## eAtlasDCL.cgiar.org

## Geographic priorities for research and development on dryland cereals and legumes (DCL)

Glenn Hyman ${ }^{1}$, Elizabeth Barona², Chandrashekhar Biradar ${ }^{3}$, Edward Guevara ${ }^{1}$, John Dixon ${ }^{4}$, Steve Beebe ${ }^{1}$, Silvia Elena Castano¹, Tunrayo Alabi5, Murali Krishna Gumma6, Shoba Sivasankar6, Ovidio Rivera ${ }^{1}$, Herlin Espinosa ${ }^{1}$, Jorge Cardona ${ }^{1}$
${ }^{1}$ International Center for Tropical Agriculture (CIAT), Cali, Colombia
${ }^{2}$ Independent Researcher, Miami, USA
${ }^{3}$ International Center for Agricultural Research in the Dry Areas (ICARDA), Amman, Jordan
${ }^{4}$ Australian Centre for International Agricultural Research, Canberra, Australia
${ }^{5}$ International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
${ }^{6}$ International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India


## Introduction

- Maps, geography and spatial analysis are increasingly important for developing R\&D programs, priority setting, monitoring, impacts assessment and reporting.
- But the community of researchers working on this topics has perhaps been less organized to carry out this type of work.
- This initiative propose to develop an online Atlas for R\&D among the DCL community with focus on Geo-spatial Science, Technology and Applications (GeSTA).



## The CLeAtlas www.eatlasdcl.cglar.org



## The CLeAtlas www.eatlasdcl.cglar.org



## Methodology

## Spatial overlays, zonal/geostats

## Data sources

- CGIAR center GIS/Geoinformatics labs
- Public domain
- FAO farming systems


## Spatial analysis

- Remote sensing and GIS
- Spatial overlay

Determining priority


Precipitation and Temperature Change


Combination of crops
\#s of crops


## regions

- Overlay of DCL crop distributions with FAO farming systems
- Analysis of biotic, abiotic, socioeconomic and management conditions by farming system.




## Methodology

## Scripts, documentation and data all available online and cloud



## Results

## Major drylands farming systems and crop and regional dominance

Table 1. DCL crop area in '000's of hectares in 18 priority farming systems worldwide.

| FARMING SYSTEMS | REGION | BARL | BEAN | CHKP | COWP | GRDN | LENT | PMIL | PSML | PPEA | SORG | SOYB | FABAB | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cereal-root crop mixed | SSA | 26 | 573 | 32 | 2.983 | 2,949 | 1 | 4,649 | 128 | 78 | 9,594 | 295 | 19 | 21,328 |
| Maize mixed | SSA | 81 | 2,175 | 107 | 387 | 977 | 7 | 655 | 432 | 431 | 1.976 | 309 | 70 | 7,607 |
| Agro-pastoral millet/sorghum | SSA | 2 | 169 | 1 | 3,489 | 1.751 | 0 | 7,551 | 0 | 8 | 5,596 | 108 | 15 | 18,691 |
| Pastoral | SSA | 65 | 77 | 21 | 2.070 | 725 | 7 | 4,798 | 9 | 0 | 2.955 | 14 | 66 | 10,808 |
| Rice-wheat | SA | 461 | 1,575 | 1.966 | 0 | 277 | 977 | 4,012 | 144 | 543 | 966 | 362 | 0 | 11,283 |
| Rainfed mixed | SA | 161 | 3,951 | 4,062 | 4 | 4,014 | 595 | 2,628 | 1.697 | 2.149 | 4,226 | 7.276 | 0 | 30,763 |
| Dry rainfed | SA | 0 | 496 | 1,030 | 0 | 1.168 | 0 | 1,148 | 68 | 735 | 3,829 | 210 | 0 | 8,685 |
| Highland mixed | MENA | 1,704 | 83 | 524 | 0 | 1 | 189 | 1 | 67 | 0 | 291 | 75 | 28 | 2,961 |
| Rainfed mixed | MENA | 1,197 | 22 | 94 | 0 | 26 | 69 | 5 | 2 | 0 | 17 | 1 | 156 | 1,589 |
| Dryland mixed | MENA | 3,486 | 6 | 126 | 0 | 7 | 125 | 0 | 11 | 0 | 10 | 7 | 62 | 3,841 |
| Pastoral | MENA | 737 | 18 | 40 | 0 | 13 | 37 | 0 | 19 | 0 | 120 | 4 | 11 | 1,001 |
| Maize-beans (Mesoamerica) | LAC | 277 | 783 | 30 | 0 | 23 | 8 | 0 | 0 | 1 | 597 | 15 | 17 | 1,750 |
| Large scale cerealvegetable | EECA | 5,927 | 44 | 2 | 0 | 0 | 1 | 0 | 309 | 0 | 30 | 634 | 1 | 6,948 |
| Small scale cereallivestock | EECA | 2.057 | 59 | 235 | 0 | 6 | 181 | 0 | 2 | 0 | 0 | 0 | 9 | 2.550 |
| Extensive cereallivestook | EECA | 8,322 | 5 | 12 | 0 | 0 | 6 | 0 | 535 | 0 | 22 | 250 | 6 | 9,161 |
| Lowland rice | EAP | 408 | 2,436 | 1 | 39 | 2,805 | 16 | 53 | 28 | 18 | 91 | 2,696 | 187 | 8,778 |
| Upland intensive mixed | EAP | 154 | 1,167 | 80 | 65 | 1,629 | 20 | 522 | 25 | 436 | 170 | 3,336 | 258 | 7,869 |
| Temperate mixed | EAP | 75 | 259 | 1 | 0 | 1,202 | 16 | 209 | 3 | 0 | 264 | 4,178 | 333 | 6,539 |
| TOTAL |  | 25,141 | 13,899 | 8,371 | 9,039 | 17.576 | 2,257 | 26,233 | 3,477 | 4,399 | 30,754 | 19,770 | 1,236 | 162,152 |

