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Abstract
Over the past century, agricultural landscapes worldwide have increasingly been managed for the primary purpose of
producing food, while other diverse ecosystem services potentially available from these landscapes have often been
undervalued and diminished. The incorporation of relatively small amounts of perennial vegetation in strategic locations
within agricultural landscapes dominated by annual crops—or perennialization—creates an opportunity for enhancing
the provision of a wide range of goods and services to society, such as water purification, hydrologic regulation,
pollination services, control of pest and pathogen populations, diverse food and fuel products, and greater resilience to
climate change and extreme disturbances, while at the same time improving the sustainability of food production. This
paper synthesizes the current scientific theory and evidence for the role of perennial plants in balancing conservation with
agricultural production, focusing on theMidwestern USA as amodel system, while also drawing comparisons with other
climatically diverse regions of the world. Particular emphasis is given to identifying promising opportunities for
advancement and critical gaps in our knowledge related to purposefully integrating perennial vegetation into
agroecosystems as a management tool for maximizing multiple benefits to society.

Key words: biodiversity, ecosystem services, perennial plants, resilience, sustainable agriculture

Introduction

With the intensification of global food production,
agricultural strategies have increasingly emphasized
maximizing crop yields, often at the expense of other
ecosystem services (ES)1. This has been accomplished,
in part, by replacing the original native vegetation with
simplified systems dominated by a single or a few crop
species, and by favoring annual over perennial species.

Although this trend has led to the more than doubling
of global food production since the 1950s2, maintaining
these productivity levels over time demands large
amounts of external inputs such as fertilizers, pesticides,
irrigation and fossil fuels3. Concomitantly, many of the
ES provided by diverse, native plant communities—
including regulating (e.g., water supply and quality,
climate and pest control), supporting (nutrient cycling,
soil formation and pollination), and cultural (spiritual,
recreation, education, medicine, etc.) services—are being
lost or severely diminished4. As the global society
increasingly confronts the consequences of these losses—
acutely evidenced by expanding hypoxic zones, declining

† Co-authors are listed alphabetically after the third co-author to reflect
their equal contributions to the manuscript.
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water quality, increased incidence of severe flooding
and drought, and impoverished biodiversity—there is a
growing urgency for developing multifunctional agricul-
tural landscapes that provide diverse ES in addition to
provisioning services such as food, fiber, fuel and fodder
production5–7.
One promising approach to expanding ES provided by

agricultural landscapes is through ‘perennialization’,
defined here as the strategic incorporation of diverse
perennial plants as integral and purposeful components of
agroecosystems to enhance ES benefits. This approach is
based on the premise that the positive impacts of perennial
plants can be magnified when perennials are targeted to
landscape positions that yield disproportionately high ES
benefits relative to the land area they occupy. Diverse
perennial plant communities have been shown to enhance
hydrologic regulation8, water quality9, carbon sequestra-
tion and storage10, beneficial organisms for pest control
and pollination11, soil quality12 and biological function-
ing13 relative to simplified cropping systems. Perennial
plants can also provide a range of provisioning services to
society, including food, fiber, fuel and feed, which can
contribute to diversifying production and reducing risk.
The societal benefits of perennialization also include
cultural and social amenities, as more diverse landscapes
can positively impact aesthetic, recreational, tourism and
health values within local communities14.
Perennialization can also provide a tool for both

mitigating and adapting to climate change. Climate
change poses a major threat not only to agricultural
productivity but also to the capacity of agricultural
systems to provide diverse ES15,16. In recent decades, an
emphasis of agronomic research has been the develop-
ment of technologies for maintaining crop yields under
future climates, for example, by increasing external
inputs, crop breeding or genetic engineering17–19.
However, these approaches often do not consider the
importance of concomitantly sustaining the diverse ES of
agricultural landscapes20. Increasing the amount of
perennial cover in agricultural landscapes generally
augments biodiversity, and more diverse ecological
communities tend to have greater resilience (the ability
to recover rapidly from stress), and stability (the ability
to resist change or withstand stress without loss of
function), relative to simplified plant communities21.
Perennialization, by increasing biodiversity of both plants
and biological organisms, provides one mechanism for
enhancing agroecosystem resilience and stability of
cropping systems and their associated ES under climate
change22–24. With the frequency of extreme events such as
drought, flooding, pest infestation and disease predicted
to increase under future climates25, enhanced resilience
and stability will be critical for maintaining the long-term
sustainability of food production systems22,26,27.
Although multifunctionality of agricultural land-

scapes is not a new concept5–7, studies documenting
ES consequences when some portions of agricultural

landscapes are not utilized to produce food, fiber or fuel,
but instead are maintained under perennial vegetation to
produce other, less quantifiable or marketable products,
are only beginning to emerge28,29. In particular, more
information is needed about how different types,
amounts and locations of perennial cover influence the
cost–benefit tradeoffs of different ES30–33, as well as the
policy structures required to facilitate changes in land
management practices and market mechanisms31,34.
Moreover, because areas with perennial vegetation tend
to support plant communities having greater species
diversity relative to areas managed purely for agricultural
crops, teasing apart the relative contributions of perenni-
ality versus biodiversity to the provisioning of different
ecosystems services is another challenge in perennializa-
tion research requiring greater attention.
In this paper, we argue that redesigning agroecosystems

based on perennialization principles can dramatically
improve the capacity of agricultural landscapes to provide
valuable ES to society, while simultaneously producing
sufficient amounts of food, fiber, fuel and bioenergy
(Fig. 1). In this paper, we discuss how targeted integration
of appropriate mixtures of perennial plants into agricul-
tural landscapes offers a common unifying strategy for
augmenting diverse ES, balancing food production with
conservation, and enhancing agroecosystem resilience
and stability. We focus our discussion on the humid
temperate Corn Belt of the Midwestern US, a major
global food-producing region accounting for approxi-
mately 40% of the world’s total production of corn (Zea
mays)35. The Corn Belt provides an excellent model

Proportion of the 
landscape in perenninals

High

High

Low

B
en

ef
its

Low

Figure 1. Disproportionate benefits hypothesis: perennial
vegetation is expected to produce benefits disproportional to
its extent within landscapes; ecosystem benefits of non targeted
perennial cover (dashed line), ecosystem benefits of targeted
perennial cover (solid line), and socio-economic benefits
(dotted line). Examples of ecological benefits include clean
water, flood control, pollination, pest suppression and outdoor
recreational opportunities. Examples of social benefits include
inspiration, connectedness and civic engagement.
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system for our analysis because it has experienced one of
the most pronounced landscape scale conversions world-
wide, with *70% of the pre-European native grassland
vegetation replaced by monocultural annual crops of
corn and soybean (Glycine max)36. Extensive drainage of
natural wetlands together with intensification and me-
chanization of agricultural practices have accompanied
the conversion process37. These land-use changes have
severely compromised the delivery of fundamental ES to
society, such as clean water38,39, odor- and toxic-free air40,
flood control41 and wildlife habitat42. Despite growing

interest over the past several decades in perennial-based
conservation practices in the region6, a broader valuation
of the multiple ES achievable through strategic targeting
of perennial vegetation is needed (Fig. 2).We complement
our analysis with examples from other regions (e.g.,
China, Africa and Central America) that have experi-
enced similar trends of agricultural intensification and
simplification, and where significant opportunities also
exist for better balancing food production and ES through
perennialization. Although a detailed global comparative
analysis is beyond the scope of this paper, by highlighting
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Figure 2. A virtual agricultural landscape with perennial vegetation that is strategically integrated in varying proportions (left) to
enhance the delivery of ES, as illustrated in the ‘flower’ diagrams (right); the proportion of perennial vegetation in each landscape
is as follows: (a) 4%, (b) 16% and (c) 64%.
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documented examples where perennialization has con-
tributed on enhancing ES provisioning around the world,
we aim to show the broad application of perennialization
principles, stimulate cross-country exchange of experi-
ences, and advance new ideas and thinking about future
directions of perennialization research.
Given the wide range of potential ES provided by

perennialization of agricultural landscapes, we focus our
discussion on five ES considered particularly important
for sustaining biophysical and human systems: hydrologic
regulation and water purification, climate regulation and
climate change mitigation, biotic regulation, soil quality
and nutrient cycling, and provisioning services. For each
ES, we synthesize the current state of knowledge, identify
important gaps and research priorities, and consider
how mixed perennial–annual agricultural systems in
the Midwestern USA compare with other regions in the
world.

