats	 for	 shrubs/saplings	 and	 five	 1	×	1	m	 quadrats	 for	
herbs/seedlings	 (Figure	1).	We	gathered	data	 pertaining	 to	27	 vari-
ables	under	three	categories,	viz.	climate	(21	variables),	physiography	
(four	variables),	and	human	disturbance	(two	variables)	from	different	
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public	domain	sources	 (Appendix	S1).	We	obtained	19	climate	vari-
ables	from	the	Worldclim	site,	along	with	two	variables	from	CGIAR_
CSI	 (http://www.cgiar-csi.org/),	 all	 computed	 for	 the	 period	 from	
1950	to	2000	(Hijmans,	Cameron,	Parra,	Jones,	&	Jarvis,	2005;	Zomer,	
Antonio,	Deborah,	&	Louis,	2008).	We	obtained	physiographic	vari-
ables	 (elevation,	slope,	and	aspect)	 from	the	GMTED2010	database	
(https://lta.cr.usgs.gov).	 We	 derived	 the	 terrain	 ruggedness	 index	
from	the	differences	of	the	elevation	values	of	adjacent	cells	relative	
to	a	central	cell.	We	procured	the	human	appropriation	of	net	primary	
productivity	 (Imhoff	et	al.,	2004)	and	global	human	footprint	 (WCS-	
CIESIN,	2005)	values	from	the	SEDAC	database	(http://sedac.ciesin.
columbia.edu/).	The	spatial	resolution	of	each	of	the	27	variables	was	
approximately	1	km2.	The	data	conformed	to	WGS’84	projection.	We	
extracted	 the	 data	 corresponding	 to	 1,178	 species	 locations	 using	
ArcGIS	10	for	regression	analysis	(see	Appendix	S1).

Spatial	autocorrelation	describes	 the	dependencies	between	ob-
served	 samples	 and	bias	due	 to	 clustering,	which	 can	be	quantified	
using	Moran’s	 I	 index	 (Moran,	 1950).	 Principal	 component	 analysis	
(PCA)	was	used	 to	 select	 the	best	 among	correlated	predictors	 (Xu,	
Wang,	Rahbek,	Sanders,	&	Fang,	2016).	We	computed	Moran’s	I	index	
of	the	floral	data	using	the	package	“ape”	in	RStudio	(Paradis,	Claude,	
&	Strimmer,	2004).	We	performed	a	multicollinearity	test	through	hier-
archal	clustering	analysis	using	the	package	“corrplot”	in	RStudio	(Wei	
&	Simko,	2016).	We	used	PCA	to	examine	the	loadings	of	each	collin-
ear	variable	of	 the	different	categories	separately	and	to	pick	a	 few	
least-	correlated	variables	from	each	category	for	further	analysis.	We	
performed	simultaneous	centering	and	scaling	to	nullify	the	skewness	

effect.	We	performed	PCA	using	the	package	“caret”	in	RStudio	(Abdi	
&	Williams,	2010).	We	calculated	the	percentage	absolute	weight	of	
each	variable	corresponding	to	each	principal	component	(PC)	axis	by	
multiplying	the	percentage	variance	explained	by	each	axis	with	the	
absolute	weight	of	each	variable	corresponding	 to	 that	PC	axis.	We	
added	 the	values	 of	 the	 first	 three	 PC	 axes,	 picked	 up	 the	variable	
with	the	maximum	weight,	and	removed	its	collinear	partners	(R	>	0.8).	
We	continued	this	process	and	finally	selected	the	top	eight	variables.	
These	include	four	climate	(two	energy	and	two	water	variables),	two	
physiography	and	two	disturbance	variables.	As	two	disturbance	vari-
ables	were	noncollinear,	we	selected	them	directly	without	PCA.	We	
examined	the	multicollinearity	between	the	selected	variables	further	
to	cross-	check	whether	they	satisfied	correlation	criteria	(R	<	0.8).

Several	 species	 distribution	 models	 (SDMs)	 deal	 with	 linear	 or	
nonlinear	 species–environment	 relationships.	We	 selected	 the	 gen-
eralized	 additive	model	 (GAM)	 for	 its	 robustness	 and	 proficiency	 in	
predicting	species	richness	pattern	(Hastie	&	Tibshirani,	1990).	GAM	
fits	smooth	functions	to	establish	nonlinear	relations	between	species	
and	the	environment	(Vetaas	&	FerrerCastán,	2008).	The	cubic	spline	
smoother	 reduces	 the	 curvature	 and	 straightens	 curves	 fitted	with	
large	values	 and	vice	versa.	The	 tensor	product	 smoothing	 function	
scales	anisotropic	parameters	of	different	units	and	improves	the	per-
formance	of	models	with	interactive	terms.	GAM	provides	sufficient	
flexibility	 to	 choose	 smoothing	 parameters	 and	 is	 capable	 of	 fitting	
several	 prediction	 error	 criteria	 to	 control	 overfitting.	 Generalized	
cross-	validation	(GCV)	and	generalized	(approximate)	cross-	validation	
(GACV)	are	preferred	prediction	error	criteria.	These	error	prediction	