## Results

## Major drylands farming systems and crop and regional dominance

- Three farming systems in South Asia - rainfed mixed, rice-wheat and dry rainfed - make up about one third of the $\mathbf{1 6 2}$ million ha of DCL crops in the 18 priority farming systems
- A second important region is Sub-Saharan Africa, where the cerealroot crop mixed system accounts for $\mathbf{2 1 . 3}$ million ha, the agropastoral millet sorghum system accounts for 18.6 million ha, the pastoral system accounts for $\mathbf{1 0 . 8}$ million ha and the maize mixed system has 7.6 million ha
- In Eastern Europe and Central Asia more than 15 million ha are cultivated, with barley figuring prominently.
- In East Asia over 22 million ha are cultivated, with groundnut and soybean as the predominant crops.


## Results

## Abiotic and biotic stress

## climate change and extreme events

| FARMING SYSTEMS | REGION | DLC Crop <br> Area (ha) | Potential Drought <br> Impact Index | Temperature <br> Change 2050 |
| :--- | :--- | ---: | ---: | ---: |
| Cereal-root crop mixed | SSA | $21,327,541$ | $2,971,040$ | 2.48 |
| Maize mixed | SSA | $7,606,508$ | $1,592,730$ | 2.47 |
| Agro-pastoral millet/ <br> sorghum | SSA | $18,691,342$ | $7,644,810$ | 2.77 |
| Pastoral | SSA | $10,808,337$ | $7,409,830$ | 2.73 |
| Rice-wheat | SA | $11,282,838$ | $4,431,820$ | 2.83 |
| Rainfed mixed | SA | $30,763,078$ | $7,556,180$ | 2.48 |
| Dry rainfed | SA | $8,685,308$ | $2,868,150$ | 2.36 |
| Highland mixed | MENA | $2,961,344$ | 98,050 | 3.01 |
| Rainfed mixed | MENA | $1,588,829$ | 123,471 | 2.64 |
| Dryland mixed | MENA | $3,840,974$ | 104,013 | 2.79 |
| Pastoral | MENA | $1,000,516$ | 10,668 | 2.93 |
| Maize-beans <br> (Mesoamerica) | LAC | $1,749,799$ | 398,401 | 2.36 |
| Large scale cereal- <br> vegetable | EECA | $6,947,991$ | 86,502 | 2.82 |
| Small scale cereal- <br> livestock | EECA | $2,550,258$ | 1,849 | 2.82 |
| Extensive cereal- <br> livestock | EECA | $9,160,822$ | 17,198 | 3.31 |
| Lowland rice | EAP | $8,778,265$ | 982,407 | 2.25 |
| Upland intensive <br> mixed | EAP | $7,868,661$ | $1,065,610$ | 2.42 |
| Temperate mixed | EAP | $6,539,133$ | $1,088,910$ | 2.91 |

## The farming systems where dryland cereals

 and grain legumes are concentrated are particularly prone to high temperatures and drought and crop stress.

## Results

## Abiotic and biotic stress

## climate change and extreme events

These dryland systems, especially those with less than 1000 mm of annual precipitation, tend to have a higher probability of drought or a failed season, when precipitation does not meet crop requirements.