Hydrologic Regulation and
Water Purification

Declining hydrologic services related to water supply and
quality represent a major threat to the well-being of
human populations in many regions of the world43, and
have been directly linked to the expansion of intensively
managed annual crops at the expense of diverse perennial
vegetation44. In the Midwestern US, landscape-scale
conversion from perennial to annual crops has resulted
in significantly increased streamflow and base flow45,
increased sediment46 and nutrient47 delivery to streams,
and the formation of hypoxic zones in the Gulf of
Mexico48.
Perennial plants can restore water purification and

flow regulation services to these agriculturally dominated
landscapes through several mechanisms. In humid tem-
perate climates such as the Midwestern US, where excess
water is often a problem, especially in the early growing
season before annual crops have become established, the
deeper roots and longer growing season typical of
perennial vegetation results in greater total water uptake
and evapotranspiration compared with annual crops49,50.
Additionally, perennial vegetation can improve soil
structure and hydraulic properties by increasing the
number and size of macropores51–53, building organic
matter53,54 and improving soil porosity55,56. Combined,
these changes in plant water fluxes and soil properties
contribute to greater soil water storage capacity57, higher
infiltration rates58 and reduced runoff59. Perennial
grasses60,61, trees62 and tree–grass mixtures63 have also
been shown to more effectively trap and retain sediment
compared with annual crops.
Critical to developing effective perennialization

strategies is a sound understanding of how much of the
landscape needs to be converted to perennial cover, where
such conversions are best located and which species

mixtures are most effective. Studies based on both
modeling64,65 and empirical measurements66,67 suggest a
nonlinear relationship between the amount of perennial
cover and different hydrologic services, resulting in
diminishing returns beyond a certain amount. Such
nonlinear relationships have been demonstrated for
sediment trapping efficiency61,63,68,69, retention of nitro-
gen (N), phosphorus (P)68,70,71 and pesticides72, and
runoff reduction55,56. Combined, these findings under-
score the notion that relatively small amounts of perennial
cover may produce significant ES benefits, while mini-
mizing negative impacts on crop production (Fig. 1).
The location of perennial vegetation in the landscape is

critical in determining the lateral and vertical movement
of water through watersheds. For example, Sahu and
Gu65 used a modeling approach to show that strips
occupying 10–20% of the catchment area were more
efficient in reducing NO3–N when placed along the
contour than along the riparian zone. Jiang et al.73

found that perennial plants located on the backslope
position showed greater improvement in hydraulic
properties compared with summit and footslope pos-
itions, suggesting that targeting perennial plantings to
slope positions that are most vulnerable to degradation
may provide the greatest benefit–cost returns. Another
important consideration is that hydrologic flows generally
are not distributed uniformly along buffer strip edges64,74,
and soil water content may also vary with topographic
position75. Thus, strategically locating perennial veg-
etation to maximize flow interception can optimize
hydrologic regulation and water purification benefits76.
Nonetheless, placement of buffer strips on the landscape
under current practices is often dictated by economic
factors77, and more work is needed to incorporate
approaches for identifying landscape positions for max-
imizing ES gains into policy and management decisions.
Few studies have assessed the interactive effects of both

amount and location of perennial cover on the hydrologic
functioning at the watershed scale. One study in central
Iowa assessed the effects of varying amounts (10% or 20%
of total watershed area) and locations (20% all at the
bottom or 20% distributed in contour strips) of native
perennial prairie vegetation on sediment and nutrient loss
from experimental watersheds78. During an extreme
rainfall year (2010), watersheds having 100% annual
crops had up to 35-fold greater sediment loss (6412kg
ha−1) compared with watersheds having perennial strips
(180–314kgha−1)61. In a relatively dry year (2009), the
differences among treatments were also substantial: 4114
kgha−1 sediment lost fromwatersheds having 100% crops
compared with 129–173kgha−1 from watersheds with
perennial strips. Similar results were observed for N:
during a wet year (2008) 100% cropped watersheds had
8-fold greater N export (83kgha−1) relative to watersheds
with perennial strips (8.1–12.3kgha−1); the differencewas
6-fold during a dry year (2009). Patterns observed for P
losses were even more pronounced, with 100% cropped
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watersheds having 11-fold and 16-fold greater P export in
2008 and 2009, respectively, compared with watersheds
containing perennial strips. Annual total runoff was 1.6
times greater for watersheds with 100% crops compared
with watersheds with the perennial strips55,56. Across all
measured variables and years, watersheds with 10%
perennial cover at the bottom unexpectedly performed
slightly better than watersheds with 20% perennial cover
distributed as contour strips, and the reason for this is
believed to be due to a larger area in perennial cover at the
footslope position for the watersheds with 10% perennial
cover at the bottom. The 10% perennial cover at the
bottom treatment had the greatest perennial cover at the
footslope position rather than intermixed within the
watershed so likely provided the greatest protection in
reducing sediment and nutrient loss. However, over time
the contour strips distributed within the watershed may
provide a naturally terracing effect, which could improve
the performance of this treatment. Overall, the findings
from this study highlight the potential short-term (2–4yr)
benefits provided by strategically integrating small
amounts (as little as 10% of the entire watershed) of
perennial strips within annual cropping systems. More
long-term monitoring is needed to understand the long-
term functioning of these strips once they become well
established.
Although we are unaware of other watershed scale field

studies addressing interactions between both amount and
location of perennial cover, several other approaches have
been used to identify landscape locations for targeting
perennial cover to maximize benefits. Geza et al.78 used
the Soil and Water Assessment Tool (SWAT) to evaluate
environmental and economic trade-offs between placing
grass filter strips along field drains or targeting their
placement to environmentally sensitive areas. While the
authors found that placement of the filter strips along field
drains was more cost effective, they concluded that the
targeted approach would be more environmentally
beneficial due to the greater potential for enhancing soil
conservation. Terrain analysis has been used to identify
sites with large wetness indices74, and soil survey and
topographic and streamflow data have been combined to
develop a system for prioritizing locations for maximizing
sediment trapping and surface runoff and/or shallow
groundwater flow interception76. Geographic information
systems and multiple criteria ranking procedures
have been used to identify the intersection of hydro-
logically sensitive and pollutant source areas to develop
decision-making processes for effective buffer place-
ment79. While these studies have generated similar
conclusions—that targeting perennial cover to key areas
in agricultural landscapes maximizes environmental
benefits—supporting empirical data are lacking for a
range of climatic and edaphic conditions.
The selection of particular species or functional groups

