

Potentials of Geoinformatics application in mapping food and nutritional security

Innovation, Investment, Intervention and Impact

Chandrashekhar Biradar, PhD Principal Scientist (Agro-Ecosystems) Head-Geoinformatics Unit c.biradar@cgiar.org

> Dec 3-5, 2016 Bangkok, Thailand

Regional Expert Consultation on Scoping, Prioritizing and Mapping of Crop-related Neglected and Underutilized Species under the FAO Regional Initiative on Zero Hunger Challenge

Role of Geospatial Science, **Technology and Applications** (GeSTA) in Dryland Systems

uring Security pood

Specific mutual-interaction & synergies between plant and animal species and management practices

Integrated agroecosystems: innovative approaches and methods for sustainable agriculture, while safeguarding the integration environment

Red. Vul.

A/Ss TAs

Sus. Int.

M&E

Cooperative Research and

Gender Address social inequities, greater roles and priorities

Safeguarding Invironmental

Flows and ESs

Geospatial commons, KM sharing, stakeholder feedback

Partnerships and 41% Earth's land area

Measuring Impacts Measuring the impact at spatial scales, rate, magnitude, synergy among the systems, CRPs, cross-regional synthesis

Assessing the impact of outcomes in Action Sites, Farmers, stakeholders, post-project policymakers, implementation, &

Efficiency

Productivity

mobilization, & marketing

Youth Engaging and empowering young gen. by creating

opportunities

Remote sensing missions in orbit^o Sensors potential in CRPs/IRPs, etc. >6 are free

Mapping present, Emerging, future land use /land cover dynamics, land degradation and desertification, changing demographics, climate change adaptation Reducir

and impacts

Sustainable Intensition Integrated Production Systems for Improving 72%

Agricultural

Intensification

Location specific and ecological intensification

Nutrition Changing diet patterns, nutrition and health

Context

Food Security and

Livelihoods in

Drv Areas

Delineation of potential, suitable areas for sustainable intensification. diversification of production systems

Improved ivelihoods. geoagro.icarda.org

1) Ecological intensification, 2) Crop diversification, 3) Input use efficiency, 4) Reduced land degradation, and 5) Location specific interventions.

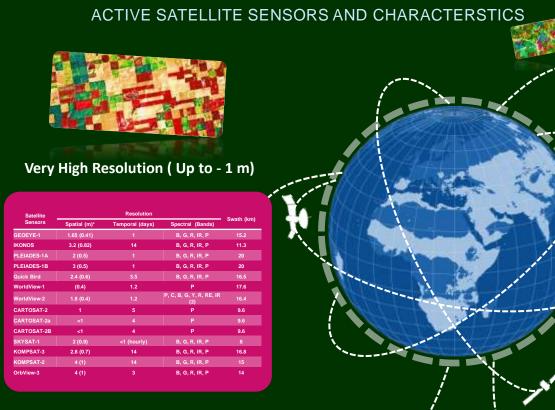
Quantification of dryland agricultural production and livelihood systems

Current status, trends, extent, characteristics of crops, pattern, productivity, water use, livestock, biodiversity, soils, & climate

ood production potential sources

Cropping Intensity 21%

Increase in **Arable Land**


Characterization of vulnerable areas for increasing resilience and assist in identifying mitigation pathways with biophysical, socioeconomic and stakeholder feedback as well as specific needs & constraints

> **Biodiversity** Spatial enrichment and its role in food security, risk mitigation, & sustainability

Mapping the extent of existing & traditional practices, indigenous knowledge, diversity, potential areas for modern & improved, productive, profitable, and diversified dryland agriculture, & linkages to markets

Assessment of <u> 믬</u>2.5b present, emerging & Live in future droughts, Drvlands floods, pests & diseases. extreme Livestock events, infrastructure, Depend on migration **50** Drylands

Earth Observation Systems for Agro-Ecosystem Research

High Resolution (1 to 5 m)