F IGURE  1  (a)	Indian	Parts	of	Western	
Himalaya.	(b)	Study	area	showing	two	
Indian	states	with	nested	quadrat	locations.	
(c)	Design	of	a	nested	quadrat
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criteria	apply	appropriate	smoothness	to	model	terms	to	minimize	the	
GCV	or	GACV	score,	and,	thereby,	maximize	the	performance	of	the	
models.	GAM	quantifies	complex	species–environment	relationships	
and	reliable	 to	 fit	 local	species	occurrences	 (Aguirre-	Gutiérrez	et	al.,	
2013).	On	the	other	hand,	the	structural	equation	model	(SEM),	a	lin-
ear	 regression	technique	 is	often	used	to	validate	 the	output	of	an-
other	model	such	as	GAM	(Wu,	Wurst,	&	Zhang,	2016).	It	establishes	
causal	 relationships	 between	multiple	 predictors	 and	 response	vari-
ables	within	a	single	framework	(Grace,	2006).

We	used	GAM	to	find	relationships	between	species	richness	and	
the	eight	selected	variables	both	at	independent	and	at	cumulative	levels	
with/without	interaction(s).	We	fitted	GAM	with	a	Poisson	error	distri-
bution	with	a	 “log”	 link	 function	using	 the	package	 “mgcv”	 in	RStudio	
(Wood,	2016).	We	fitted	the	cubic spline	(s)	smoother	to	variables	with-
out	interactive	terms	and	the	tensor product	(te)	smoother	to	interactive	
terms.	We	selected	GCV	 (GCV.Cp)	as	prediction	error	criterion,	which	
automatically	 selects	 models	 with	 the	 least	 error	 and	 improves	 the	
explanatory	 ability	 of	 models.	 The	 significance	 of	 each	 predictor	was	
quantified	using	the	deviance	(%)	[calculated	as	(null		deviance—residual	
deviance/null	deviance)	×	100].	The	data	were	split	into	four	groups,	and	
then,	1	group	was	held	out	and	the	model	fit	to	the	other	three	groups	
combined,	that	model	then	test	on	the	held-	out	group	to	get	the	perfor-
mance.	This	process	was	repeated,	with	each	of	the	four	groups	acting	as	
the	held-	out	group,	and	overall	R2	taken	as	an	average	across	all	held-	out	
groups.	We	used	the	package	“lavaan”	 in	RStudio	for	SEM	to	examine	
the	performance	of	the	GAM	predictions	 (Rosseel,	2012).	We	derived	
structural	equations	for	a	different	set	of	variables	and	categories	and	
plotted	them	in	figures	wherein	different	colors	were	assigned	to	repre-
sent	positive/negative	correlation,	and	the	thickness	of	arrows	explained	
the	impact	of	independent	variables	on	the	dependent	variable	(Figure	
3).	The	physiography,	climate,	and	disturbance	variables	were	grouped,	
and	a	separate	SEM	was	fitted	for	each	group.	Further,	we	plotted	the	re-
sponse	curves	of	four	climate	variables	to	analyze	the	multidimensional	
regression	through	a	two-	dimensional	representation	(Figure	4).

3  | RESULTS

The	 two	 states	 of	Western	Himalaya	 have	 1,279	 species	 (sp.)	 in	 645	
genera	 and	 176	 families.	 These	 include	 815	 herbs,	 213	 shrubs,	 190	
trees,	and	61	lianas,	with	species	with	missing	information	excluded	(see	
Appendix	S2).	The	family	Poaceae	is	the	largest	family,	with	141	species.	
The	other	dominant	families	are	Asteraceae	(119	sp.),	Papilionaceae	(70	
sp.),	 Rosaceae	 (56	 sp.),	 Polygonaceae	 (43	 sp.),	 and	 Lamiaceae	 (40	 sp.).	
Polygonum	(21	sp.)	is	the	most	speciose	genus.	Potentilla	(17	sp.),	Carex	(14	
sp.),	Impatiens	(14	sp.),	Dryopteris	(13	sp.),	and	Artemisia	(13	sp.)	are	other	
prominent	genera.	Moran’s	I	value	for	the	1,178	spatial	location	points	of	
the	738	sample	plots	was	0.39	at	the	p	<	.001	level	of	significance.

The	first	three	PC	axes	of	the	climate	variables	explained	61.77%,	
17.95%,	and	9.08%	variance,	respectively.	They	cumulatively	explained	
>91.8%	variance,	and	the	percentage	absolute	weight	of	each	variable	
varies	between	11.39%	and	20.49%.	We	found	at	least	three	sets	of	col-
linear	variables	(Appendix	S3).	One	set	of	variables	was	led	by	potential	