(e.g., trees versus grasses) can also affect the hydrologic
functioning of perennial vegetation, but information is

relatively scarce. Studies comparing the hydrologic
functions of different species of herbaceous perennials
suggest that species may vary substantially in their ability
to reduce overland flow80 and herbicide leaching81,82, and
to increase sediment trapping efficiency60,83,84 and water
uptake85. The effectiveness of grass buffers versus mixed
grass–tree buffers appears to vary, with some studies
suggesting a similar capacity to remove N and P9,86, while
others report greater N and P removal51,63 and greater
infiltration rates57,87 under mixed tree–grass riparian
buffers compared with grass-only buffers. A paired
watershed study found that after 9 years, grass buffer
strips significantly decreased runoff by 8.4%, yet there was
no significant effect of agroforestry buffer strips, relative
to the control88. One reason for these contrasting results
may be due to the different ages of the tree-based buffers
as trees require more time to fully establish before they
exhibit positive effects on hydrologic functions89. Further,
research is lacking on the potential competitive inter-
actions between trees and adjacent crops in temperate
agroforestry systems, as water, nutrient and light
resources available for crop growth may become more
limiting90. Overall, improved understanding is needed of
how differences in functional type and species compo-
sition of perennial vegetation affect hydrologic perform-
ance to better select the most suitable mixtures for
achieving specific perennialization objectives.
In other climatic regions worldwide, the presence of

perennial vegetation in agricultural landscapes can
enhance hydrologic services, but impacts vary widely
depending on site-specific agroecosystem–climate inter-
actions. For example, in the humid tropics, many
traditional agroecosystems comprise combinations of
different perennial and annual plants with high structural
and compositional complexity, and are often designed to
both meet local subsistence needs while simultaneously
producing a few specialty high-value market crops91. Two
classical market-oriented production systems, shade
coffee and cacao plantations, which target the production
of perennial crops while maintaining relatively high native
species diversity, have been shown to maintain similar
hydrologic services compared with the native forests92–94.
Hanson et al.93 showed that following conversion of
primary forests to grassland, soils had lower saturated
hydraulic conductivity and more frequent overland flow
compared with soils under traditional shade-grown coffee
plantations, while the latter maintained high infiltration
capacities and readily conducted water vertically, similar
to conditions under primary forest. However, as a result of
increasing market pressures and land-use intensification,
many shade-grown agroforestry systems are being con-
verted to less diverse and more structurally homogeneous
sun-grown plantations95,96 or, in some cases, to annual or
short duration crops such as sugarcane97,98 or oil palm99.
These transitions from diverse perennial to simplified
monocultural systems are often accompanied by negative
consequences for hydrologic services100. Notably, this
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example underscores the interlinked nature of biodiversity
and perenniality: shade-grown coffee systems are typically
managed for multiple products in addition to coffee,
many for local consumption (e.g., fruits, herbs and
medicinals), whereas a transition to sun-coffee generally
involves more intensive management of a single product
—coffee. Although difficult to disentangle, especially
given the lack of controlled studies, it is likely that many
of the ES that are enhanced by perennial systems are
inextricably linked with the concomitant increase in
biodiversity.
In contrast to humid climatic regions, in arid environ-

ments the extraction of too much water by perennials can
be problematic for water supply, as water use by forests
and shrublands is almost always greater than by croplands
or grasslands101 and planting trees typically reduces
annual water yield102. In China, where large-scale
revegetation initiatives in arid regions have resulted in
the planting of millions of hectares of trees103, a recent
study found that the total water loss due to transpiration
from a poplar plantation was 100% greater than that of
adjacent shrubland104. Controversy over tree planting and
water supply is especially acute concerning exotic species,
with much of the debate focusing on fast-growing
eucalyptus and pine species105. Crucial to determining
the overall cost–benefit relationship of planting trees in
drylands will be quantifying the net trade-offs between
increased transpiration, on the one hand, and improved
infiltration and water storage capacity and reduced
runoff on the other106. Notably, trees in semi-arid regions
may provide many ES that outweigh their increased
water use, including fuelwood, timber poles, nutritional
products and windbreaks107, improving soil properties
such as porosity108, infiltration109,110, water storage
capacity111, and nutrient cycling and soil fertility112.
Trees may also increase water content in drylands by
ameliorating microclimate and reducing soil evapor-
ation113,114, or by hydraulic lift or redistribution115–117.
In semi-arid areas of Africa, the positive effects of trees

in cropping systems are exemplified by farmers’ use of
Faidherbia (Acacia) albida, a leguminous tree with a
reverse phenological pattern relative to most other trees
(e.g., leaves drop in the wet season and flush in the dry
season), which may reduce competition for resources with
crops during the growing season. Crop yields in grain
fields with interplanted F. albida trees have increased by
over 200%, even without additional fertilizer inputs, while
these mixed tree–food crop systems also provide multiple
benefits such as fuelwood, fodder and enhanced
food security during severe drought118,119. Similarly, in
dry temperate climate regions in China, widespread
incorporation of perennial plants into annual row
crops is occurring120,121, even though most of these
lands do not have irrigation. These perennial plantings
are being used to reduce sediment and pollutant export122,
stabilize dunes120, conserve soil water and nutrients123,
enhance N-fixation124 and supplement local economic

incomes104,125. Another positive effect of planting deep-
rooted perennials in some drylands, such as southern
Australia and the African Sahel, is to alleviate problems of
salinization of soils and groundwater by lowering water
tables43,126. Studies have also demonstrated the influence
of different types127,128 and species129,130 of perennial
vegetation on enhancing hydrologic functions and redu-
cing sediment and nutrient losses in these regions;
however, relatively little work has specifically examined
the importance of landscape position.
The impacts of incorporating perennial vegetation

within cropping systems on hydrologic services are clearly
being documented across different regions and agroeco-
systems, and these studies are highlighting the importance
of considering both the local climate–vegetation inter-
actions and management objectives when selecting
suitable perennialzation approaches. Opportunities for
significant hydrologic benefits through perennialization
may be particularly strong in humid regions where
enhanced hydrologic regulation is a priority, while
significant ES gains are also being achieved in dryland
regions through strategic placement of small amounts of
perennial vegetation. More work is required to better
understand how varying the spatial location, type and
amount of perennial vegetation can differentially influ-
ence hydrologic outcomes, especially at the watershed
scale, in order to maximize benefits under diverse climatic
conditions.

Climate Regulation and Climate Change
Mitigation and Adaptation

Although agroecosystems can provide important climate
regulation services through carbon (C) sequestration and
storage, they can also increase greenhouse gas emissions
as a consequence of biomass burning or accelerated
decomposition during forest conversion processes, as well
as from chemical and energy inputs131,132. Whether an
agroecosystem is a net carbon sink or source is directly
influenced by management practices and their interaction
with local biophysical and climatic conditions133. As
diverse perennial plant communities typically store more
carbon than annual or short-rotation cropping sys-
tems10,134, perennialization provides an opportunity for
mitigating climate change while sustaining agricultural
productivity, especially when targeting those species
combinations and landscape positions that maximize
potential carbon sequestration benefits.
In the Midwestern US, the native tallgrass prairie

ecosystem historically stored large amounts of carbon
belowground relative to the annual cropping systems they
replaced. Conversion of prairie to agriculture resulted in
an estimated loss of 24–89% of the original soil organic
C and total N135–138. Estimated annual accumulation
rates of soil organic C following reestablishment of
perennial grasslands on former agricultural lands vary
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greatly, from 19.7 to 78gCm−2yr−1 in the upper 10cm
soil horizon136,139–142, with average reported rates around
30gCm−2yr−2 143,144. However, rebuilding soil organic
pools to pre-agriculture levels will require time. For the
Great Plains region, McLauchlan142 estimated that
reestablishment of perennial grasslands on former agri-
cultural lands could rebuild soil organic C pools to levels
equivalent to unplowed native prairie within 55–75years,
while Matamala et al.145 estimated that within a century
restored tallgrass prairie vegetation in Illinois would
reach 50% of its soil C storage potential. Differences in
C accrual rates across sites and soil depths due to variation
in root distribution, rhizosphere activity146,147 and vertical
retranslocation of soil C47,146 may account for some of this
variability.
Notably, C storage benefits are quickly lost when

perennial vegetation reverts to annual crops, leading to
rapid releases of CO2 and other greenhouse gases to the
atmosphere140,148. Gelfand et al.149 examined the green-
house gas consequences of converting land under the
Conservation Reserve Program (CRP) to continuous
corn, corn–soybean or perennial grass for biofuel
production. They found that projected C debt repayment
periods under no-till management ranged from 29 to
40years for corn–soybean and continuous corn, respect-
ively, whereas the use of existing CRP grasslands for
cellulosic feedstock production would avoid C debt
entirely and provide modest climate change mitigation
immediately.
Landscape position can also influence the rate of