ſ		 19° 1	
	1		
	11		
4			
	and a		
	1		

Satellize Sensors Resolution Spectral (Bands) Swath (km) CARTOSAT-1 (2.5) 5 P 30 FORMOSAT-2 8 (2) 1 B, G, R, IR, P 24 SPOT-5 5, 20 (2.5, 5) 2-3 G, R, IR, SW, P 60 to 80 SPOT-6 (1.5) 6 (1.5) 2-3 B, G, R, IR, IR 77 RESOURCESAT-1 5.8 5 G, R, IR, IR 23, 70 GOKTURK-2 10 (2) 2-5 B, G, R, IR, P 60 EROS-A (1.8) 2.1 P 14 Theos 15 (2) 3 B, G, R, IR 96 PROBAMRC 18, 34 (5) 7 18 15

*=Resolution in parenthesis is panchromatic

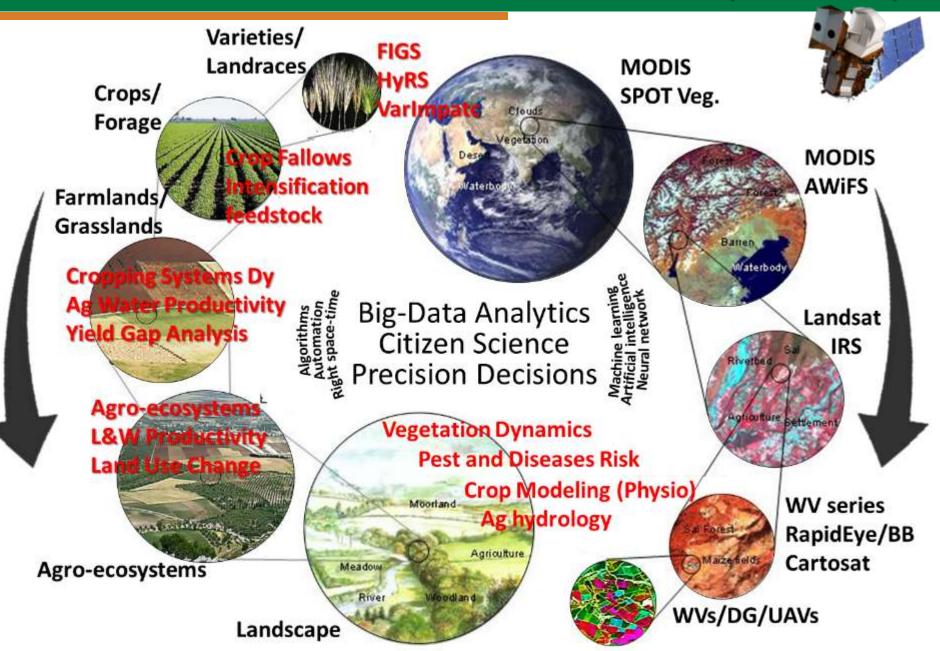
+=Bands: B-Blue, G-Green, R-Red, IR-Infra Red, C-Coastal blue, Y-Yellow, SW-Shortwave Infrared, M-Mid infrared, P-Panchromatic, H-Horizonal, V-verticial

Medium resolution (5 - 30 m)

Satellite	Multispectral resolution (m)	B, s	Swath width (kn
ASTER (15m)			
VNIR (Visible Near Infrared)		VIR (4)	60
SWIR (Shortwave Infrared)		SW (6)	
TIR (Thermal Infrared)	60	TIR (5)	60
CBERS - 2			
WFI	260	R, IR	890
CCD		B, G, R, IR	
IRMSS	(2.7)	P-	
LANDSAT 5TM -7ETM	30 (14.8)	B, G, R, IR, SW1, TIR, SW2, P	
Nigeriasat-X	22	G, R, IR	
Resourcesat-2/Liss-III	23.5	R, G, IR, SW	
Deimos-1	22	G, R, IR	600
UK-DMC-2/SLIM6		G, R, IR	638
BILSAT-1	26 (12)	R, B, G, IR, P	640
Nigeriasat-1		G, R, IR	640
ALSAT-1	32	G, R, IR	640
UK-DMC/EC (DMC)	32	G, R, IR	600
EO-1/ALI-MS	30	B (2), G, R, IR (3), SW (2), P	
EO-1/ Hyperion	30	220 bands	7,7
ASTER (15m)	15, 30, 90	G, R, IR (2) SW(6), TIR (4)	60
LANDSAT 7ETM+	30m (14.5)	B, G, R, IR, SW (2), TIR, P	
SPOT-4	20 (10)	G, R, IR, SW, P	60
SPOT-3	20 (10)	G, R, IR+P	60
JERS-1	24 (18)	G, R, IR, IR	75
SPOT-2	20 (10)	G, R, IR	60
SPOT-1	20 (10)	G, R, IR	60
Landsat 5/MSS	80	G, R, IR, IR	185
Landsat 5/TM	30, 120	B, G, R, IR, SW, SW, TIR	185
RESURS-01-1	45	G, R, IR	600