evapotranspiration	(PET)	with	the	maximum	percentage	absolute	weight	
(20.48%),	which	showed	a	very	strong	correlation	(R	>	0.9)	with	the	mean	
annual	temperature,	temperature	of	the	coldest	month,	temperature	of	
the	coldest	quarter,	temperature	of	the	driest	quarter,	temperature	of	
the	wettest	month,	temperature	of	the	wettest	quarter,	and	temperature	
of	the	warmest	quarter,	and	a	strong	correlation	(R	>	0.8)	with	precipita-
tion	seasonality	and	temperature	of	the	wettest	quarter	(Appendix	S4).	
The	second	set	of	variables	was	led	by	the	aridity	index,	which	showed	
a	strong	correlation	(R	>	0.8)	with	the	mean	annual	precipitation,	precip-
itation	of	the	wettest	month,	precipitation	of	the	wettest	quarter,	pre-
cipitation	of	the	warmest	quarter.	Temperature	seasonality	led	the	next	
set	of	variables,	which	exhibited	a	very	strong	correlation	with	the	tem-
perature	annual	range	and	a	strong	correlation	with	the	annual	precipi-
tation,	precipitation	of	the	warmest	month,	precipitation	of	the	warmest	
quarter,	precipitation	of	the	wettest	quarter,	temperature	of	the	coldest	
month,	and	temperature	of	the	coldest	quarter.	The	precipitation	of	the	
driest	quarter	was	the	fourth	climatic	variable	selected	after	elimination	
of	 collinear	variables	 (Appendix	S4).	The	 first	 three	axes	of	 the	phys-
iographic	 variables	 explained	 48.8%,	 26.2%,	 and	 16.1%	 variance,	 re-
spectively.	Together	they	explained	>91%	variance,	and	the	percentage	
absolute	weight	of	 these	variables	 lies	between	36.48%	and	44.77%.	
The	mean	elevation	is	shown	to	have	the	maximum	percentage	absolute	
weight	(44.77%),	followed	by	slope	(41.35%),	terrain	ruggedness	index	
(38.41%),	and	aspect	 (36.48%).	None	of	these	physiographic	variables	
were	strongly	correlated	with	each	other	(Appendix	S4).	However,	the	
mean	elevation	was	not	considered	 for	 its	 strong	correlation	with	se-
lected	climatic	variables	(Figure	S1;	Appendix	S4).	The	percentage	abso-
lute	weights	of	slope	and	terrain	ruggedness	index	were	next	to	those	
of	the	mean	elevation.	They	showed	no	strong	correlation	with	the	se-
lected	variables	of	other	categories	of	variables	and,	therefore,	selected	
for	modeling.	The	eight	least-	correlated	variables	two	each	from	energy,	
water,	physiography,	and	disturbance:	aridity	 index,	human	appropria-
tion	of	net	primary	productivity,	global	human	footprint,	precipitation	of	
the	driest	quarter,	PET,	slope,	terrain	ruggedness	index,	and	temperature	
seasonality	were	finally	selected	for	modeling	(Figure	2).

The	study	area	was	found	to	have	a	mean	aridity	of	0.13.	The	dry-
ness	of	the	northwest	is	greater	than	that	of	the	southeast	of	the	region.	
The	mean	precipitation	in	the	driest	quarter	was	101.8	mm.	The	central	
and	northwestern	regions	get	the	maximum	precipitation	during	this	
quarter.	The	mean	PET	was	994	mm.	It	was	found	to	decrease	along	
the	elevation	gradient	monotonously.	The	mean	human	appropriation	
of	net	primary	productivity	was	well	below	average	(24.73	PgC/year)	
except	in	the	southwestern	parts	of	the	study	area,	where	the	popula-
tion	density	is	high.	On	the	other	hand,	the	mean	global	human	foot-
print	was	medium	to	above	average	across	the	study	area	(31.76/ha).	
The	minimum	and	the	maximum	elevations	were	207	m	and	5,468	m,	
respectively.	The	mean	terrain	ruggedness	index	was	high,	at	656.86,	
whereas	the	mean	slope	was	low,	at	11.2°.	Both	showed	similar	spatial	
variations	 along	 the	elevation	gradient,	 that	 is,	 high	 ruggedness	 and	
slope	were	greater	at	higher	elevations.	All	the	selected	variables	were	
within	the	accepted	level	of	skewness	(Appendix	S4).

The	 multimodel	 inference	 produced	 45	 combinations	 of	 vari-
ables	 (i.e.,	 models;	 Tables	1	 and	 2).	 Fifteen	 noninteractive	 variable	
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combinations	were	found	to	be	significant	for	species	richness	pattern	
(Table	1).	Except	in	a	few	cases,	each	variable	within	the	models	was	
significant	at	p	<	.001.	Although	some	variables	were	insignificant,	the	
p-	values	of	all	the	baseline	SEM	models	were	significant	(p	<	.001).	In	
GAM,	no	variable	was	found	to	be	insignificant,	and	all	cross-	validation	
results	were	significant	at	the	p	<	.05	level	at	least	(Table	1).	Both	ap-
proaches	 diagnosed	 the	 independent	 and	 cumulative	 effects	 of	 the	
energy	 variables	 to	 be	 significant	 for	 the	 species	 richness	 pattern.	
The	 temperature	 seasonality	was	 the	best	 predictor	of	 species	 rich-
ness,	and	PET	was	 the	second-	best	predictor.	The	best	GAM	model	
explained	 43%	 variance	 by	 cross-	validation,	 whereas	 the	 best	 SEM	
model	described	38%	variance	of	species	richness.	SEM	predicted	the	
cumulative		effects	of	water	and	disturbance	at	par	with	climate,	that	
is,	at	38%.