C sequestration and storage potential of perennial
vegetation. Some studies suggest that C sequestration
potential may be maximized by placing perennial cover in
topographical positions with higher moisture availability,
such as footslopes and riparian areas135,150. On the other
hand, because cultivation of sensitive areas such as
shoulder and backslope positions may accelerate erosion
of soil organic matter151,152, targeting topographical
positions that are vulnerable to erosion can promote
C retention in the soil. More work is needed to refine
understanding of the site-specific features that influence
the relationship between topographic position and
C sequestration.
Carbon sequestration potential in soils and plant

biomass may also vary depending on both species
identity153 and functional composition154 of the veg-
etation. In general, trees and shrubs sequester and store
greater amounts of C compared with herbaceous
plants due to their larger total above- and below-ground
biomass155. In the Midwestern US, riparian buffer
systems consisting of mixtures of native herbaceous and
woody species sequestered significantly greater amounts
of C relative to crop fields or cool-season grass buffers54.
Nevertheless, grassland vegetation can be highly effective
at accumulating C by depositing large amounts of organic
matter deeper in the soil horizon where it is protected from
decomposition145,156. Conversely, woody plants typically

deposit a large fraction of total organic matter inputs on
the ground surface, where decomposition occurs more
rapidly143. Knowledge of how different species and
functional groups affect rates of C sequestration, patterns
of partitioning of C between above- and belowground
biomass, and soil organic C accrual and depletion
rates is important to take into account when using
perennial vegetation as part of climate change mitigation
strategies157.
Not only do perennials store additional C relative to

annual or simplified cropping systems, perennial plant
communities may also enhance agroecosystem resilience
and stability to environmental fluctuations, especially
when they include high levels of biodiversity22–24,158. In
the Midwestern USA, conservation agriculture practices
are increasingly promoting the use of diverse mixtures
of native tallgrass prairie species rather than plantings of
a single native or introduced species typically used in the
past (e.g., Bromus inermis, brome; Bouteloua cuttipendula,
side oats; and Panicum virgatum, switchgrass).
Research suggests that grass and forb species typical to

the native tallgrass prairie possess a variety of ecophysio-
logical traits and adaptive strategies that enhance
resilience and resistance to climatic extremes, such as
high water use efficiency159–161, the capacity to senesce
and resprout162,163, deep roots164,165 and high ecological
plasticity166,167. In addition, greater vertical and horizon-
tal heterogeneity in more diverse plant communities
allows for niche partitioning and complementary use of
resources168, which on the landscape scale can help buffer
ecosystems against extreme climate fluctuations169. In
contrast, annual crops in temperate humid climates are
particularly vulnerable to extreme weather conditions,
due to a combination of shallow rooting, a relatively short
(3–4months) growth period, high water demand, and high
sensitivity to drought and heat stress170–174. Perennial
plant communities with high species diversity may also
have a greater probability of containing species with traits
adapted to environmental changes, thus conferring great-
er ‘insurance’ relative to plant communities with low
species diversity or monocultures175,176. Some experimen-
tal support for enhanced resilience in diverse perennial
plant communities in the context of climate change is
emerging177–180, especially in terms of greater temporal
stability24. Nonetheless, the relationship between bio-
diversity and the sustainability of ES is complex27,181, and
more work is needed to better design integrated annual–
perennial landscapes capable of adapting to future climate
change while sustaining diverse ES.
In the humid tropics, conversion of forests and

traditional agroforestry systems to more intensive agri-
cultural systems has contributed substantially to global
greenhouse gas emissions and changes in C stocks182,183.
In Central America and Mexico, agroforestry systems
that maintain a significant tree component, such as shade
coffee and cacao plantations, home gardens and tree
farms, are particularly effective at sequestering and
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storing C, while providing diverse agricultural pro-
ducts184,185. Kirby and Potvin186 found that while native
forests in Panama managed with selective logging stored
more than twice as much C than forests managed under
traditional agroforestry practices, agroforests stored three
times more C than pasture. Expanding agroforests into
pasture could provide additional biodiversity and liveli-
hood benefits that the most common reforestation system
in the region—monoculture teak plantations—does not
provide. A meta-analysis examining the potential for soil
organic C accumulation through afforestation found that
planting trees on croplands resulted in more pronounced
increases in soil organic C stocks relative to pastures or
grasslands, and that broadleaved tree species had a greater
capacity to accumulate soil organic C than coniferous
species187.
In dry climatic regions where plant growth is relatively

slow and total plant biomass is low, the potential for
sequestering and storing C per unit land area is generally
less than inmoist climatic regions. However, the total area
of degraded drylands that could potentially be restored to
perennial vegetation cover is so large that it constitutes a
significant potential C sink188. Studies in dryland regions
of Africa have shown that the amount of soil organic
matter below tree canopies is significantly greater
compared with open areas due to high inputs of leaf
litter and higher root mass189–191. In the case of evergreen
agricultural systems in semi-arid Africa (discussed pre-
viously), incorporating Faidherbia albida trees has been
shown to accumulate between 2–4Mgha−1yr−1 of above-
and below-ground C, which represents a 10-fold increase
over conventional conservation farming systems192–194.
Targeting of woody perennials in dryland regions for
enhanced C storage should focus on the preservation or
introduction of widely dispersed trees within agroecosys-
tems in order to maximize total ES benefits, while
maintaining a favorable balance between carbon–water
trade-offs.
In semi-arid regions of Africa, the traditional agro-

forestry parklands are also used by local farmers to
adapt and reduce vulnerability to climatic fluctuations
and other extreme weather conditions. These parklands
typically comprise several species and genera that
constitute important sources of medicine, fruits, oils,
leaves, nuts and spices that are main components of the
local diet115,195–197, while also providing fuelwood, feed
and an additional income source91. Similarly, shade coffee
agroforestry systems in the humid tropics have been
shown to provide better protection for crop plants
from extremes in microclimate and soil moisture relative
to low-shade (10–30%) systems, thus representing an
important adaptive strategy for farmers to future climatic
extremes198. As woody trees and shrubs are often better
able to survive extremeweather events such as droughts or
floods, they are particularly important for meeting the
nutritional and health needs of local people during times
of food scarcity.