Low or Medium resolution

Satellite	Multispectral resolution		Swath width (km)
		P, C, B, G, R, IR, SW (3)	
VIIRS			3000
MERIS		15 b, s	
	40000		
SPOT5/VEGETATION 2		B, R, IR, SW (4)	
SPOT4/VEGETATION 1		B, R, IR, SW (4)	
Orbview-2/ SeaWiFS		B(2), G (3), IR (8)	2800
RESURS-01-1/ MSU-S		G, R, IR (3)	
ResourceSat/AWiFS		R, G, IR, SW	
		G, R, IR	
Landsat 1/ RBV	80	G, R, IR	183


Radar Satellites

Satellite	Bands	Band (Polarity)	Swath width (km)
Sentinel-1			
			10, 40, 30, 100
COSMO-SKYMED 4	1, 5, 15, 30, 100	X-B (HH, VV, HV, VH)	200
TanDEM-X		X-B (HH, VV, HV, VH)	
			10, 40, 30, 100
COSMO_SKYMED 2	1, 5, 15, 30, 100	X-B (HH, VV, HV, VH)	200
RADARSAT 2	100	C-B (HH, HV, VH, VV)	5 - 500
			10, 40, 30, 10
COSMO-SKYMED 1	1, 5, 15, 30, 100	X-B (HH, VV, HV, VH)	200
Terra SAR-X		X-B (HH, VV, HV, VH)	
		L-B (HH, VV, HH, HV,	
ALOS (PALSAR)	10, 20, 30, 100	VH)	
ENVISAT (ASAR)		C-B (VV)	5 - 406
RADARSAT 1 (SAR)	8,25, 30, 35, 50, 100	С-В (НН)	50 - 500
ERS 2 (AMI)		С-В (VV)	100
ERS 1 (AMI)		C-B (VV)	100

Across the scales

Scaling Trade-on/offs Farmscapes to Landscapes

Increased land, water and system productivity while safe guarding the environmental flows and ecosystem services

- more <u>crop</u> per <u>drop</u> -water focus
- in a inch of land and a bunch of crop

-multi dimensions -integrated systems

Knowledge based prioritization (space & time) for building better strategy for food and nutritional security and resilience

Genetic Gains Eco-Crop Zoning Input Use Efficiency Bridging Yield Gaps Conservation Practices Carbon Sequestration Land Degradation Technology Scaling

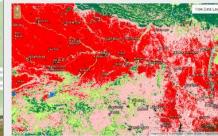
- food and environmental security
- resilience and risk reduction
- adaption and mitigation
- citizen science and collective actions
- trade, social security and stability

Land Over Cross Types - Course Haved

22 32	/ 🚡 India Mapping 🗙 🖉 ICARDA BioConii 🗴 🍒 Precision Farminii 🛪 🚡 CA/FerganaYield 🗙 🗕 🗖
2001 1200	← → C 🗋 geoagra.icarda.org/india/ Q 🏠 😳 📷 💷 🖾 🖾
	📅 Apps 🗋 Bookmarks 🧬 CSI2016 🌑 ASA 🐵 CEAC 🗢 cgifederal 🕒 GWM 📼 SB1 Apt 🚟 SSA 🗛 ASA 🖗 Add Author
the set	Agricultural Intensification and Crop Diversification

Com Palmi

ength in one set


Crop Intensity

Crop Fallows(Length in one year)