There is a general tendency of the drier farming systems having higher expected temperature changes between now and future climate scenarios (2050) and further decrease in precipitation

## Results

## Abiotic and biotic stress climate change and extreme events

## The soils of DCL priority farming systems present a number of abiotic

 constraints to DCL crop production.Table 6. The percentage area of each of the 18 priority farming system with soil constraints.

| FARMING SYSTEMS | REGION | Acid Soil constraints (MEAN \% of farming system) | Soll $>3$ months dry season (MEAN \% of farming system) | Soil subject to waterlogging (MEAN \% of farming systom) | Soil with low moisture holding capacity (MEAN \% of farming system) | Soil with Low nutrient availability (MEAN \% of farming system) | Soil with Salinity constraints (MEAN \% of farming system) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cereal-root crop mixed | SSA | 37 | 1 | 14 | 22 | 19 | 1 |
| Maize mixed | SSA | 27 | 4 | 7 | 14 | (35) | 1 |
| Agro-pastoral millet/sorghum | SSA | 15 | 4 | 8 |  | 7 | 3 |
| Pastoral | SSA | 5 | 20 | 4 | 30 | 2 | 6 |
| Rice-wheat | SA | 19 | 21 | 7 | 5 | 4 | (23) |
| Rainfed mixed | SA | (39) | 2 | 3 | 12 | 10 | 2 |
| Dry rainfed | SA | 14 | 0 | 2 | 1 | 1 | 2 |
| Highland mixed | MENA | 2 | 36 | 2 | 2 | 0 | 5 |
| Rainfed mixed | MENA | 25 | 13 | 3 | 3 | 0 | 2 |
| Dryland mixed | MENA | 7 | $38$ | 1 | 5 | 0 | 5 |
| Pastoral | MENA | 1 | 42 | 1 | 10 | 0 | 8 |
| Maize-beans (Mesoamerica) | LAC | 30 | 1 | 3 | 3 | 14 | 0 |
| Large scale cerealvegetable | EECA | 17 | 5 | 11 | 6 | 0 | 5 |
| Small scale cereallivestock | EECA | 9 | 31 | 2 | 1 | 1 | 2 |
| Extensive cereallivestock | EECA | 11 | 2 | 15 | 6 | 0 | 1 |
| Lowland rice | EAP | 22 | 0 | 35 | 5 | 30 | 2 |
| Upland intensive mixed | EAP | 23 | 0 | 10 | 1 | 35 | 1 |
| Temperate mixed | EAP | 10 | $\uparrow$ | 35 | 2 | 0 | 18 |

## Results

## Population and poverty

## The key DCL farming systems are home to about one third of the global population, including an enormous number of people living in poverty.

| FARMING SYSTEMS | REGION | $\begin{gathered} 2010 \\ \text { Population } \\ (000) \end{gathered}$ | $\begin{gathered} 2005 \\ \text { Population } \\ (000) \end{gathered}$ | 2005 Rural Population ( ${ }^{(000)}$ | 2005 Urban Population ( ${ }^{(000)}$ | Stunted Children ( ${ }^{\circ} 000$ ) | Stunting Prevalence | Poverty headcount (<S1/day) ('000) | Poverty headcount $(\$ \$ 2 /$ day $)$ $(\$ 000))$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cereal-root crop mixed | SSA | 116,472 | 84,150 | 69,199 | 14,951 | 6,320 | 39 | 52,865 | 73,618 | 21,328 |
| Maize mixed | SSA | 125,279 | 96,684 | 72,837 | 23,847 | 6,314 | 41.1 | 51,310 | 68,988 | 7.607 |
| Agro-pastoral millet/sorghum | SSA | 70,806 | 54,864 | 37,892 | 16,972 | 3,133 | 37 | 30,899 | 40,999 | 18,691 |
| Pastoral | SSA | 51,662 | 39,705 | 29,677 | 10,027 | 3,228 | 35.5 | 13,369 | 20,871 | 10,808 |
| Rice-wheat | SA | 613,984 | 491,399 | 365,498 | 125,901 | 28,292 | 51.5 | 237,306 | 440,256 | 11,283 |
| Rainfed mixed | SA | 400,921 | 356,767 | 249,337 | 107,430 | 24,541 | 62.6 | 157,816 | 286,661 | 30,763 |
| Dry rainfed | SA | 47,017 | 45,600 | 33,544 | 12,056 | 3,610 | 65.5 | 18,074 | 32,620 | 8.685 |
| Highland mixed | MENA | 72,913 | 67,103 | 31,036 | 36,067 | 1,572 | 20.4 | 3.648 | 11,254 | 2.961 |
| Rainfed mixed | MENA | 47,798 | 38,815 | 13,852 | 24,963 | 499 | 16.3 | 1,666 | 6.415 | 1,589 |
| Dryland mixed | MENA | 56,966 | 47.224 | 18,093 | 29,132 | 750 | 18.7 | 1,128 | 4,380 | 3,841 |
| Pastoral | MENA | 38,441 | 33,845 | 16,798 | 17,047 | 1,668 | 21.9 | 988 | 4.444 | 1.001 |
| Maize-beans (Mesoamerica) | LAC | 88,137 | 76,106 | 28,686 | 47,420 | 2,838 | 35.9 | 4,684 | 9,278 | 1,750 |
| Large scale cereal-vegetable | EECA | 63,105 | 65,593 | 28,474 | 37,118 | 319 | 8.7 | 1,501 | 1,178 | 6,948 |
| Small scale cereal-livestock | EECA | 19,852 | 19,898 | 8,763 | 11,135 | 382 | 19.6 | 658 | 2,175 | 2,550 |
| Extensive cereal-livestock | EECA | 92,121 | 93,425 | 26,044 | 67,381 | 70 | 3.7 | 1,639 | 2,848 | 9,161 |
| Lowland rice | EAP | 851,260 | 785,701 | 496,073 | 289,627 | 13,360 | 31.8 | 117,021 | 264,030 | 8.778 |
| Upland intensive mixed | EAP | 501,857 | 502,323 | 358,539 | 143,783 | 15,427 | 33.6 | 84,484 | 193,653 | 7,869 |
| Temperate mixed | EAP | 285,014 | 260,574 | 138,989 | 121,585 | 2,594 | 21.6 | 36,416 | 82,927 | 6,539 |
| TOTAL |  | 3,543,606 | 3,159,775 | 2,023,332 | 1,136,441 | 114,917 |  | 815,472 | 1,546,593 | 162,152 |

## Phase2 development and way forward

## Potential additions to DCL Atlas Platform

- higher resolutions (space and time)
- crop types and granularity;
- similarity mapping and out scaling;
- tracking adoption of technologies;
- niche modelling and predictions;
- yield gap mapping across the scales
- carry out genotype-by-environment analysis;
- land potential for investment and implementation


## Crop types, pattern and phenology

Wh

e.g., Ethiopia

## Mapping crop land areas.

01. Irrigated-SC-rice in kharif-fallow in rabi-fallow in summer (4)
02. Irrigated-SC-fallow in kharif-rice in rabi-fallow in summer (1)
03. Irrigated-DC-rice in kharit-mixed crops in rabi-fallows in summer (10)04. Irrigated-DC-rice in kharif-ric in rabi-fallow in summer (1)05. Irrigated-TC-rice in kharif-mixed crops in rabi-rice in summer (4)06. Rainfed-SC-rice in kharif-fallow in rabi-fallow in summer (6)07. Rainfed-SC-fallow in kharif-rice in rabi-fallow in summer (0.4)08. Rainfed-SC-flooded in kharif-flooded in rabi floded-summer rice (0.3)09. Irrigated-DC-mixed crops in kharif-mixed crops in rabi-fallow in summer (3510. Rainfed-SC-mixed crops in khanf-fallow in rabi-fallow in summer (38)11.Other LULC

Gumma et al., 2016. ICRISAT

## Tracking of technological adoption



Adoption of water harvesting structures, in Andra Pradesh


Adoption of conservation agriculture (zero tillage) in Morocco


Biradar, et al., 2015. ICARDA

## Tracking of technological adoption

## Adoption of Chickpea

Links image analysis to field surveys


Districts

| Anantapur | 34777 | 51304 | 84493 |
| :--- | ---: | :---: | :---: |
| Cuddapah | 30343 | 69258 | 117903 |
| Kurnool | 68113 | 140511 | 196793 |
| Prakasam | 35129 | 128288 | 159524 |
|  | 168362 | 389361 | 558713 |

Gumma et al., 2016. ICRISAT

## Niche modelling and distribution

## The current

 predicted distribution of climbing beans according to MaxEnt model and Africa Bean AtlasSource: Glenn, CIAT


Current Climate


CIAT
\% of bean production that is climbing beans From Atlas of Common Bean in Africa

## Crop Intensification \& Diversification



Enction Intionsification and Crop Diversification


Cropping System Crop Intensity Crop Calendar Crop Rotation Cropped Area Fallow Dynamics
-Fallow area
-Duration
-Start date -End date Yield Potential -Current
-Achievable Suitable Crop/Variety -Legumes -Oil Seeds Soils
Soil Health (SHC) Soil Moisture (SMAP) Water use Evapotranspiration Allocation/Irri. Sch. Markets -ePlatform -Ag Supply Chain -Access (I/O) Monitoring -Pest/Diseases -Crop Stress Citizen Science

## Agricultural Productivity, Production and Dynamics



## Location specific Investment, Interventions and Impacts


in an inch of land and bunch of crop


## Thank You

c.biradar@cgiar.org
avoid the unmanageable and manage the unavoidable