The	best	two	SEM	model	predictions	are	as	follows:	

AI	=	Aridity	index;	HF	=	human	footprint;	HNP	=	human	appropri-
ation	of	net	primary	productivity;	PDR	=	precipitation	of	driest	quar-
ter;	PET	=	potential	evapotranspiration;	TS	=	temperature	seasonality.

Interestingly,	 the	 percentage	 deviance	 explained	 by	 each	 GAM	
model	 was	 not	 proportionate	 with	 the	 cross-	validation	 results.	 For	
example,	 the	most	complex	combination	of	climate	and	disturbance	
which	described	the	maximum	deviance,	at	58.6%,	was	the	second-	
best	 model.	 The	 SEM	model	 predictions	 showed	 better	 correlation	
with	 the	 deviance	 explained	 by	GAM.	Unlike	GAM	 cross-	validation	
results,	the	best	SEM	model	explained	the	maximum	deviance.

Structural	equation	model	predicted	negative	relationships	between	
the	 aridity	 index	 and	 temperature	 seasonality	with	 species	 richness.	
The	precipitation	of	the	driest	quarter	and	PET	were	found	to	have	pos-
itive	correlations	with	species	richness.	The	global	human	footprint	and	
human	appropriation	of	net	primary	productivity	 showed	weak	posi-
tive	and	weak	negative	correlations	with	species	 richness.	Slope	and	
terrain	ruggedness	index	were	found	to	have	weak	negative	and	weak	
positive	correlations	with	species	richness,	respectively	(Figure	3).	The	
response	curves	of	GAM	models	showed	trends	similar	to	those	of	the	
SEM	predictions.	The	piecewise	polynomial	curves	were	closely	fitted	
with	 low	degrees	of	 freedom	(7—9),	 that	 is,	 they	neither	straight	nor	
wiggled.	The	aridity	index	had	a	linear	and	upward	trend,	but	it	became	
more	or	less	straight	after	an	index	value	of	0.10.	Its	variation	from	the	
mean	zero	level	was	found	to	be	insignificant	(Figure	4a).	 In	contrast,	
the	precipitation	of	the	driest	quarter	exhibited	an	irregular	curve	pat-
tern	and	differed	greatly	from	the	mean	zero	level.	It	showed	a	general	
positive	trend	with	species	richness	(Figure	4b).	PET	showed	a	greater	
variation	from	the	mean	zero	level	and	a	positive	relationship	with	spe-
cies	 richness	 (Figure	4c).	Temperature	 seasonality	 showed	a	 complex	
curve	pattern	and	was	negatively	correlated	with	species	richness	after	
approximately	625	CofV	from	the	mean	zero	level	(Figure	4d).

Structural	 equation	 model	 showed	 better	 goodness	 of	 fit	 with	
interactions.	 The	 latent	 variables	 (groups	 of	 common	 predictors)	
were	 found	 to	 influence	 the	 species	 richness	better	 compared	with	
the	 combined	 effect	 of	 independent	 variables	 of	 the	 same	 groups	
(Table	1).	 The	 best	 model	 involving	 latent	 variables	 described	 41%	
variance,	the	maximum	predicted	by	any	SEM	model.	The	influences	of	
physiography	and	disturbance	with	groups	of	common	climatic	predic-
tors	fitted	better	than	their	influences	with	separate	groups	of	water	
and	energy	predictors	(Figure	3).	GAM	exhibited	similar	relationships,	
that	 is,	enhanced	performance	with	 inclusion	of	 interactive	terms	 in	
the	models.	The	performance	of	models	improved	with	complexities.	
The	full	model	with	a	combination	of	all	selected	variables	described	
the	maximum	deviance	of	65.7%	(Table	2).	With	climate,	physiography	
showed	greater	 significance	 than	did	 disturbance.	The	deviance	 ex-
plained	by	common	predictors	of	any	two	sets	of	variables	with	inclu-
sion	of	interactive	terms	was	between	52.8%	and	62.1%,	and	the	base	
climate	model	explained	the	deviance	to	the	extent	of	62.1%.	In	gen-
eral,	the	inclusion	of	interactive	terms	of	common	predictors	with	non-
interactive	terms	enhanced	the	percentage	of	the	explained	deviance.	
With	inclusion	of	interactive	terms,	the	deviance	explained	by	energy	
was	54.7%,	a	5%	greater	value	than	the	deviance	explained	by	water.	
Comparatively,	the	interactions	between	the	disturbance	variables	ex-
plained	more	deviance	than	did	the	physiographic	variables	(Table	2).

4  | DISCUSSION

The	 dominant	 presence	 of	 herbaceous	 plant	 families,	 specifically	
Poaceae,	Asteraceae,	and	Rosaceae,	indicates	the	prevalence	of	grass-
land	 vegetation	 in	 the	 area.	 Similar	 familial	 relationships	 have	 also	
been	reported	by	Rashid	et	al.	(2012)	in	biodiversity-	rich	areas	of	the	
northern	Himalaya	with	predominantly	grassland	vegetation.