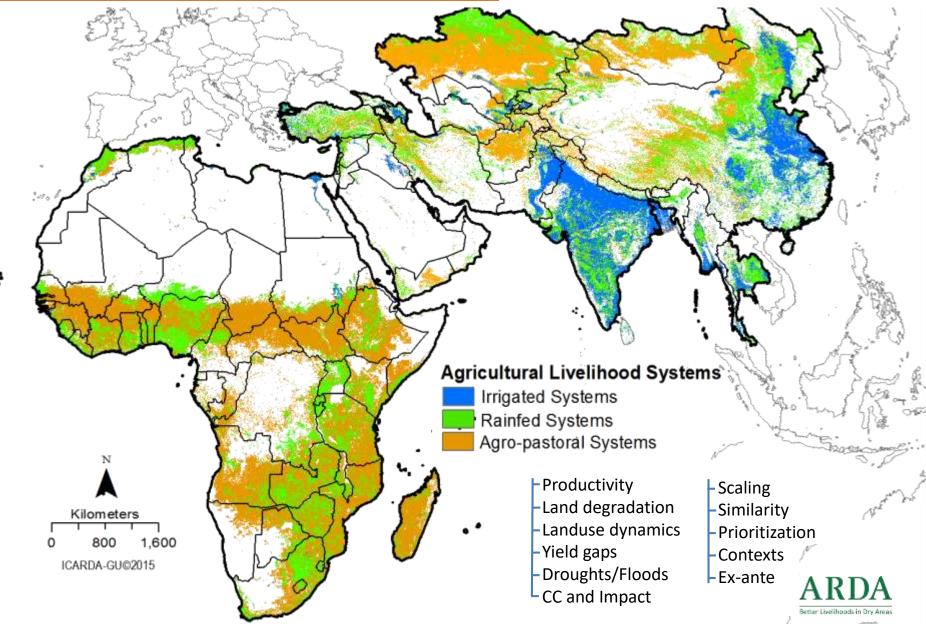
Exploring untapped potential in crop-fallows for sustainable future