Although the potential for C sequestration in agricul-
tural soils worldwide has been estimated to be relatively
modest, representing approximately 3–6% of fossil fuel
C emissions, practices that enhance C storage within
agricultural landscapes are considered an important
component of climate change mitigation strategies199.
Globally, a meta-analysis by Ogle et al.200 found that soil
organic C was most sensitive to management impacts in
tropical moist regions, followed by tropical dry, temperate
moist and, lastly, temperate dry regions. Further, the
tropics lose nearly two times as much C and produce
less than one-half the annual crop yield compared with
temperate regions201. This situation underscores the
importance of avoiding clearing more tropical forests
for agriculture while balancing agricultural intensification
with targeted opportunities for C sequestration through
perennialization of existing agricultural lands182. Another
promising approach to promoting greater C sequestration
on agricultural lands in both temperate and tropical
regions is the use of perennial plants as biofeedstock for
cellulosic ethanol production (potentially reducing the use
of fossil fuels) combined with application of the charcoal
by-product—the biochar—to agricultural soils to increase
C storage over long time periods, given that biochar is
highly recalcitrant to degradation (see the ‘Provisioning
Services’ section for a more detailed discussion)202,203.

Biotic Regulation

Perennialization can increase landscape complexity and
resource heterogeneity, thereby promoting habitats for
diverse communities of beneficial organisms that help
control pests and pathogens, and provide pollination
services in adjacent crop fields204. Perennials also con-
tribute to food web services by providing habitat for
organisms that are a food source for auxiliary biota in the
productive or semi-natural sub-systems, and for biota that
feed on crop pests205.
As perennial vegetation is generally subject to lower

levels of disturbance and is more stable over time than
are ephemeral annual crop systems (with some excep-
tions, such as severe over-grazing and hay and grass
silage production systems subjected to frequent har-
vests), various forms of perennial cover can provide
critical elements of ‘conservation biological control’
strategies that seek to retain and facilitate populations
of predators and parasitoids that attack arthropod
pests in adjacent cropland206–208. Both within-field and
around-field perennial vegetation can maintain and
increase the impacts of natural enemies of crop pests
through the provision of alternative prey species, pollen
and nectar used as protein and energy sources, and
habitat for over-wintering and reproduction11,209–212.
Within-field diversification with perennial plants can be
set up directly by individual farmers, whereas around-
field diversification with perennials can reflect the
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cumulative impacts of multiple landowners and land
managers on landscape structure.
A number of studies indicate that increasing the

proportion of landscapes occupied by woodlots, hedge-
rows, old-field fallows and pastures can enhance biologi-
cal control of crop pests in fields embedded within those
forms of perennial vegetation213,214. Tscharntke et al.215

reported that parasitism of rape pollen beetles (Meligethes
aeneus F.) was greater in German landscapes in which
non-crop vegetation occupied >20% of total land area
compared with landscapes in which non-crop vegetation
occupied <20% of the land area. In the less diverse
landscapes, parasitism of rape pollen beetles was greater
at the edges of fields than in the centers; in contrast, in the
more vegetatively diverse landscapes, parasitism rates did
not differ between field edges and centers. Scale issues
were addressed in a study conducted by Gardiner et al.216

at sites within four states in the north central US. Densities
of predatory coccinellid beetles and rates of biological
control of soybean aphid (Aphid glycines) increased as
the proportion of landscapes occupied by forest and
grassland rose, and the proportion occupied by corn and
soybean dropped, with diversity and composition eval-
uated at a scale of 1.5km around focal fields explaining
the greatest proportion of variation in coccinellid densities
and biological control rates. Thus, for certain host-specific
crop pests and their natural enemies, there is likely to be
a need for coordinated management activities in establish-
ing and maintaining perennial vegetation at the landscape
scale.
Similarly, perennial vegetation can provide a higher

abundance and greater diversity of refuges for pollinator
populations that are essential for many fruit and vegetable
crops. In agriculture, especially among pollen-limited
crops, promoting pollination services is an important
means of increasing productivity. In a review of pollina-
tion services for the leading food crops in 200 countries,
Klein et al.217 found that of a total of 107 crops traded on
the world market that are directly consumed by humans
(but excluding crops that are solely passively self-
pollinated, wind-pollinated or parthenocarpic), 40% of
these crops are highly to moderately dependent on animal
pollinators. Significant declines in different pollinator
species have been documented in the Midwestern US,
raising several ecological and economic concerns218–220.
Grixti et al.218 noted that half of the bumblebee species
found historically in Illinois have been locally extirpated
or have suffered declines, supporting observations of
broader declines in North America. Major declines in the
bumblebee fauna coincided with large-scale agricultural
intensification. Bee richness was positively related to plant
richness and abundance of potential nesting resources,
and bee community composition was significantly related
to plant richness, soil characteristics potentially related to
nesting suitability, and canopy cover219. Conservation of
agriculturally important pollinators may be promoted by
applying wildlife-friendly approaches to agriculture, such

as increasing agricultural land set-asides and hedge-
rows220.
In humid temperate regions, perennial cover crops

growing beneath ‘main’ crops have been shown to
contribute to biological control, but they can also reduce
crop yields through competition for water and nutrients,
making their use problematic in many situations221–224.
An alternative form of within-field diversification involves
the use of narrow strips of perennial vegetation that
provide habitat for predators and parasitoids of pests in
closely adjacent cropped areas. This approach has been
studied in wheat fields where perennial grasses function
as ‘beetle banks,’ conserving coleopteran predators that
forage on cereal aphids225,226, and in vineyards where
strips of flowering plants provide nectar and pollen
sources and a corridor from riparian areas for predators
attacking thrips and leafhoppers227. Strips of alfalfa
(Medicago sativa) have been shown to conserve predatory
beetles, bugs, lacewings and spiders, and increase their
densities in adjacent strips of cotton, thereby exerting
greater control of mirid and lepidopteran pests228. Strips
of perennial grasses, legumes and other forbs left
unsprayed with pesticides formed refuges for predatory
ground beetles, permitting rapid recolonization of chemi-
cally disturbed corn229.
Compared with arthropod pests and their natural

enemies, the effects of perennial vegetation on crop
diseases have received much less attention from the
scientific community. In artificially constructed assem-
blages of perennial prairie species, increases in plant
species diversity reduced the severity of diseases caused by
wind- and rain-dispersed pathogens on four target plant
species (Septoria liatridis on Liatris aspera, Uromyces
lespedezae-procumbentis on Lespedeza capitata, Ersiphe
cichoracearum on Monarda fistulosa, and Colletotrichum
spp. on Schizachyrium scoparium)230, suggesting that
diverse mixtures of perennial species interplanted with
crops might offer protection against certain pathogens.
Such protection could occur as the result of non-crop
vegetation acting as a barrier against propagule dispersal,
hosting antagonistic and competitive microbes, altering
microclimate conditions or inducing resistance within
crops231. Perennial grain crops may also be bred for high
levels of disease resistance. Hayes et al.232 noted that
wheatgrass species (Thinopyrum and Agropyron spp.)
conveyed resistance to many diseases when crossed with
wheat to produce perennial hybrids.
Cox et al.233 noted that typical cultural practices for

reducing soil- and residue-borne pathogens, such as
annual crop rotations, delayed planting dates and tillage,
are not feasible in perennial crop systems, and that as a
consequence, pathogens that survive in soil, crop residues,
live shoots and roots may become an increasing threat
to perennial crops and adjacent areas of susceptible
annual crops over time. To impede the build-up of
pathogen populations, Cox et al.233 suggested three
approaches: planting mixtures of perennial crop cultivars
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or species that vary in disease resistance to particular
species and strains of pathogens; using grazing to
remove plant residues; and burning plant residues, a
natural phenomenon in perennial grass systems that
can decrease the incidence and severity of a number of
diseases. These methods remain to be field-tested in
perennial crop and mixed perennial–annual crop associ-
ations, however.
The pest problem is especially important in the humid