(1)Water+Disturbance

SR =14.690 + 0.148 ∗ HF−0.271 ∗

HNP + 0.479 ∗ AI + 0.399 ∗ PDR

(2)Climate (Water+Energy)

SR =12.194 + 0.112 ∗ AI + 2.796 ∗ PDR+

2.849 ∗ PET−1.704 ∗ TS

F IGURE  2 Correlation	plot
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Analyzing	 relationships	 of	 plant	 species	 richness	 with	 climate,	
disturbance,	 and	physiography	using	both	GAM	and	SEM	allows	us	
to	 compare	 the	 relative	 importance	of	 abiotic	predictors	 in	describ-
ing	the	variations	in	the	dry	and	cold	Western	Himalaya.	Both	models	
indicate	a	 significant	contribution	of	climate	 to	 the	species	 richness	
pattern.	Our	 results	corroborate	 the	 findings	of	Chitale	 (2014),	who	
reported	that	Himalayan	ecology	is	broadly	defined	by	climate.	Several	
studies	 describe	 strong	 relationships	 between	 climate	 and	 species	
richness	 (Clark	et	al.,	1999;	Curie	et	al.,	2004;	Hawkins	et	al.,	2003;	
Ricklefs,	1987;	Wang	et	al.,	2007).	Our	results	show	the	key	roles	of	
the	water–energy	dynamics	 in	 climatic	 control	 in	 explaining	 the	 ca-
pacity	of	species	richness	(O’Brien,	1993;	O’Brien,	Whittaker,	&	Field,	
1998).	The	energy	variables,	that	is,	temperature	seasonality	and	PET,	
are	the	most	significant	determinants	of	species	richness	patterns.	The	
prevailing	cold	and	dry	conditions	of	the	area	might	have	 led	to	the	
strong	biotic	dependency	on	energy.	Many	ecologists	agree	that	en-
ergy	has	greater	control	in	cold	climates	(Francis	&	Currie,	2003;	Kreft	
&	Jetz,	2007).	The	energy	hypothesis	proposes	that	greater	availability	
of	energy	in	a	usable	form	enhances	the	species	richness	(Turner	et	al.,	
1987).	 The	water	 variables	 show	 a	 strong	 association	with	 species	
richness,	but	with	a	relatively	lower	magnitude	compared	with	the	en-
ergy	variables.	Water	is	an	essential	solvent	for	richness	patterns	in	the	
tropics,	subtropics,	and	warm	temperate	zones	(Hawkins	et	al.,	2003).	
However,	 our	 results	 contradict	with	 the	 findings	 of	 Hawkins	 et	al.	
(2006),	who	demonstrated	a	stronger	influence	of	precipitation	com-
pared	with	energy	 in	high	 to	mid-	latitudes.	The	geographic	position	

and	evolutionary	history	of	the	area	might	have	shaped	this	water	and	
energy	transitions	with	reference	to	species	richness	(Xu	et	al.,	2016).	
The	 species–energy	 affinities	 may	 be	 associated	 with	 Himalaya’s	
youthful	physiography	and	unstable	geology	 (Mani,	1974).	Although	
water	and	energy	contribute	differently	 to	the	species	 richness	pat-
tern,	their	synergy	defines	the	mechanism	by	which	the	contemporary	
climate	affects	the	species	richness	pattern.	Water	stress	negatively	
affects	species	richness	in	spite	of	availability	of	sufficient	energy,	and	
with	 optimum	water	 availability,	 plants	would	 exploit	 the	maximum	
photon	flux	essential	for	their	physiological	activities.

Water–energy	 variables	 and	 their	 interactions	 have	 primacy	
over	 anthropogenic	 disturbance	 and	physiography.	 Independently,	
energy	and	water	variables	have	primacy	over	nonclimatic	variables.	
The	 temperature	 seasonality	 is	 the	greatest	contributor,	which	 in-
dicates	a	significant	 influence	of	seasonal	variation	in	temperature	
on	the	species	richness.	This	variable	exhibits	complex,	but	negative	
correlations	with	species	richness.	This	explains	why	the	ecological	
stability	 of	 the	 region	 is	 balanced	 by	 fluctuations	 in	 temperature,	
and	a	global	rise	in	temperature	would	be	significant	in	controlling	
plant	richness	in	future	climates.	PET	is	the	second-	best	predictor	of	
plant	richness.	It	is	a	crucial	factor	in	the	Himalayan	region	(Chitale,	
2014).	PET	has	been	reported	to	be	the	best	predictor	of	the	species	
richness	pattern	(O’Brien,	1993).	A	low	level	of	PET	shows	positive	
relationships	 with	 the	 species	 richness.	 However,	 PET	 saturates	
at	 above	 900	mm	with	 no	 significant	 variations	 indicating	 the	 in-
direct	 influence	 of	 elevation	 on	 the	 species	 richness	 pattern.	The	