Personal Personnel

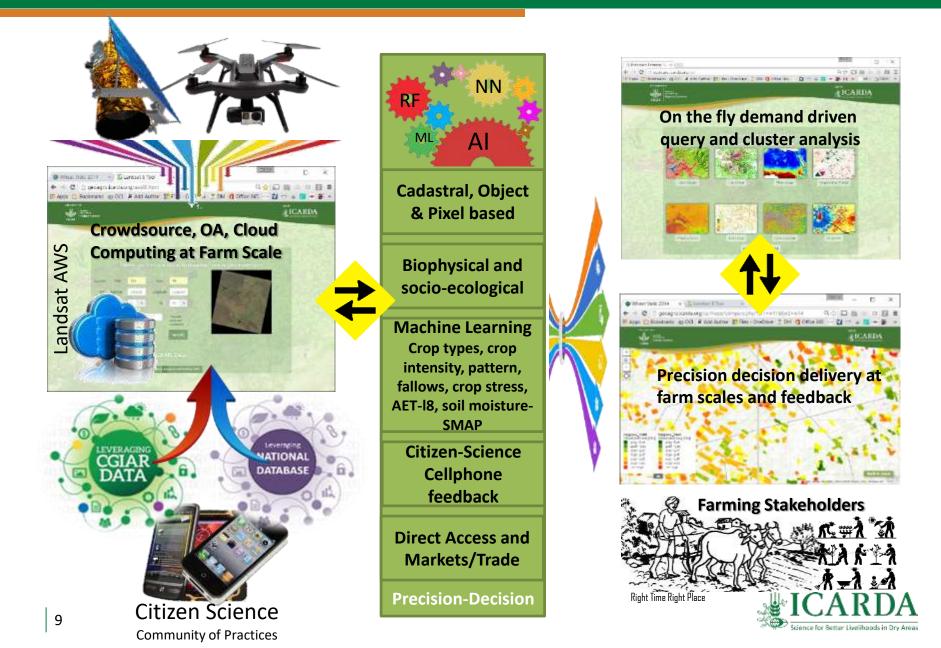
Visit Visit

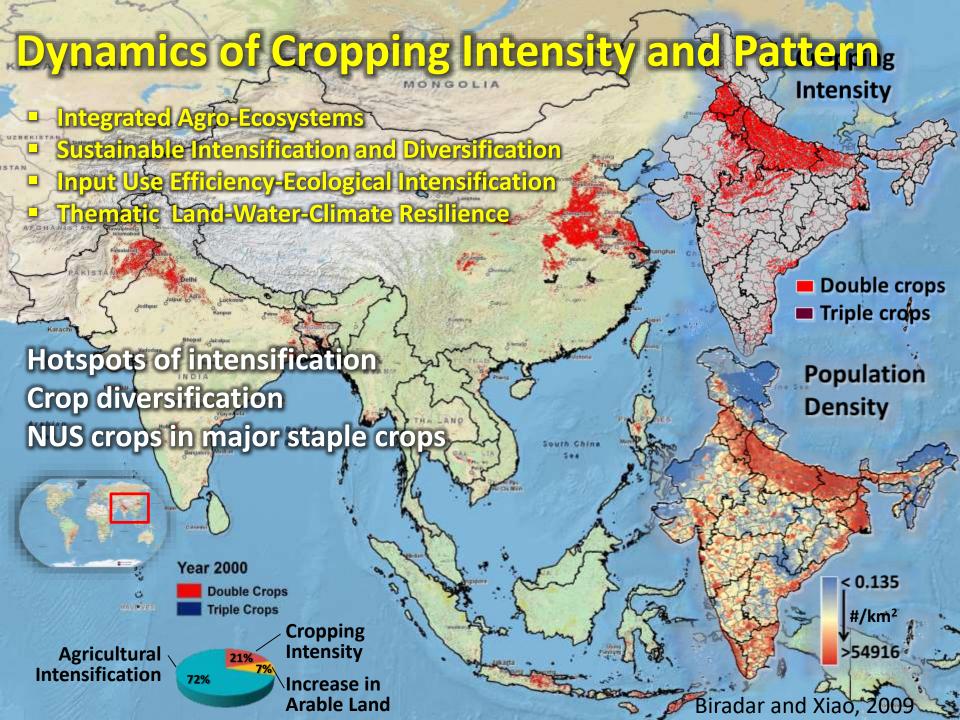
Land Cover 💼 Waterbody 📲 Forests 🔤 Grass/Shniplands 💼 Wetlands 💼 Litban and Bull-up 🗌 Snow and Ice 🗌 Baren lands

Agroecosystems mapping and monitoring


Mapping and monitoring of agro-ecosystems

- 1. Crop types (e.g., major crops, extent, changes)
- 2. Crop associations (e.g., mixed and integrated crops)
- 3. Cropping intensity (e.g. number crops, sequence)
- **4. Crop suitability/crop ecozones** (e.g., Lentils in rice-fallows; nativity)
- **5.** Crop yield (e.g., biomass, yield gaps, potetnail, CO₂ seq.)
- 6. Water productivity (e.g., water use efficiency, wpm, gaps)
- 7. Land degradation (e.g., soil salinity, abandonment)