tropics, where the high rainfall and low seasonality favor
two key groups of natural plant enemies—insects and
fungi234. Consequently, the potential for losing crops to
disease is far greater than in more temperate climates.
Conserving both the associated fauna within tropical
agroforests and surrounding forest fragments with high
quality agricultural matrices is critical to maintaining pest
regulation services235. For example, levels of ant bio-
diversity exhibit sharp declines with the intensification of
coffee and cacao production systems compared with
traditional agroforestry systems236. High diversity and
abundance of ants provide important ES in coffee
agroecosystems since ants are an important predator
group235,237. Another predator studied in the coffee
agroforest, birds, helps control coffee berry borers and
thus increases coffee yield and farm income, a potentially
important conservation incentive for producers238,239.
Landscape heterogeneity may allow mobile predators to
provide pest control broadly, despite localized variation in
farming intensities. Similarly, forest remnants provide
nearby coffee plantations with a diversity of bees and
other pollinators that can increase both the amount and
stability of pollination services by reducing dependence on
a single introduced pollinator240–242, and improve both
quantity and quality of coffee yields by reducing the
frequency of misshapen seeds242.
Recent studies in the dry tropical zone have documen-

ted the importance of hedgerows (often planted for soil
conservation purposes along sloping land) for enhancing
biological pest control by serving as refugia for predators.
Girma et al.243 found that corn associated with hedgerows
comprised of nine different species experienced signifi-
cantly lower stalk borer (Busseola fusca and Chilo spp.)
and aphid (Rhophalosiphummaidis) infestations than pure
stands of corn. The study also found, however, that
hedgerow effects on pest infestations of crops cannot be
generalized but depend on the specific arthropods and
their refugia preferences243.
Trees have been shown to affect pest infestations in dry

tropical agroecosystems by acting as barriers to move-
ment of insects, masking the odors emitted by other
components of the system, and sheltering herbivores and
natural enemies244. In sub-Saharan Africa, where the corn
stalk borer, Busseola fusca (Full) (Noctuidae), and the
sorghum stem borer, Chilo partellus Swinh (Pyralidae),
pose major threats to food production, Khan et al.245,246

reported positive effects of trap crop plants (Napier
grass, Pennisetum purpureum, and Sudan grass, Sorghum

sudanensis) and intercrop plants (molasses grass, Melinis
minutiflora, and Desmodium spp.) for controlling stem
borer outbreaks through release of attractant and
repellent semiochemicals.
Currently, it is difficult to view perennial vegetation as a

panacea for crop pest and disease problems, though
promising opportunities for improved management strat-
egies clearly exist. The generally positive influence of
perennial vegetation on biological control is not necess-
arily consistent from year to year247. Moreover, in some
cases perennial vegetation can exacerbate pest problems
by serving as an alternate host to crop pests, as is the case
for soybean aphid, which resides on buckthorn (Rhamnus
spp.) growing in hedgerows and woodlands adjacent to
soybean fields in the Midwestern USA248. Much more
needs to be learned concerning sources of spatial and
temporal variability in the effects of perennial vegetation
on natural enemies of crop pests and crop disease
dynamics, and a much more detailed understanding
needs to be developed concerning how individual
perennial species affect natural enemies of arthropod
pests, crop pathogens and crop yields.

Soil Quality and Nutrient Cycling

Soil quality is the capacity of a soil to sustain biological
productivity, maintain environmental quality, and pro-
mote plant and animal health249,250. Consequently, soil
quality is a required supporting service for agroecosystems
and human societies. Over the past several decades, soil
scientists have assembled sets of physical, chemical and
biological indicators of soil quality249. Physical indicators
include rates of water flow into and through soil; soil
structural characteristics, such as porosity, bulk density
and aggregate size distribution; and measures of stability,
such as aggregate stability in water and erosion rate.
Chemical indicators include quantities and qualities of
soil organic C and N, nutrient availability to plants and
soil reaction (pH). Biological indicators include the mass
of organisms in soil and measures of their physiological
activity, including rates of respiration and enzymatic
reactions.
Regular additions of organic matter, especially root

materials, play a critical role in the maintenance of soil
quality251,252. In general, in humid, temperate environ-
ments, woody and herbaceous perennial plants add more
root material and organic matter to soil than do annual
crops53,54 and consequently they are more effective at
maintaining soil quality. As noted in the previous sections
on hydrologic regulation and climate regulation, rainfall
infiltration, hydraulic conductivity and soil C storage are
greater for soil occupied by trees and herbaceous
perennials than annual row crops.
Adding perennial crops to rotation sequences domi-

nated by annual crops can have beneficial effects on soil
quality and function. Residues of alfalfa, red clover and
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other perennial forage legumes can release enough N to
satisfy much or all of the nitrogen demand of subsequent
cereal crops, such as corn nitrogen253,254. Russell et al.255

compared cropping systems based on annual crops
(continuous corn or a corn–soybean rotation) with
systems that contained alfalfa as well as corn and soybean
and found that systems containing alfalfa had greater
available N, higher rates of potential net N mineraliz-
ation, and more microbial biomass C. Soil total N and
organic C concentrations were also higher in systems
containing alfalfa. Thus, cropping systems that contain
perennial legumes in sequence with annual crops can have
lower requirements for fertilizer and higher rates of soil
C storage256,257.
More efficient N use by perennials can potentially

reduce the environmental impacts associated with nu-
trient losses. Nitrogen losses to drainage water are greater
for corn and soybean than for perennial grasses and
herbaceous legumes such as alfalfa258. Moreover, trees
can have even higher N and P removal efficiency than
perennial grasses54,67. In Iowa, N immobilization rates in
poplar stands and switchgrass sites averaged 37 and
16kgNha−1yr−1, respectively54.
For humid tropical regions, which typically have

soils of low fertility259, it is especially important to
develop land-use systems that promote efficient nutrient
cycling260. Land-use systems based on tree crops (e.g.,
multistrata agroforestry systems) have clear advantages
over annual cropping systems for the maintenance of soil
fertility because they provide permanent soil cover and
root systems260. For example, when shade coffee agrofor-
estry systems are converted to more intensive sun-grown
systems by removing the shade trees, N fertilizers are
usually applied at high rates to maintain productivity.
Research assessing the consequences of these changes for
nitrate leaching and water quality has yielded contrasting
results261–263. Babbar and Zak261 reported lower N
leaching rates from shaded than from unshaded coffee
cultivation in Costa Rica (9 versus 24kgha–1yr–1,
respectively), though plantations differed in the density
and pruning regime of the coffee plants, making the data
difficult to interpret. Harmand et al.263 found that
drainage was slightly reduced in a shaded compared
with an unshaded coffee plantation, but N losses in
surface runoff were low in both cases. In general, shade
coffee systems appear to have greater potential to enhance
other soil fertility properties such as nutrient and organic
inputs from litterfall262,264 and earthworm density265 than
their unshaded counterparts.
In arid agricultural regions of East Africa, retaining

savanna trees as part of annual cropping systems can
enhance soil fertility266 and, in turn, understory crop
production267,268. Perennialization can also help mitigate
or even reverse processes of soil loss and desertification,
common in many drylands, by reducing the movement
of sand, retaining soil organic matter and promoting
establishment of new vegetation. For example, in the

Loess Plateau region of China, Qiao et al.120 demon-
strated that mixed tree plantations interspersed within
cropland can, over time, help stabilize and facilitate the
restoration of native vegetation. Yuan et al.269 studied the
effects of mixing wheat with three perennials (Stipa
bungeana, Lespedeza davurica and Artemesia capillaries)
in the same region, and found that the perennials
significantly increased the total crop production,
especially root growth.
Overall, the influence of perennials on soil fertility is

synergistically coupled with their impact on hydrologic
and C sequestration services, and thus, multiple ES can
be obtained through perennialization processes in crop-
land. However, as with hydrological and C sequestration
services, more work is needed to improve understanding
of how different species mixtures, amounts and landscape
positions influence soil quality properties, in both
temperate and humid agroecosystems.