Model Formula SEM_R2 GAM_R2
% Deviance 
explained

M13 SR~s(PET)	+	s(TS) 0.30(0.39) 0.45 48.5

M22 SR~s(AI)	+	s(PDR)	+	s(PET)	+	s(TS) 0.38(nr) 0.43 54.8

M24 SR~s(HF)	+	s(HNP)	+	s(AI)	+	s(PDR)	+	
s(PET)	+	s(TS)

0.31(0.37) 0.42 58.6

M20 SR~s(HF)	+	s(HNP)	+	s(AI)	+	s(PDR) 0.38(0.41) 0.41 53.9

M21 SR~s(HF)	+	s(HNP)	+	s(PET)	+	s(TS) 0.32(0.36) 0.41 52.6

M8 SR~s(TS) 0.27 0.40 44.8

M19 SR~s(SLP)	+	s(TRI)	+	s(PET)	+	s(TS) 0.35(0.38) 0.40 52.2

M18 SR~s(SLP)	+	s(TRI)	+	s(AI)	+	s(PDR) 0.31(nr) 0.38 50.2

M11 SR~s(AI)	+	s(PDR) 0.29(0.34) 0.37 45.6

M5 SR~s(AI) 0.25 0.35 41.2

M7 SR~s(PET) 0.26 0.34 35.6

M6 SR~s(PDR) 0.21 0.30 34.8

M10 SR~s(HF)	+	s(HNP) 0.18(0.29) 0.23 26.0

M3 SR~s(HF) 0.12 0.17 19.2

M4 SR~s(HNP) 0.14 0.17 16.9

SR,	 Species	 richness;	 PET,	 potential	 evapotranspiration;	 AI,	 aridity	 index;	 PDR,	 precipitation	 of	 the	
	driest	quarter;	TS,	 temperature	 seasonality;	 SLP,	 slope;	TRI,	 terrain	 ruggedness	 index;	HNP,	human	 
appropriation	of	net	primary	productivity;	HF,	global	human	footprint.
In	SEM,	some	variables	predicted	insignificant	(p	>	.05)	are	highlighted.	HF	and	PET	of	M21	were	sig-
nificant	at	p	<	.05	and	p	<	.01,	respectively,	for	the	same	model;	in	GAM,	HF	of	M20,	M21,	and	M24	
models	was	significant	at	p	<	.05,	p	<	.05,	and	p	<	.01,	respectively.	“nr”	indicates	“no	results”;	The	R2 
values	the	proportion	of	variance	explained	in	the	held-	out	group	in	the	cross-	validation.

TABLE  1 Regression	statistics	for	
variable	combinations	without	interactive	
terms	using	both	structural	equation	model	
(SEM)	and	generalized	additive	model	
(GAM);	results	of	GAM	were	computed	
using	repeated	cross-	validation;	except	in	
few	cases,	the	p	value	of	each	variable	
within	the	models	was	significant	at	
p	<	.001.	Both	approaches	supported	the	
same	conclusion	that	energy	(temperature	
seasonality	and	potential	
evapotranspiration)	was	the	best	predictor	
of	species	richness,	and	the	mutual	
influence	of	common	predictors	is	more	
significant	than	their	cumulative	effects
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monotonous	 decrease	 in	 PET	 along	 elevation	 gradient	 probably	
explains	 this	 conjecture.	The	aridity	 index	 is	 the	best-	contributing	
water	 variable,	 which	 explains	 the	 impact	 of	 water	 stress	 on	 the	
species	 richness.	This	 index	was	a	crucial	 factor	 in	an	arid	climate	
(Li	et	al.,	2013).	To	a	certain	extent,	dryness	may	facilitate	species	
richness,	but	an	index	value	>0.10	is	probably	counterproductive	for	
plant	 richness.	 In	general,	 a	positive	 relation	between	 the	precipi-
tation	of	 the	driest	quarter	and	species	 richness	 is	predicted.	 It	 is	
likely	that	species	in	places	of	high	mean	dryness	face	greater	stress	
due	 to	water	deficiency	during	 the	driest	quarter.	 In	 contrast,	dry	
northwestern	parts	of	the	study	area	get	the	maximum	precipitation	
during	the	driest	quarter,	which	might	have	reduced	the	adverse	ef-
fect	of	dryness	on	species	richness.	Anthropogenic	disturbance	has	
a	key	 role	 in	determining	 the	species	 richness	pattern	of	Western	
Himalaya	(Gupta,	1978;	Kharkwal,	2009;	Negi	et	al.,	2012;	Shrestha	
et	al.,	2012).	The	two	disturbance	variables	could	explain	the	spe-
cies	 richness	 almost	 equivalently.	 However,	 human	 appropriation	
of	net	primary	productivity	has	a	positive	correlation	with	species	
richness,	whereas	global	human	footprint	has	a	negative	correlation.	
This	indicates	that	some	level	of	disturbance	is	favorable	for	increas-
ing	species	richness.	The	negative	impact	of	global	human	footprint	
indicates	 that	 frequency	of	 human	 interference	may	 adversely	 af-
fect	 the	 species	 diversity	 of	 the	 region.	 Although	 the	 correlation	
between	global	human	footprint	and	species	richness	is	weak,	it	 is	
likely	to	have	a	significant	influence	in	the	regions	of	high	population	

density.	The	mean	human	appropriation	of	net	primary	productivity	
in	the	southwestern	region	and	the	mean	global	human	footprint	at	
flat	 elevated	 surfaces	 indicate	 anthropogenic	 disturbance	 in	 high-	
populated	areas.	The	areal	proximity	and	dominant	grassland	veg-
etation	might	 have	 increased	 the	 human	 impact	 of	 these	 regions.	
Sharma	et	al.	(2009)	described	the	positive	correlation	between	fuel	
wood	 collection	 and	 forest	 dependence	 on	 forests	 of	 villagers	 to	
their	poor	socio-	ecological	status.

We	 found	 physiography	 to	 be	 a	 weaker	 predictor	 of	 species	
richness	 compared	 with	 disturbance.	 This	 contradicts	 the	 finding	
of	Chitale	(2014)	that	physiography	is	a	better	predictor	compared	
with	 anthropogenic	 disturbance	 in	 the	Himalaya.	The	 selection	 of	
variables	might	 be	 the	most	 important	 reason	 for	 this	 difference.	
Exclusion	of	elevation	from	the	list	of	selected	variables	may	be	the	
most	plausible	reason	for	the	disparities.	The	very	strong	correlation	
between	 the	mean	elevation	and	PET	describes	 the	 indirect	 influ-
ence	 of	 elevation	 on	 species	 richness.	Their	 negative	 relationship	
is	indicative	of	decreasing	species	richness	along	the	elevation	gra-
dient.	An	 indirect	 association	 of	 elevation	 on	 species	 richness	 by	
controlling	 the	 climate	 and	 soil	 has	 been	 reported	 (Day	 &	Monk,	
1974).	 Elevation	 has	 the	 strong	 influence	 on	 the	 vegetation	 in	
most	mountain	ecosystems	(Zhang	et	al.,	2009).	The	enhancement	
of	 the	 performance	 of	 the	model	 upon	 addition	 of	 physiographic	
variables	 to	 climatic	 predictors	 probably	 explains	 the	 influence	 of	
physical	heterogeneity	on	species’	niche	differentiation	(Whittaker	

Model Formula
% Deviance 
explained

M45 SR~s(HNP)*	+	s(HF)	+	te(HNP,HF)	+	s(SLP)	+	s(TRI)	+	te(SLP,	TRI)	+	 
s(AI)	+	s(PDR)	+	te(AI,PDR)	+	s(PET)	+	s(TS)	+	te(PET,TS)

67.4

M43 SR~s(SLP)	+	s(TRI)	+	te(SLP,	TRI)	+	s(AI)	+	s(PDR)	+	te(AI,PDR)	+		
s(PET)	+	s(TS)	+	te(PET,TS)

63.7

M44 SR~s(HNP)	+	s(HF)***	+	te(HF,HNP)***	+	s(AI)	+	s(PDR)***	+	 
te(AI,PDR)	+	s(PET)		+	s(TS)	+	te(PET,TS)

63.3

M36 SR~s(AI)	+	s(PDR)	+	te(AI,PDR)	+	s(PET)*	+	s(TS)	+	te(PET,TS) 62.1

M41 SR~s(HF)	+	s(HNP)**	+	te(HF,HNP)	+	s(PET)	+	s(TS)	+	te(PET,TS) 60.1

M38 SR~s(AI)	+	s(PDR)***	+	s(PET)	+	s(TS)	+	te(AI,TS)	+	te(PDR,PET) 60.0

M37 SR~s(AI)	+	s(PDR)	+	s(PET)	+	s(TS)	+	te(AI,PET)	+	te(PDR,TS) 59.0

M39 SR~s(SLP)	+	s(TRI)	+	te(SLP,	TRI)	+	s(PET)	+	s(TS)	+	te(PET,TS) 58.9

M42 SR~s(HF)***	+	s(HNP)	+	te(HF,HNP)**	+	s(AI)	+	s(PDR)	+	te(AI,PDR) 56.2

M35 SR~s(PET)	+	s(TS)	+	te(PET,TS) 54.7

M40 SR~s(SLP)	+	s(TRI)*	+	te(SLP,	TRI)	+	s(AI)	+	s(PDR)**	+	te(AI,PDR) 52.8

M34 SR~s(AI)***	+	s(PDR)	+	te(AI,PDR) 49.7

M31 SR~te(PET,TS) 47.5

M30 SR~te(AI,PDR) 44.0

M33 SR~s(HNP)	+	s(HF)	+	te(HNP,HF) 32.4

M29 SR~te(HF,HNP) 27.1

M32 SR~s(SLP)	+	s(TRI)	+	te(SLP,TRI)*** 10.6

M28 SR~te(SLP,TRI) 7.8

Variables	highlighted	are	not	statistically	significant.	“**,”	“*,”and	“***”	indicate	significance	at	p	<	.01,	
p	<	.05,	and	p	<	.1,	respectively.

TABLE  2 Generalized	additive	
model-	derived	regression	statistics	for	
models	with	interactive	terms;	models	
M28–M45	are	variables	combinations	with	
interactive	terms.	Cubic	spline	smoother(s)	
fitted	to	noninteractive	terms	and	tensor	
product	(te)	smoother	to	interaction	terms;	
except	in	few	cases,	the	p	value	of	each	
variable	within	the	models	was	significant	
at	p < .001
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et	al.,	1973).	Slope	is	found	to	be	weak	predictor	in	describing	the	
plant	 richness	pattern.	This	probably	explains	 the	 influence	of	 the	
dominant	grassland	vegetation	of	the	study	area,	which	set	the	mi-
croclimate	for	herbaceous	plants.	It	differs	in	describing	positive	re-
lationships	between	slope	and	tree	species	(Bianchini	et	al.,	2010).	
Slope	 is	 reported	to	be	a	key	factor	 in	determining	the	vegetation	
at	a	local	scale	(Kirkby	et	al.,	1990),	but	it	may	not	be	a	significant	
factor	at	the	landscape	or	regional	scale.

The	explanatory	power	of	the	models	improved	significantly	with	
inclusion	of	interactive	terms	(Table	2).	Interactions	between	common	
predictors	 showed	 proportionate	 variations	 relative	 to	 base	models	
and	with	greater	efficiency,	that	is,	energy>water>disturbance>phys-
iography.	This	indicates	that	mutual	influences	of	common	predictors	
on	 the	species	 richness	are	more	significant	 than	 their	 independent	

effects.	Climatic	variables	show	a	greater	synergy	with	each	compared	
with	nonclimatic	variables.	The	SEM	results	substantiate	GAM	predic-
tions.	The	mutual	 influences	of	 common	predictors	 (i.e.,	 latent	vari-
ables)	are	more	significant	than	the	cumulative	effects	of	independent	
predictors.	This	indicates	that	multiple	parameters	act	synergistically	
to	shape	the	species	richness	pattern.	The	competence	of	the	linear	
structural	model	is	equivalent	to	that	of	the	nonlinear	model,	but	with	
low	efficiency.	It	describes	that	species	and	environment	relationships	
are	more	likely	to	be	nonlinear	than	to	have	linear	fit.	In	general,	both	
models	identified	climate	has	the	primacy	in	determining	the	species	
richness	pattern.	The	energy	variables,	that	is,	temperature	seasonality	
and	PET,	are	the	most	significant	determinants	of	the	species	richness	
pattern.	The	interactions	between	climatic	variables	are	more	critical	
than	 those	 of	 nonclimatic	 variables.	 The	 overall	 explanatory	 ability	

F IGURE  3  (a)	Effects	of	physiography	and	water	on	species	richness.	(b)	Effects	of	physiography	and	energy	on	species	richness.	(c)	Effects	of	
disturbance	and	water	on	species	richness.	(d)	Effects	of	disturbance	and	energy	on	species	richness.	(e)	Effects	of	energy	and	water	on	species	
richness

(0.31)

(a)

(0.35)

(b)

(0.38)

(c)

(0.32)

(d)

(0.38)

(e)
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improves	with	the	complexity	of	the	model,	and	a	full	model	with	all	
variables	 and	 their	 corresponding	 interactive	 terms	 could	 explain	 a	
maximum	deviance	of	67.4%.

5  | CONCLUDING REMARKS

This	study	used	a	newly	available	national	biodiversity	database	for	
India	 to	 explore	 species–environment	 relationships	 in	 two	 states	
in	Western	Himalaya	on	 the	basis	of	environmental	 variables	and	
human	impact.	With	GAM	and	SEM	models	including	climatic,	phys-
iographic,	 and	 anthropogenic	 variables,	 energy	 variables,	 that	 is,	
temperature	seasonality	and	PET,	were	most	significant	in	explain-
ing	the	species	richness	pattern.	Water–energy	variables	and	their	
interactions	had	primacy	over	anthropogenic	disturbance	and	phys-
iography.	Disturbance	is	a	critical	factor	in	the	southwestern	region	
and	places	of	low	elevations	with	large	populations.	Physiography	is	
less	significant	compared	with	disturbance.	The	exclusion	of	eleva-
tion	from	the	list	of	selected	variables	may	be	significant	in	this	low	
performance	of	the	physiographic	variables	with	respect	to	species	
richness.	Further	investigations	may	improve	the	findings	if	eleva-
tion	is	included	in	the	list	of	predictors.	Additionally,	the	better	cor-
relation	of	species	richness	with	energy	than	with	water	needs	to	
be	verified	in	different	climatic	regions.	Although	this	study	focuses	

on	disentangling	 the	effects	of	 abiotic	predictors	on	 species	 rich-
ness,	 the	 relationships	 between	 the	 biotic	 factors,	 that	 is,	 disper-
sion,	competition,	and	isolation,	are	likely	to	improve	the	reliability	
and	 performance	 of	 the	models.	 Nevertheless,	 the	 present	 study	
provides	 better	 insights	 into	 ecologists	 and	 planners	 dealing	with	
plant	distribution	patterns	vis-	à-	vis	climate	change	projections.
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