Mapping and Monitoring Major ALS


Farmscape to Landscapes

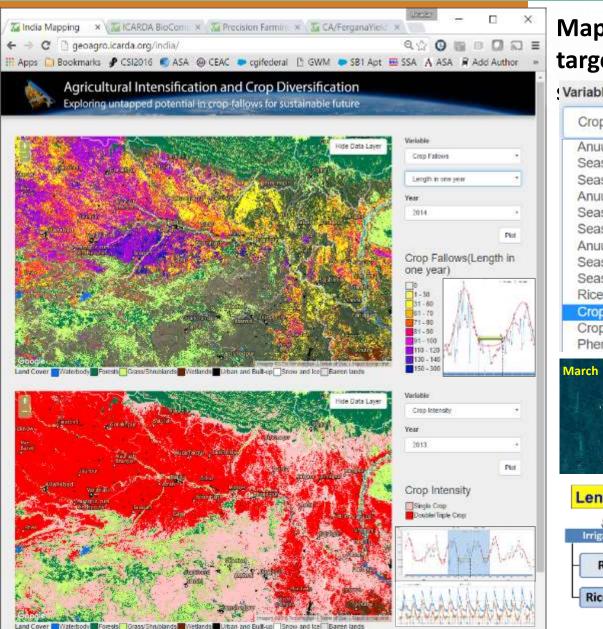
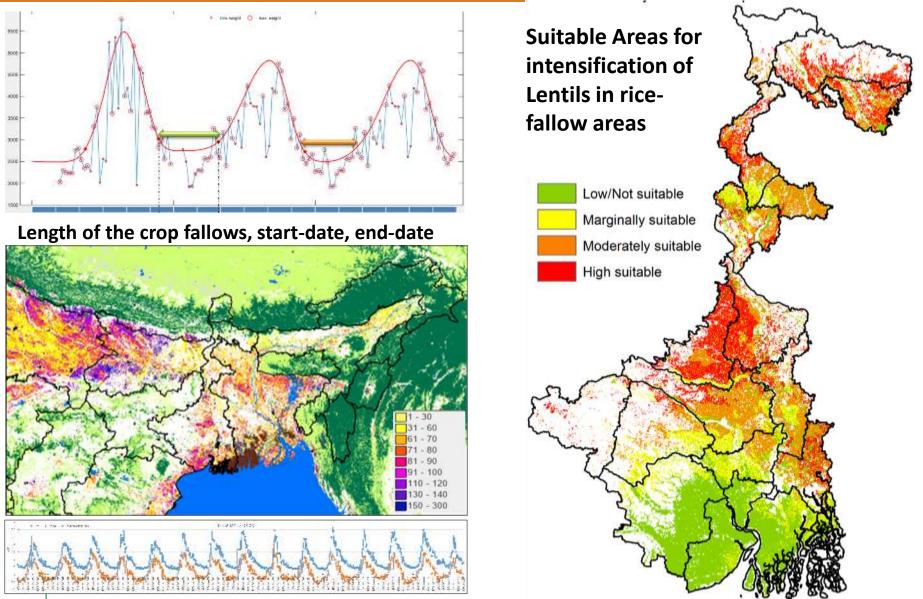
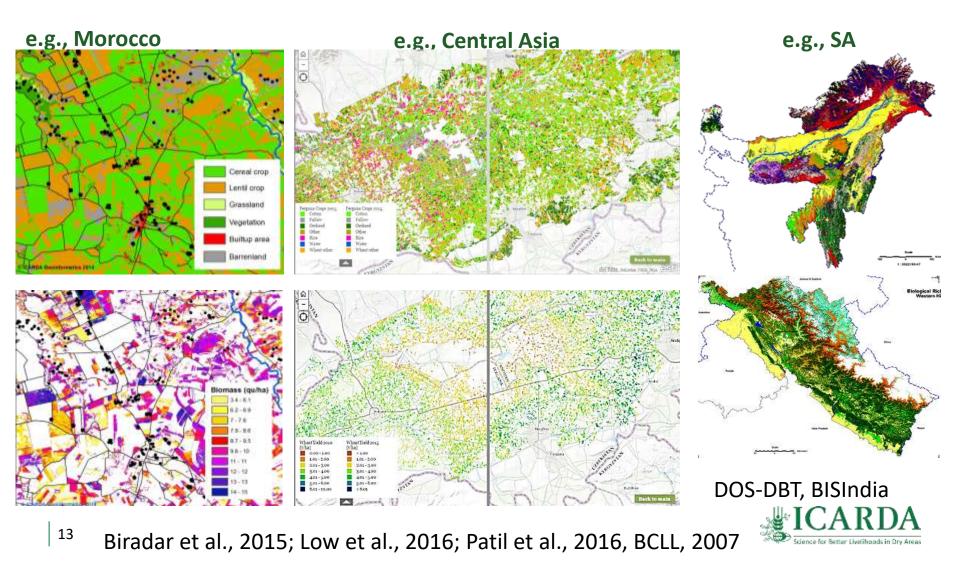

Digital Agriculture Platform

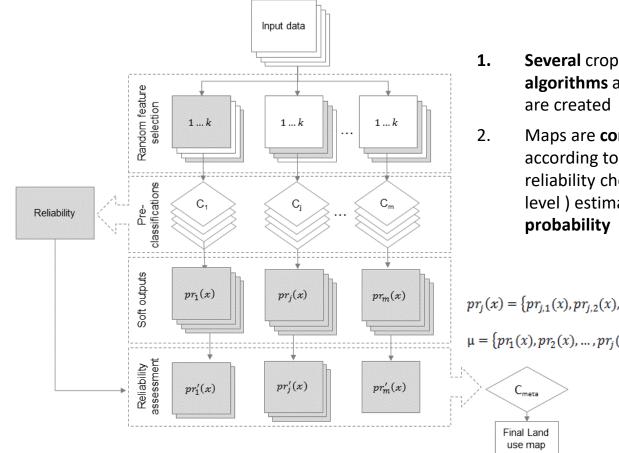
Image Based, Open Source Precision Decision at Farm scales