Provisioning Services

Food, fiber and fuel production to meet subsistence or
market needs is the overwhelmingly dominant goal of
agriculture. Crops in individual fields are dependent
on services provided by nearby ecosystems, whether
native or managed, and nearby ecosystems are often
influenced by their agricultural neighbors7. As discussed
above, perennialization can contribute toward maximiz-
ing ES benefits from agricultural landscapes. Below, we
review opportunities for accomplishing this goal, with an
emphasis on the additional provisioning services that
perennial plants also provide.

Forage crops

Following the large-scale introduction in the 1940s and
1950s of relatively inexpensive synthetic fertilizers, farm-
ing systems in humid temperate regions have become
increasingly specialized, with fewer crops grown within
rotation sequences and fewer livestock enterprises inte-
grated with crop enterprises270,271. As a consequence, in
regions such as the US Corn Belt, annual grain crops
such as corn and soybean have greatly displaced perennial
forages, and cattle are often produced in large feedlots,
from which manure application to a sufficiently large land
base can be problematic. Nonetheless, recent increases in
fertilizer and feed costs have led to renewed interest in
integrated crop–livestock systems that include perennial
species used for pasture and hay, and which exploit the
recycling of C and nutrients via manure application to
croplands272. Expanding crop sequences based only on
annual species to include perennial forages, and returning
manure to croplands, can have numerous benefits. As
summarized by Russelle et al.273, these include reduced
nitrate leaching to groundwater, reduced rates of erosion
by wind and water, increased soil C content and soil water
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holding capacity, greater biological N fixation and
improved nutrient supply, reduced incidence of pests,
enhanced grain yield potential, lower fossil energy
demands, reduced production costs and improved profit-
ability. Despite these advantages, major disincentives to
crop–livestock integration can exist within government
farm policies. In the US, for example, disincentives have
included subsidies for annual crops, but not perennial
forages, and a lack of accounting for costs of the
environmental impacts of farming systems. In contrast,
Sulc and Tracy271 noted, ‘. . . there is significant research
investment in and adoption of integrated crop–livestock
systems in countries where government price supports
for agriculture are limited or nonexistent (e.g., Brazil,
New Zealand).’

Grain crops

Although all of the world’s current staple grains are
annual species, concerns over soil erosion, agrichemical
pollution, maintenance of soil organic C stocks and
energy costs of tillage have propelled interest among some
plant breeders in the development of perennial grain
crops149,274. Cox et al.274 reviewed parental germplasm
and methodologies for breeding at least 20 species of
perennial grains. Possible approaches to developing
perennial grain crops include using related perennial
species to add genes into annual crops such as wheat,
and domesticating existing perennial species, such as
intermediate wheatgrass (Thinopyrum intermedium),
Maximilian sunflower (Helianthus maximiliani) and
Illinois bundleflower (Desmanthus illinoensis), through
selection for higher seed production and desirable
agronomic and quality factors. Important biological and
technical challenges exist for both approaches, but these
might be surmountable in much less time than the
millennia that were required to domesticate wheat,
maize, rice and other grains71.
Perennial grain crops may have a lower yield potential

than annuals due to trade-offs between seed productivity
and longevity: resources that might be allocated to seeds
may instead have to be allocated to non harvested
perennating structures to maintain survival from year to
year275. Cox et al.275 argued, however, that perennial
grain crops do have the potential to produce high and
acceptable seed yields because (1) compared with annual
crops, perennials tend to have longer growing seasons,
greater canopy cover duration, and deeper rooting
depths, allowing them to intercept, retain and utilize
more precipitation, nutrients and light; and (2) perennials
generally produce more above-ground biomass than do
annuals and a greater proportion of that biomass might
be reallocated to grain production through breeding.
DeHaan et al.276 and Van Tassel et al.277 noted that low
yields from perennial grain crops to date reflect a lack of
attention from plant breeders and they predicted that
artificial selection in a properly managed agricultural

environment could increase seed yield while maintaining
perenniality. In one of the few studies reporting the seed
yields of perennial grain crops subjected to artificial
selection, Scheinost et al.278 observed that promising lines
of perennial wheat produced 1.7–5.8Mgha−1, as com-
pared with 9.0Mgha−1 from an annual wheat cultivar
commonly grown in the area. Murphy et al.279 reported
that amphiploid breeding lines derived from crosses
between annual wheat and the perennial wheatgrass
species Thinopyrum elongatum produced mean grain
yields of 0.6–2.2Mgha−1, depending on location, which
were about 44% of the seed yield of annual wheat grown
at the locations. It remains to be learned how much
improvement in perennial grain yields can be realized
through breeding. Adjustments in soil fertility may be
necessary to increase the seed yields of perennial
grain species. Loeppky et al.280 reported that in north-
eastern Saskatchewan, seed yields of crested wheatgrass
(Agropyron cristatum) and intermediate wheatgrass
(A. intermedium) could be increased with the application
of N and P fertilizers on soils with low levels of available
nutrients. Additional research is needed to better assess
the economics of perennial grain production systems,
since reduced revenues due to lower yields might be offset
by reduced input costs for seeds and land preparation.

Biofuel crops

Growing concerns over the instability of petrochemical
prices, heavy dependence on foreign sources of petro-
chemicals and the environmental impacts of fossil fuel
combustion (including greenhouse gas emissions) have led
to rapid growth during the past decade in the use of plant
materials to produce liquid transportation fuels. In the
humid temperate zone, major emphasis has been placed
on the use of corn grain to produce ethanol, and soybean
and rapeseed to produce biodiesel. The resulting rise in
prices of these crops has been viewed favorably by many
crop farmers, but has also given rise to pointed critiques
on a number of grounds. Partly, but not entirely, because
of increased demand from the bioenergy sector for
commodity crops, livestock feed costs and food prices
for consumers jumped upward in 2006–2007 and may in
the future impose financial and nutritional burdens on
low-income people in both developed and developing
countries281. Increased crop prices may also spur conver-
sion of land currently in perennial vegetation to arable
cropland, with attendant increases in N emissions to
water supplies279 and greenhouse gas emissions to the
atmosphere149,282,283.
Increasing attention to the development of thermo-

chemical and biochemical technologies for converting
lignocellulosic materials into liquid fuels and other
industrial chemicals adds new twists to the biofuels
story. Unlike the currently dominant biofuel technologies
that rely on the use of seeds, lignocellulosic conversion
processes utilize plant stems and leaves. Consequently,
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research is being directed to the use of perennial grasses,
such as switchgrass (Panicum virgatum) and miscanthus
(Miscanthus spp. and interspecific hybrids such as
M.×giganteus), and fast-growing tree species, such as
poplar (Populus spp.) and willow (Salix spp.), as dedicated
bioenergy feedstock crops284–289. Precedence for the use of
dedicated perennial crops as biofuel feedstocks has
already been set in Brazil, where sugarcane (Saccharum
officinarum) is used for ethanol production290.
Concerns have been raised over the potential for

