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ABSTRACT  
 
The number of replications required in a particular experiment depends on the magnitude of difference intended for 
detection and the inherent error variability in the response. This paper describes Bayesian approach for 
determination of the number of replications, based on prior information on heterogeneity in experimental fields in 
terms of coefficient of variation (CV) on lentil seed yield. The distribution of observed CV was found to be a shifted 
log-normal distribution taken as prior information. For such a distribution, the Bayesian value was obtained as a 
function of an assumed ratio of variances of prior distributions of the means. The number of replications, under the 
Bayesian methods, declined with the ratio. Further, the replication increased with the observed level of 
heterogeneity. For CV less than 16%, the frequentist value for number of replications were less than those under the 
Bayesian, while above that level the trend was reversed.   
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INTRODUCTION 

 
In experimental studies, replication is one of the three cornerstones of statistical inference as per Fisher’s 3Rs [9]. A 
valid estimate of experimental error variance can be obtained only when there are replications and the precision of 
an experiment can always be increased by additional replications. Several authors, including Goldstein (1981); 
Pham-Gia and Turkkan (1992); Joseph et al. (1997); Sahu and Smith (2006) and M’Lan et al. (2008) have proposed 
Bayesian criteria for sample size determination based on posterior variances [7,13, 10, 17 and 12] have proposed 
Bayesian criteria for sample size determination based on posterior variances.  Gittins and Pezeshk (2000) have 
proposed a criterion for Bayesian sample size for studies where the goal was to maximize an expected utility 
function [6].  Bayesian sample size method for prevalence study using a single non-gold standard dialogistic test has 
been discussed by Adcock (1995); Rahme et al. (2000) among others [2 and 14]. Wang and Gelfand (2002) 
considered Monte Carlo methods for the Bayesian sample size determination (SSD) problem [19].  Antony (2003) 
emphasized that within practical limits; any desired degree of precision ordinarily may be achieved by replication 
[3]. Replication are needed for 1) providing an estimate of experimental error, 2) improving the precision of an 
experiment by reducing standard deviation of the mean (i.e. standard error), 3) increasing the scope of the 
experiment, and 4) controlling an error variance by grouping similar experimental units together into replicates [8]. 
In variety trials, the effect size is the standardized mean difference among treatments (genotypes or cultivars) an 
investigator is interested to discover [15]. Therefore, to determine the number of replications, it is required to give a 
reliable evaluation of the significance of differences associated with differential treatments. Bayesian approach 
provides a procedure for making decision under uncertainty by integrating with prior information on parameters 
such as coefficient of variation. This paper describes Bayesian approach for determination of the number of 
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replications, based on behavior of data sets in terms of coefficient of variation from crop variety trials. Analytical 
approach and R2WinBUGS software have been used for the number of replications (sample size) calculation. 
 

MATERIALS AND METHODS 
 
Replication with power consideration 
In a normal population, the determining sample size is based on  detecting significant difference between the 
population mean (µ ) and a given value (µ0) intended for it with a given Type I error rate (α) and a power (1- β) 
where β is Type-II error rate. Type I error rate is probability of rejecting the value µ0 for the population mean when 
it is the true value, and is based on the test statistic: 
 

� = � − ��
��	


																																																														(1) 

 
Also, Type II error rate = β is probability of not rejecting (i.e. accepting) and µ0 as true mean when an alternative 
value is true. In above statistic, r is the number of replications, and  �	 is population variance [11]. The distribution 
of Z is standard normal distribution. The number of replications, associated with Type I error and power 1- β is 
given by  
 

 
 ≥ ��� �������� + �(���)��
																																																											 

or, 


 ≥ �� �∗ �������� + �(���)��
	 																																																		(2)                        

 
where z$ is the α-quantile of standard normal distribution,  δ is the difference between the true mean and the given 

value, where δ =  µ - μ�. Also  
(
) can be expressed as  

(/+
)/+ = ,-

)∗  , where	δ∗ = )
+	. Similar expressions have been 

presented by [16] in context of design of experiment. We write the percentile from normal distribution (0, 1) as 

. �
√	0

12
�3 e�5�6�dx = α or  z$ = Φ��(α), r is sample size, σ is standard deviation and,	Φ�� is the standard 

normal quantile function.  
 
Dataset  
The data were a set of CVs on seed yield from 226 lentil trials conducted by ICARDA during 1999–2005. Prior 
information on mean and variance of the shifted log- normal distribution of (CV) was used. For Bayesian- 
simulation method on CV for trial ’i’, say cv<, compute a transformed data value	y>< = log(cv< − a). The model used 
wasy><~N(μ<, σG	).  We further assume	μ<~NHμ, σ+	I.   The priors for σGand σ+ were assumed as uniform (0, 100), 
half-normal (0, 0.05) and gamma (0.05, 0.5).  
 