Agricultural Intensification & Crop Diversification

Mapping Crop and variety specific target areas and implementation


Variable	Variable		
Crop Fallows •	Seasonal Accum. •		
Anuual Mean NDVI	Kharif Season 🔹		
Seasonal Accumulative NDVI	Year		
Seasonal Mean NDVI Anuual Mean EVI	2014 •		
Seasonal Accumulative EVI	2014		
Seasonal Mean EVI	2013 2012		
Anuual Mean LSWI	2011		
Seasonal Accumulative LSWI	2010 2009		
Seasonal Mean LSWI	2008		
Rice Paddy	2007		
Crop Fallows	Crop Fallows *		
Crop Intensity	Length in one yea *		
Phenology			
March	Length in one year Length between two years Start date in one year End date in one year Start date between two years End date between two years		
Lentil in Rice-based Crop	oping Systems		
Irrigated	Rainfed		
Rice – EE Lentil – Boro rice	Rice – EE Lentil		
Rice – Relay E Lentil – Boro rice	Rice - Relay E Lentil		
	Science for Better Livelihoods in Dry Areas		

Agricultural Intensification & Crop Diversification


Crop types, sequence and productivity

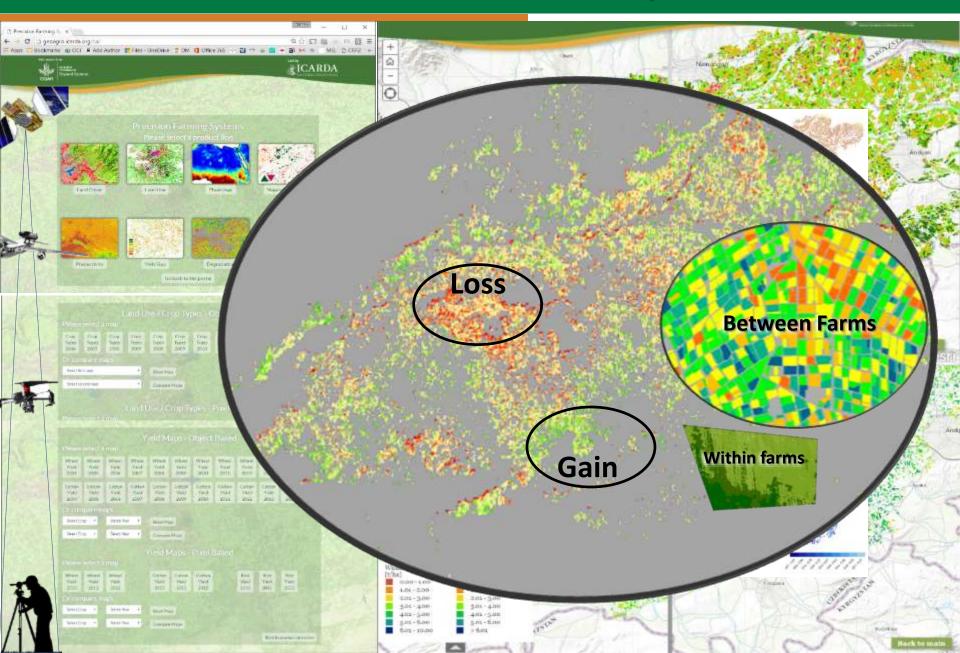
Mapping crop types, sequence and water use