perennial bioenergy crops to become invasive pests291,
and protocols should be in place to avert this problem
before introductions of non-native species or newly
developed genotypes proceed. Tilman et al.24 proposed
the use of diverse mixtures of native prairie plants
as bioenergy feedstocks on degraded, low-fertility land,
which minimizes risks of introducing noxious species,
but also limits the quantities of biomass that might be
produced. Further, while removal of large amounts of
annual crop biomass can reduce soil fertility and organic
C stocks292,293, removal of above-ground portions of
perennial plants used as bioenergy feedstocks can still
allow for the maintenance of soil fertility and organic
carbon, since large quantities of nutrients are translocated
below ground before shoot harvest, and the more
extensive root systems of perennials can sequester sizeable
amounts of carbon283,294–296. Residues of biofuel feed-
stocks can be spread after processing on soil as amend-
ments to return nutrients and C297,298.
An important option for the production of perennial

biofuel feedstock crops is to use them as one element
of multifunctional agricultural landscapes299. By placing
well-adapted perennial biofuel crops on small, but
vulnerable portions, of landscapes, soil, water and wildlife
conservation benefits might be gained, while providing
farmers an additional opportunity for producing a
marketable crop6,300. Rotations including perennials and
crops, given an appropriate level of management, could be
a great opportunity to support the production of biomass
and grain while maintaining soil quality over the long
term on high-quality agricultural lands. This is especially
important in regions with low fertility and where nutrients
remain a major constraint, such as in rain-fed farming
systems throughout the tropics. Perennials have also been
proposed as the major bioenergy plants for the dry
temperate zone of China, including short-rotation woody
plants and native Achnatherum spp., Agropyron, and
other species301.

Medicinal products

Another valuable service of perennial plants integrated
within agricultural landscapes in many regions worldwide
is to provide medicinal products. In China, regardless of
Western advances in medical sciences, people rely heavily
on medicines derived from combinations of locally
produced plants and animals; the majority of medicinal

plants are perennials302,303. In Xingjiang Province alone,
for example, 2014 plant species have been used in
medical practices, among which 558 species are culti-
vated125. In the dry tropics of Africa the situation is
similar, with a long and rich history of traditional use of
perennial plants as medicines, and new phytochemical
research has started to link specific plant properties with
targeted effects on human health304,305. In the wet tropics,
there is a long tradition of producing medicinal plants as
integral components of home gardens91.
The above discussion calls attention to the wide range

of opportunities that exist for contributing a diverse array
of food, fiber and fuel products to human societies
through perennial plants. In some cases, these agroeco-
systems may be dominated by perennial plants, such as in
the case of large-scale biofuel production or rotational
cropping or grazing systems, but in many situations, they
will likely involve the targeted placement of relatively
small amounts of perennials in strategic locations as part
of a matrix of annual crops. An important focus of future
research will be to identify which landscape positions—as
well as how much and what type of perennial cover—will
provide the greatest benefit in terms of both agricultural
products and other diverse ES under contrasting climatic
conditions, and to meet different production goals by
local communities.

Conclusions

As the global society faces the challenge of meeting
increased demand for food, fiber and animal feed to
sustain growing populations, while at the same time
adapting to a changing climate, agricultural landscapes
will likely undergo unprecedented transitions in the near
future306. Central questions will involve determining the
relative value and priority to be given to the many ES
provided by agricultural landscapes in addition to food,
fiber and feed, and how to best balance these multiple
benefits, or in other words, how to harmonize agricultural
production and conservation307. In this paper, we used the
Corn Belt region of the Midwestern USA as a
model system for highlighting examples where scientific
research on perennialization of agricultural landscapes
has documented progress toward achieving this goal.
In particular, we showed how a targeted approach
identifies landscape locations and the type and amount
of perennial cover for maximizing benefit–cost trade-offs
for multiple ES important to society, and thereby
providing opportunities for designing multifunctional
agroecosystems. We also emphasized that because per-
enniality and biodiversity are often inextricably and
positively linked, and most studies on perennialization
to date have not considered their independent effects
on enhancing ES, more work in needed to disentangle
the relative importance of these two variables. Finally,
we highlighted differences in both the constraints and
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opportunities for perennializing agricultural landscapes
among different climate regions globally, in addition to
critical gaps in knowledge where more information is
needed. Notably, the evidence to date regarding the
potential contributions of perennialization to balancing
agricultural production and conservation are primarily
based on controlled field studies such as those mentioned
in this review; the effectiveness of perennialization
approaches at the operational scale with farmer partici-
pation remains to be tested in the future.
Although an in-depth discussion of the political and

socio-economic environment needed to promote peren-
nialization is beyond the scope of the present paper, it is
important to acknowledge that effective policy structures
and mechanisms, market opportunities, institutional
frameworks and infrastructural arrangements will be
critical to establish incentives that favor adoption of
perennial-based agricultural practices308,309. One of the
major current constraints to perennialization is that the
most economically profitable decision is frequently to
grow only a few crop types, and not to invest in
conservation of the varieties that are less favored by
existing markets. The problem lies both in the public good
nature of conservation, and the fact that currently
there are no major markets for off-site ES that depend
on on-farm agrobiodiversity310. Notwithstanding, there
are a growing number of initiatives worldwide that seek
to create markets for these services, ranging from those
based strictly on government intervention to others that
are entirely private ventures311,312. In the USA, the
Conservation Reserve Program (CRP) provides monetary
incentives to farmers to put cropland into various forms of
perennial vegetation, with the original intent of reducing
soil erosion. However, this mechanism is vulnerable to
fluctuations in land and crop values, as seen by the rapid
broad-scale conversion of CRP back to crops in recent
years in response to the increasing biofuel economy313. In
the developing world, examples of policies to counter
market drivers favoring conversion of traditional, highly
diverse perennial-based agroecosystems to more sim-
plified systems include mechanisms such as certifi-
cation314,315, payment for ES316–318 and reducing
emissions from deforestation319.
Moreover, it will also be important to quantify the

economic implications of perennialization that include the
less tangible values of the ES and not only the crops. There
are several examples suggesting positive relationships
between increasing agroecosystem biodiversity and in-
come for different ES, including pollinator abun-
dance222,320, pest control219, C sequestration319 and
water quality protection100,321. Gallai et al.320 estimated
that the total economic value of pollination worldwide at
$153 billion, which represents 9.5% of the value of the
world agricultural production used for human food in
2005.With rare exception, these services are neither prized
by markets nor explicitly protected by the law, even
though economic studies propose that properly

constructed markets would support strong conservation
measures2. For public policy decisions to take them into
account, non market valuation techniques are urgently
needed7. Economic and social benefits may also be
conferred by perennial vegetation through enhanced
resilience and stability of agroecosystems, thereby con-
tributing to society’s ability to adapt to and cope with
climate change322–324.
In order for perennialization practices—and the pol-

icies and programs that promote them—to be effective in
the long term, scientifically sound data quantifying the
effects of perennialization on different ES and identifying
specific practices—in terms of what, where and how
much perennial cover—that produce maximum benefit–
cost trade-offs, will be critical. Our review of the literature
suggests that there is substantial scientific evidence
suggesting that increasing the presence of perennial
vegetation in cropping systems generally leads to greater
ES. However, current knowledge about the relationship
between the spatial configuration, amount and type of
perennial vegetation, and the specific ES impacts is
relatively scarce. Further, long-term, replicated studies
at the watershed scale, which are critical to addressing the
impacts of perennialization on hydrologic services and
their relation to other ES, are particularly lacking.
Finally, there is generally more information available
from temperate climate regions compared with tropical
regions. Future work should focus on advancing scientific
understanding to address these gaps in order to provide a
baseline for designing approaches that enable targeting
the placement of appropriate amounts and types of
perennial vegetation in strategic locations on the land-
scape to minimize economic and production costs while
enhancing ES.
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