Bayesian approach to determine number of replication 
 
Bayesian approach for determination of number of replication is reflected in setting prior information [1]. We 
present the case where records of prior estimates of mean and CVs values are available and the prior datasets 
allowed examining the distribution of these two parameters. The prior information on parameters might result from a 
series of already observed CVs datasets. The Bayesian inference is obtained in terms of the probability distribution 
of parameters such as  (�		JKL	�	)  for the CV data. The conditional distribution of unknown parameter CV=θ , 
say given the observed CV = y may be expressed as( | )f yθ ∝ ( ) ( / )  g f yθ θ , called the a posteriori or simply a 

posterior density function of θ , which is obtainable from the famous Bayes’ Theorem available in standard texts 

[5]. This a posteriori probability density is used to obtain the expected value of θ  as an estimate ofθ , mean, 
standard error and its confidence interval, called Bayesian confidence interval, or, credible interval. To determine 
the number of replications, CV data is very informative about the quantity being estimated, and then an 
uninformative prior is an easy choice.  Posterior predictive model have assessed by Gelman et al. (1996), which 
reflect their roles in determination of sample size [4].   Based on an experience of fitting distribution to the CVs, let 
CV follow a shifted log-normal distribution, i.e. log (CV-a) follows a normal distribution with a mean and a 
standard deviation [18]. Take �M∗ = log	(�M − J) and  �M∗~N(OM 	, �	) for a series of i=1,2,…,k values of CV, say 
arising from k trials.   Assuming that	OM~N(O	, ��	), the posterior estimation of OM given information of �M can be 
computed as in the following. 
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P(OM|�M∗) =
�M∗�	 +

�∗
��	1

�	 +
1
��	
																																																													(3) 

 

Where �∗ = mean(�M∗) = �
U∑�M∗ 	= �

U∑ log	(�M − J).	 Let ��	 = �	/X,  �	 = Y	, where Y	 is an estimate of  �	  
obtained from fitting the distribution to the observed series of CVs. The above formula can be expressed as  

         

P(OM|�M∗) =
�M∗Y	 +

�∗
Y	 X⁄

1
Y	 +

1
Y	 X⁄

																																																														 
 

or,                  

P(OM|�M∗) = �M∗ +X�∗
1 +X 																																																						(4) 

 
As in above, m, the ratio of variance of the shifted log-normal distribution to variance of its mean parameter may be 
assigned a fixed value. Using equation (2), r can be computed as follows  
 


 ≥ \�]^
	 [���`/	 	+ ����]	 = b	c																																												(5) 

 

where b = �/� the coefficient of variation, ]∗ = (� − ��)/� and c = H���`/	 + ���� 	I	/]∗	. Thus, 	b = �e
f. 

Having observed a value of CV, bM = �M∗ we can use equations (4) and (5) to produce 
 

           P(OM|�M∗) = gh∗ijg∗
�ij = log(�M∗ − a) = log	(�e

f − J)   
or, 


 = c kexp ��M
∗ +X�∗
1 +X � + Jm

	
																																														(6) 

 
RESULTS AND DISCUSSION 

Selection of Priors  
The choice of priors for Bayesian analysis was made on lowest value of deviance information criterion (DIC). The 
DIC values were -85.63, -6519.19 and -347.27 for three priors, respectively. The best prior set based on half normal 
(0, 0.05) was selected. The posterior mean of r for equation (2) based on the half normal prior and m = 1 will be 
called NR from Bayesian simulation approach.  The Bayesian codes can be obtained from the first author. 
 

Table 1: Discrepancy statistics values for selection of the priors for CVs datasets 
 

Priors model D  D̂  Dp
 

DIC 

P1 -85.24 -84.85 -0.39 -85.63 

P2 -84.94 6349.32 -6434.25 -6519.19 

P3 -217.67 -88.07 -129.60 -347.27 

where: 

Priors model 
 

Parameters 

σG σ+ 

P1 Uniform(0, 100) uniform (0,100) 
P2 Half normal (0, 0.05) Half normal  (0, 0.05) 
P3 Gamma(0.5, 0.5) Gamma(0.05, 0.5) 

where D   = posterior mean of (- 2 × log-likelihood). ̂D= - 2 × log-likelihood at posterior means of parameters. Dp = effective number of 

parameters, DIC= Deviance information criterion. 
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Determination of number of replications (nr) using frequentist and Bayesian analytical methods 
From Table 2 give NR using frequentist and Bayesian analytical method. The Bayesian analytical value are 
tabulated for 10 values of m, m = 0, 0.1, 0.2, 0.25, 0.5,1,2, 4, 5, 10 covering a reasonably wide range for likely 
values for �	 and ��	.   
 

Table 2: Number of replication (NR) using frequentist and Bayesian analytical method 
 

Trial No CV% 
Frequentist 

method 
 Bayesian analytical method ( m=�	/��	) 
0 0.1 0.2 0.25 0.5 1 2 4 5 10 

5.7 2.6 2.6 3.4 4.1 4.5 6.1 8.4 11.2 13.6 14.3 15.8 5.7 
7.1 3.9 3.9 4.8 5.5 5.9 7.4 9.6 12.0 14.2 14.8 16.1 7.1 
10.4 8.5 8.5 9.2 9.8 10.1 11.2 12.7 14.3 15.6 16.0 16.8 10.4 
10.5 8.6 8.6 9.3 9.9 10.1 11.3 12.8 14.3 15.7 16.0 16.8 10.5 
10.8 9.2 9.2 9.9 10.5 10.7 11.8 13.1 14.6 15.8 16.1 16.9 10.8 
13.3 13.8 13.8 14.2 14.4 14.6 15.1 15.7 16.4 16.9 17.1 17.4 13.3 
14.6 16.6 16.6 16.7 16.8 16.8 17.0 17.2 17.4 17.5 17.6 17.7 14.6 
23.5 43.2 43.2 40.4 38.1 37.2 33.4 29.1 25.0 21.9 21.2 19.6 23.5 
27.5 59.1 59.1 54.4 50.5 48.9 42.6 35.4 28.8 24.1 23.0 20.5 27.5 

CV: coefficient of variation, the parameters �	 and ��	 are for �M∗~N(OM , �	)	JKL	 where OM~N(O, ��	) �M∗ = opq	(cr + 13.6). 
 

 
 
Figure 1: Sample size (r) of number of replication in Bayesian approach for different values of m=st/sut for each observed values of CV 
 
The number of replication (NR) based on CV under Bayesian analytical approach has been presented in Fig. 1. 
When the CV was 5% and 7%, the NR in frequentist approach was 3 and 4 respectively.  The NR for Bayesian 
analytical approach increases with m for CV≤ 15% and decrease for CV ≥ 23%. Fig. 1 indicates the decrease in 
replication with m for CV≤ 17% approximately, and increase for CV> 17%.  Bayesian approach of number of 
replication estimation may need more investigation, to consider use the CV% as a measure of variability or because 
of existence of outliers in CV% across heterogeneous environments.  
 
Bayesian determination of number of replications using simulation 
 Table 3 shows the frequentist estimate and posterior means of Bayesian estimates for number of replication using 
simulations. The Bayesian estimate of sample size based on CV was considered at m=1. The Bayesian approach 
based on priors under model P3 yielding higher number of replication that frequentist approach.  
 

Table 3: Frequentist and Bayesian estimates of Number of the Replication (NR) corresponding m= 1 
 

CV% 
Frequentist method 

(NR) 
Bayesian analytical 

(NR) 
Bayesian simulation,  m=1 

NR SE MC error 2.50% median 97.50% 
5.7 2.6 6.1 11.0 10.5 0.17 0.3 8.1 36.3 
7.1 3.9 7.4 11.8 10.3 0.16 0.5 9.0 37.1 
10.8 9.2 11.8 15.0 10.6 0.14 1.4 12.4 40.4 
13.3 13.8 15.1 17.4 10.5 0.16 2.2 15.2 43.0 
14.6 16.6 17.0 18.8 11.2 0.16 2.6 16.9 45.5 
23.5 43.2 33.4 31.0 15.8 0.26 5.5 30.1 63.8 
27.5 59.1 42.6 38.2 20.6 0.35 6.9 36.1 77.0 

Where NR=number of replications, SE=standard deviation, MC error= Monte Carlo error. 
 
In Table 3, the results of this set of experiments confirmed that the trials with unusually high CV% required larger 
number of replication due to variance estimation. In Bayesian simulation approach, posterior means of replications 
are higher than their respective medians throughout, indicating their skewed distribution on the right (longer tail) NR 
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values under frequentist were less than that under Bayesian approaches when the CV level is up to 15% while for 
CVs higher than 15%, the frequentist values are higher than the Bayesian values. Generally, number of replications 
will increase with the increase in CV.   

 
In general, in field crop research, decision on replications is required at the experimental design level. In practice, 
Bayesian estimation of number of replication for designed experiments in crop variety trials has not received much 
attention. In an ongoing variety trial, conducted over multiple locations and years, information is available on trial 
mean and heterogeneity in term of error variance and CV. In this paper, we have discussed simple methods of 
estimating the number of replication in crop trials integrating the prior information on CV with the current CV of 
field that can be used for determining the number of replications in future trials. Furthermore, the regression 
estimates show that CV is positively correlated with number of replications, indicating that the number of 
replications will increase with CV. The results of this chapter highlighted that Bayesian determination of number of 
replications very reasonable in comparison with the classical approach. In crop variety trials, with 15 or more 
genotypes one normally considers number of replications between 2 - 4, which are found too low when field 
heterogeneity exceeds 10% in term of CV values in the present evaluation using Bayesian approaches.  
 

CONCLUSION 
 

Replication is one way of increasing the precision of a statistical estimate, and this simple fact is the basis of sample 
size determination. The coefficient of variation is required to determine number of replications. Bayesian approach 
has advantage of incorporating prior information. Bayesian i.e. posterior means for replications were higher than 
their Bayesian medians throughout. Consistent differences were found in replication numbers obtained from the 
three methods. Therefore, the replications may be considered by rationalizing the three values, i.e., computed using 
frequentist, Bayesian- analytical and Bayesian- simulation methods presented here. 
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