Crop type mapping

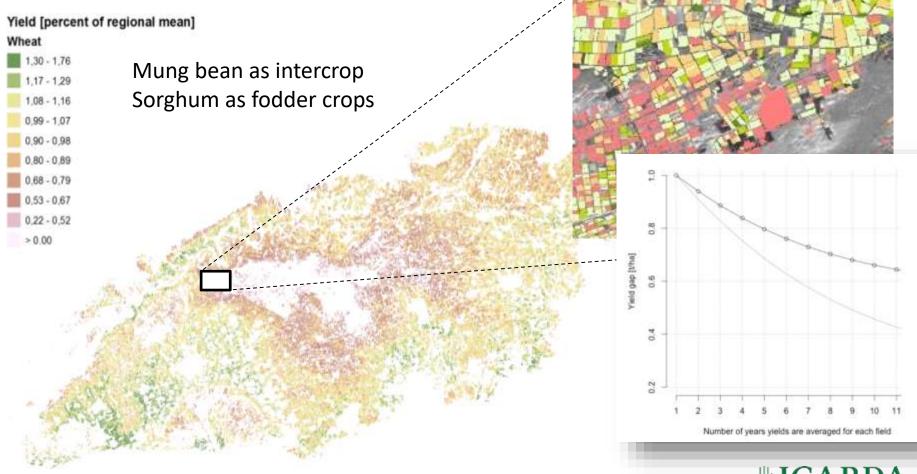
Crop mapping based on **decision fusion**, i.e., combination of different classifier algorithms

- Several crop maps based on different classifier algorithms and randomly selected feature sets
- Maps are **combined** by weighting each input map according to (i) global accuracy assessment (= reliability check) and local (i.e., pixel or object level) estimation of a-posteriori classification

$$pr_{j}(x) = \{ pr_{j,1}(x), pr_{j,2}(x), \dots, pr_{j,i}(x), \dots, pr_{j,n}(x) \} , i = 1 \dots n$$

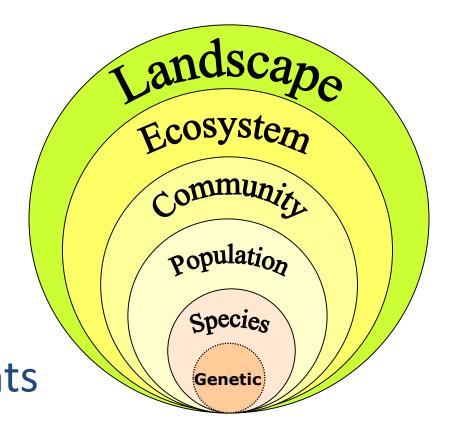

$$\boldsymbol{\mu} = \left\{ pr_1(x), pr_2(x), \ldots, pr_j(x), \ldots pr_m(x) \right\}, \; j = 1 \ldots m$$

Löw, et al. 2015. Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEve data. ISPRS J. Photogramm. Remote Sens. 108, 191-204.


EOS in Precision Decisions

operational mapping, monitoring and rural advisory

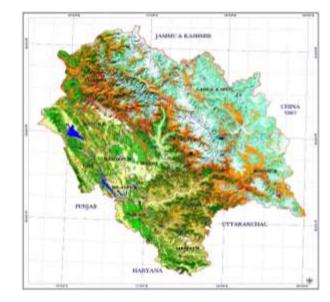
Mapping the gaps and priorities


Yield gaps and land potential: identify potential areas for intensification and crop diversification

Löw, Biradar, et al. 2016. Assessing gaps in irrigated agricultural productivity through satellite earth
 observations – A case study of the Fergana Valley, Uzbekistan

Mapping of Underutilized Crop Species (NUS)

Roots and Tubers
 Cereals and millets
 Fruits and Nuts
 Vegetables
 Food Legumes
 Spices and condiments

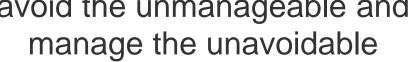


Way Forward

Mapping of Crop-related Neglected and Underutilized Species (NUS)

- Use of high resolution EOS images
- Data fusion and crop phenology
- Landscape ecological concepts and species association for mapping ecozones (hotspots) of the NUS
- Geotagging and community (citizen science) based approach for mapping of the NUS growing regions
- Mapping potential areas for infusion of the NUS crops in major staple crops

Biradar et al., 2007


in an inch of land and bunch of crop

Where much gain is expected?

Is that from genetic? 15-20 Is that from agronomy? 50-60 Is that from socio-economy? 20-35 (policy)

> Thank You c.biradar@cgiar.org

-IPCC Confronting Climate Change:

