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INTRODUCTION 

Global cereal demand for food and animal feed is expected to total 2.8 billion tons per year 

by 2030, or 50% higher than in 2000 (Bruinsma, 2003). Hence, sustainable increase of crop 

production belongs to the major challenges for feeding the world’s growing population (FAO). 

Because grain supply is the product of crop area and crop yields (production per hectare), 

meeting this higher demand will require an increase in one or both of these factors (c.f. Lobell 

et al., 2009). Given the limited potential to expand suitable cropland, intensification of crop 

production is the preferred means to enhance food supply (Foley et al., 2011; Wichelns and 

Oster, 2006). The reasons for this goal not only include improving food security, but also 

preservation of natural habitats and biodiversity, and protecting the climate system (Cassman, 

1999; Cassman et al., 2003). 

However, unsustainable practice in land and water management at different scales, from the 

farmer’s decision (furrow irrigation, application of fertilizer) to governmental rules (state 

order, mono-cultivation) jeopardize the productive potential in the future. Usually, higher 

cropping intensities can be found in irrigated systems, where double or even triple cropping, 

and higher average yields account for this level of productivity. But at times, irrigation-related 

problems are often the result of a distorted macro economy, which despite providing 

operating subsidies, renders farming unprofitable and results in repeated underinvestment on 

farms over long periods. Especially irrigated agriculture is highly sensitive for unsustainable 

practices that can lead to soil degradation, reduced soil fertility, water scarcity, and diseases 

that in turn trigger productivity decline. 

For these reasons, many irrigation systems are performing below their actual potential, so 

that there is considerable scope for improving the agricultural productivity (FAO, 2013). In 

such cases, losses in economic revenues, income, and agro-ecosystem services can occur. The 

United Nations Environment Programme (UNEP) has estimated that unsustainable land use 

practices result in global net losses of cropland productivity averaging 0.2 percent a year 

(Nellemann et al., 2009). In (semi-) arid environments, disentangling the reasons and support 

spatially targeted improvements for production patterns can be seen of paramount 

importance as irrigated agriculture accounts with 16% of the arable area for 44% of total crop 

production (Alexandratos and Bruinsma, 2012). 

Yield estimates that are able to resolve individual fields within an agricultural landscape are 

particularly useful for understanding how crop productivity responds to various management 
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and environmental factors (Lobell, 2013), as well as for management decisions that require 

information about mean and variability of yields at the field scale. Looking to an agricultural 

region, the picture of crop production, which can be observed, is a result of a complex 

constellation of individual decisions in different ecological and infrastructural settings, 

variable climate, and within a legal framework from local to governmental rules. Remote 

sensing can draw this picture of land use and crop production over large areas. It has 

repeatedly been shown to provide information that, by itself or in combination with other 

data and models, can accurately estimate crop production, i.e. crop acreage and crop yield 

(Justice and Becker-Reshef, 2007), at the field scale and over large geographic extents (Conrad 

et al., 2014; Lobell, 2013). In combination with Geographical Information Systems (GIS) it has 

shown the potential for improving data situations in irrigation management (Bastiaanssen and 

Bos, 1999; Biradar et al., 2009; D'Urso et al., 2010). Through classification of satellite images, 

archives of crop maps allow for back-tracing and monitoring the diversity and cropping 

intensity (Conrad et al. 2015, JAE) (Martinez-Casasnovas et al., 2005). Such statistical results 

can support analysts and decision makers in identifying site-specific reasons for unfavourable 

cultivation practices or controlling the compliance with official cropping standards (Conrad et 

al. 2015, JAE), thus guiding sustainable crop production intensification (FAO). Monitoring crop 

yield variability over several years was shown to be an accurate means to detect yield gaps 

(Lobel) and contribute to marginal land detection (Fritsch et al., 2015). Methods to derive crop 

yields range from empirical relationships between satellite derived vegetation indices (VI) and 

ground based yield measurements or official statistics (Bolton and Friedl, 2013), to more 

sophisticated crop simulation models with high input data requirements (Doraiswamy et al., 

2004, 2005). Beside these, models based on the light use efficiency (LUE) approach (Monteith 

and Moss, 1977) gained wide attention and were shown to provide reliable yield estimations 

(Lobell, 2013; Lobell et al., 2003). 

Although variability in crop yields between fields is a ubiquitous feature of agricultural 

landscapes, there is often a gap between average yields and those achieved on the highest-

yielding lands (Lobell et al., 2005). Narrowing this yield gap could play a critical role in raising 

food production in step with continued growth in demand. Improved understanding of which 

factors most limit or determined spatial variation of yields in farmers’ fields is a precondition 

to reduce environmental impacts of agriculture, such as those resulting from over application 

of fertilizers, and to identify opportunities for improving productivity and farmer income. 

However, in fact the causes of differences in production patterns or potential yield gaps in 

many regions are often not well-investigated, sometime due to a lack of information on spatial 

variation of production (crop yield) and yield-controlling factors (soil condition, application of 

fertilizers, irrigation infrastructure) (c.f. Lobell et al., 2005).  

The irrigation systems of Central Asia are one prominent example for arid production systems 

highly exposed to production losses caused by inefficient land and water use (e.g, Orlovsky et 
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al. 2001, Glantz 2005, Saigal 2003). Hence, the Fergana Valley in Uzbekistan was selected as 

study region. It is one of the most important areas for agriculture in Central Asia (Abdullaev et 

al., 2009a). It represents one large-scale cotton production system of the former Soviet Union, 

with 1.653 million ha irrigated land (SIC-ICWC, 2011). Around 70% of the 11 Million inhabitants 

(Reddy et al., 2012) still depend on income from the agricultural sector and agriculture 

contributes approximately 24% to the country's gross domestic product (Bichsel, 2009). 

Whilst crop diversification and intensification are important parameters for a sustainable 

agriculture, this study focusses on assessing and explaining pattern of production. Specifically, 

the aim is to quantify and assess crop yield using satellite remote sensing and to investigate 

yield variations across the Fergana Valley for the period 2010–2014. Annual crop yield maps 

will be created based on the LUE approach. At issue in this study is the relative importance of 

different potential yield constraints and to assess the driving factors of the observed yield 

variability and pattern. The results are then discussed in the context of potentials for 

improving agriculture in Fergana Valley. 

STUDY AREA 

The Fergana Valley is located in the southeast of Central Asia and the eastern part of the Aral 

Sea Basin, amid the Alatau Range in the north, the Tian Shan Mountains in the east and the 

Alay Mountains in the south (Figure 1). The larger central part of the valley falls within the 

Republic of Uzbekistan, while the northern and eastern fringes are located in the Kyrgyz 

Republic and a small area in the valley’s west and southwest belongs to the Republic of 

Tajikistan. The climate is continental dry with 100–200 mm average annual precipitation and 

a potential annual evapotranspiration of up to 1,300 mm (Umarov et al., 2010). The average 

temperature ranges from −3.9 °C to 3.9 °C in January to 20.2 °C to 34.7 °C in July (Munoz and 

Grieser, 2006). 

The Fergana Valley is located at the upper to mid-reach of the Syrdarya River catchment. The 

Naryn and Karadarya Rivers,flow together within the valley and create the Syr Darya. The two 

major head flows generate almost 70% of the valleys surface water (SIC-ICWC, CAWATER). The 

river's nourishment is classified as mixed snow-glacial and is formed in the surrounding 

mountains (Savoskul et al., 2003). 

Fergana Valley is one of the oldest and most intensely used irrigation systems in CA, 

dominated by cotton and wheat cultivation. Despite its upstream location between the 

foothills of the Tian Shan Mountain, irrigated agriculture in the Fergana Valley suffers from 

low field application efficiencies, groundwater salinization (Reddy et al., 2013, Pereira et al., 

2009) and high river water salinities (Qadir et al., 2009). Even within Fergana Valley, upstream-

downstream disparities of water availability were reported (Abdullaev 2009). It is the most 

densely populated region in entire CA with more than 11 million inhabitants and population 

densities up to 500 inhabitants per km2 (Filcak, 2008). The region’s population is even likely to 
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grow by about twenty million over the next 40 years (UN World population 2010 revision, 

2011), which will increase the demand for food and water resources. Due to population 

growth, availability of water in Uzbekistan already decreased from 2,457 (1990) to 1,837 m3/yr 

per capita (2010) (FAO stat yearbook 2013). Future temperature increases are expected to be 

1.5–2.5 °C (Lioubimtseva and Henebry, 2009) runoff peaks could shift from spring towards the 

late winter season in the Syrdarya catchment (Siegfried et al., 2012). 

From 1960s onwards the main crop has been cotton, but it was successively supplemented by 

winter wheat, which was included to the Uzbek state-order system after independence in 

1991 (Abdullaev et al., 2009b). Whilst wheat yields stabilized around 5 t/ha between 1980 and 

2000, productivity in of cotton yield in Fergana Valley decreased from 4.6 t/ha (1980) to 2.9 

t/ha (CAREWEB) and there is a significant non-productive depletion of irrigation water 

(Karimov et al., 2012). 

 

Figure 1: Study area (orange rectangle) in the Fergana Valley. Image backdrop is a Landsat 

image from May 2014, displaying the near infrared channel. For the districts in the eastern 

and south-eastern part (grey polygons) official crop yield statistics are available. 
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DATASETS AND PREPROCESSING 

Satellite data for classification and yield modelling 

The analysis was based on multispectral RapidEye and Landsat data (Table 1). Each growing 

season, several images were chosen, ideally with acquisition dates at intervals of 1 month and 

with at least one image taken near the peak of the season (mid-August to early September), 

though unavailability of certain images and extensive cloud cover on others limited ultimate 

image selection. The RapidEye system is a constellation of five identical satellites with a 

spectral range covering five channels (blue, green, red, red edge and near infrared), with a 

pixel size of 6.5 m (Tyc et al., 2005). Landsat-5 TM comprises several channels including visible 

(blue, green, red), near infrared (NIR), and shortwave infrared (SWIR-1, SWIR-2) spectra, with 

a pixel size of 30 m. Thermal and pan-chromatic bands were not used. 

Two pre-processing steps (geometric and atmospheric correction) were subsequently 

conducted to ensure that the images were geographically adjusted and free of atmospheric 

noise. A second-degree polynomial model and a nearest neighbour resampling technique 

were applied for geometric correction using GPS data collected in the research area. Sub-pixel 

accuracies for all scenes were achieved. To correct for different atmospheric conditions in 

each image, an atmospheric correction was conducted using the Atmospheric and 

Topographic Correction (ATCOR) tool, version 7.1, which is based on the MODTRAN model 

(Richter, 2011). As a result, top-of-canopy (TOC) reflectances were available for each image 

(Landsat and RapidEye). 

In order to have comparable input data for the estimation of fPAR (see section xx), the 

RapidEye images were downscaled to the spatial resolution of Landsat (30 m), using a 

convolution model that estimates the point spread function of the TM sensor (Schowengerdt, 

2007). 

 

Table 1: Overview on the available satellite images. RE = RapidEye, LS = Landsat. RapidEye 

data often consist of several images per time step, hence the date range is partly given 

instead of the exact acquisition dates. 

Time step 2010 2011 2012 2014 

1 14./19. May (RE) 2. May (LS) 3./4. April (RE) 3.-14. April (RE) 

2 13./15. June (RE) 13./20. May (RE) 21./23. May (RE) 1.-08. May (RE) 

3 2. July (LS) 3. June (LS) 30. May/1. June (RE) 3.-11. June (RE) 

4 4. September (LS) 23.-31. July (RE) 17./29. June (RE) 3.-8. July (RE) 

5 6. October (LS) 7. August (RE) 2./5. July (RE) 18.-23. August (RE) 

6  22. August (LS) 1./3. August (RE) 10. October (LS) 

7  7. September (LS)   
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Field mask 

Since a digital field cadastre database was unavailable for this study, RapidEye data in 2010 

were segmented using a multi-resolution algorithm included in the software eCognition 

Developer 8.64 (Trimble Germany GmbH, 2011) and described in (Conrad et al., 2013). In the 

beginning of the summer season vegetation cover within the field is low and the spectral 

contrast between the field and the tree-covered surrounding canals is high, hence the images 

from May 2010 were segmented. The optimal segmentation parameter settings were 

assessed based on reference polygons. Afterwards, all objects were assigned to the classes 

“field” and “no field” via supervised image classification, resulting in classification accuracy of 

93% (field vs. non-field). The resulting number of field objects was 67,453 covering an area of 

440,445 ha. 

Crop yield validation data 

Official agricultural statistics from seven districts in Fergana valley (cf. Figure 1) on crop yield 

(t/ha for wheat, rice, and cotton) and acreage were available (SIC-ICWC). This information 

could be used to validate the results from the yield model in the years 2010–2012. For 2014, 

no such reference data was available. 

Auxiliary data sets for regression 

In order to analyse potential sources of spatial variations in crop yield, several variables related 

to the topography or irrigation infrastructure were obtained. Unfortunately, numerous 

desirable data sets such as groundwater information, drainage, irrigation infrastructure such 

as pumps, canal properties, population information, labour structure, or degree of 

mechanization or application of fertilisers were unavailable. The available variables were 

divided into four groups (a-d), and their assumed impact on crop yield is summarized in Table 

2: 

a) Site-specific characteristics include natural and artificial characteristics of the study 

site like the density of irrigation canal networks (based on Open Street Map (OSM), 

©OpenStreetMap contributors) and www.cawater-info.net, last accessed 27th June 

2015) and roads (based on Open Street Map (OSM), ©OpenStreetMap contributors). 

Elevation and terrain slope was computed in percentage based in a digital elevation 

model from the ASTER satellite (30 m pixel size, 

http://asterweb.jpl.nasa.gov/gdem.asp, last accessed 03. June 2015). Soil salinity was 

provided by the FAO/IIASA/ISRIC/ISS-CAS/JRC (2012). Soil types for Fergana Valley 

were made available from digitized soil maps Genusov et al. (2012). A settlement layer 

was based on On-screen digitization using RapidEye data and Google Earth from 2014. 

b) Proximity characteristics include distance to canals, intake points, or settlements. A 

settlement layer was derived by on-screen digitization of GoogleEarth images from 
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2014. Layers for canals and roads were downloaded from OSM. Factor maps depicting 

distances were derived based on cost-weighted Euclidean distances, calculated in 

ArcGIS. For the settlements, different types of roads (asphalted main roads, secondary 

roads, and smaller trails) were assigned different costs, with the lowest cost assigned 

to the major asphalted roads. For the intake points, lowest costs were assigned to the 

canals whilst highest costs were assigned to the surrounding area. It must be noted 

that detailed spatial information about the irrigation network, including different 

hierarchies of drainage and irrigation canals, was not available for this study and could 

not be digitized on-screen because these differences were not recognizable. For the 

roads and canals, the Euclidian distances were calculated. 

c) Field characteristics: For assessing the influence of the field, configuration on crop 

yield, area and perimeter was computed for each object in the landscape. 

d) Cropping pattern characteristics:  The Simpson Index of Diversity (SID, Simpson 1949, 

Magurran (2004)) was used for quantifying the spatial crop pattern, based on the pre-

existing crop maps (Conrad) and the maps of 2014. First, SID was calculated for the 

four annual crop maps and statistics of the period 2010-2014 were aggregated at the 

field-level. Then the temporal dimension was included by calculating SID for the crop 

rotations, i.e. the four crop maps were overlaid. 

Table 2: Explanatory variables used in the random forest (RF) regression analysis. 

Variable  Description Meaning 

I Dependent: 𝑦  Crop yield [t/ha]  

II Independent:    

(a) Site specific 

Canal density 𝑥1 Density of irrigation canals [km/km2] Water access, irrigation water supply 

Road density 𝑥2 Density of roads and streets [km/km2] Field access for farmers 
(neighbourhood indicates 
accessibility, improved machinery 
access most likely influencing the 
fertilizer application 

Soil salinity 𝑥3 Harmonized World Soil Database 

(version 1.2), layer “Soil salinity”, 1km 

raster data, ranked between 0 and 100 

 

Land degradation, direct indicator for 
low productivity (often related to 
high groundwater levels) 

Slope 𝑥4 Slope [%] 

 

Indicates irrigation efforts, higher 
slopes require more likely electricity 
for pumping, higher water supply 

Elevation 𝑥5 [m a.s.l.] 
Soil type 𝑥6−14 Categorical information about the soil 

distribution in Uzbekistan of 1960. 
Soil categories: Sandy cambic 
solonchak (1), takyric soils and takyrs 
(takyric salic solonetz  (2), sandy desert 
soils (3), meadow soil on alluvial (4), 
meadow march soil on alluvial (5), 
solonchak on alluvial deposits (6), light 
sierozem zone (7), typical sierozem (8), 
meadow saz soil of sierozem zone (9) 

Suitability for irrigated agriculture, 
e.g. zones of varying irrigation 
application efficiency, and different 
management demands. 
 

(b) Proximity characteristics  

Distance to canals 𝑥15 Distance to canals [m] Water access, irrigation water supply 

http://www.pisces-conservation.com/sdrhelp/refs.htm
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Distance to roads 𝑥16 Distance to roads [m] Field access for farmers 
Distance to settlements 𝑥17 Distance to settlements [m] Field access for farmers, market 

access 
Distance to intake point 𝑥18 Distance to water intake points [m] Water access, irrigation water supply 

(c) Object characteristics   

Object perimeter 𝑥19 Object perimeter [m] Small and compact fields may be 
easier to manage, large fields may be 
more suitable for machinery 

Object area 𝑥20 Shape area [m²] 

(d) Cropping pattern statistics 

Land use intensity in the 
neighbourhood (PERC) 

𝑥21 The location of the field in the 
irrigation system, low and high values 
indicate its location in the distal and 
central parts, respectively. 

Areas with low agricultural activity 
might be at the marginal or remote 
parts of the agricultural system 

Cropping diversity (AV) 𝑥22 Average Simpson Index of diversity of 
crop types (2010-2012, 2014) 

Higher crop diversity indicates 
presences of multi-annual cropping 
rotations 

Rotation diversity (SID) 𝑥23 Simpson Index of diversity of crop 
types for a four-year observation 
period (2010-2012, 2014) 

 

  

 

Figure 2: Factor maps of the independent variables from categories a), b), and d), used for 

the RF regression modelling. Soil properties are listed in Table 2. 

 

METHODS 

Crop classification 

The map in 2014 was created accordingly for this study. In 2013, no reference data was 

available. Predictor variables for the classification were extracted from the satellite data. It 

included mean and standard deviation values for each image object (i.e. agricultural field) 

from the spectral bands (RapidEye: 1–5, Landsat: 1–5, and 7) and a huge set of vegetation 

indices including NDVI (Rouse et al., 1974) and EVI (Huete et al., 2002), which are further 
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described in Löw et al. (2013). This resulted in 29 predictor variables (19 for Landsat) for each 

acquisition date as classification input for RF. The following seven classes were included in the 

class legend in each observation year: cotton, fallow / unused, orchards / vineyards, rice, and 

winter-wheat, and water / fishponds. 

Crop yield modelling 

Crop yields were estimated using the general LUE approach in combination with the concept 

of a stress-induced reduction in daily RUE. A similar approach was previously implemented to 

simulate cotton yields for the Khorezm region based on MODIS data (Shi et al. 2007) and also 

successfully implemented for yield estimation in northwest Mexico (Lobell et al., 2003). The 

NDVI values from the satellite images were used to estimate fPAR for each field, based on 

regression equations between NDVI and measurements of fPAR from test fields during the 

growing period in Fergana Valley (Lex et al., 2015). In that study, NDVI was shown to be 

superior in estimating fPAR over other potential VIs like simple ratio (SR), which is frequently 

being used in other studies (Goward and Huemmrich, 1992, Lobell et al. 2003). In order to 

estimate daily fPAR values throughout the growing season, fPAR values were interpolated 

linearly between the existing observations (see Table 1). The growing period was defined 

according to Stulina (2010) (Table 3). The NDVI values were then used to estimate fPAR, 

following a well-established method that scales values linearly so that the 2nd and 98th 

percentile of fPAR across all images are 0.1% and 95%, respectively (Sellers 1994, 1996; Lex et 

al., 2015).  

 

Table 3: Growing seasons of cotton, rice, and winter wheat in Fergana Valley, according to 

Stulina (2010). 

Crop Growing season 

Cotton Apr–Sep 

Rice Apr–Sep 

Winter wheat Oct–Jun 

 

Finally, crop yield (t/ha per field) was calculated as  

𝑪𝒓𝒐𝒑 𝒚𝒊𝒆𝒍𝒅 =  (∑ (𝑭𝑷𝑨𝑹 ×  𝛆 × 𝑷𝑨𝑹)𝑬𝑶𝑺
𝑺𝑶𝑺 ) × 𝑯𝒊    Eq.  1 

where fPARt is the fraction of PAR absorbed by the crop canopy at time t,n the total number 

of observations during the growing period, ε is plant RUE, and HI is the harvest index, or the 

ratio of yield to total biomass. HI was set as follows: 0.36 (cotton), 0.44 (rice), 0.40 (wheat). 

ε was set to 2.0 (cotton), 2.2 (rice), 2.0 (wheat). Though yield assessments can be sensitive to 

estimates of HI or ε, results of the Monte Carlo analysis revealed that yield assessments were 
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primarily sensitive to the method used to compute fPAR (Lobell et al., 2003). Further, values 

for HI and 𝜀 adjusted by Fritsch (2013) through sensitivity analysis. 

 

 

Analysis of crop yield in relation to other factors 

One important factor for understanding yield constraints is the type of model used to analyse 

possible factors. Multiple linear regressions modelling, for example, is a commonly used 

approach but can lead to inaccurate and unstable solutions (cf. Lobell et al. (2005) when 

applied to data sets with certain characteristics, such as a large number of insignificant 

predictor variables or the presence of strong interactions between variables (Hastie et al., 

2001). Non-parametric approaches like regression trees of RF was can easier accommodate 

non-linear interactions between variables than linear regression modelling (Hastie et al., 

2009). Moreover, these algorithms do not require that assumptions such as normality and 

homogeneity of variance are met, unlike methods based on linear regression (Manly, 2004). 

The RF method developed by Breiman (2001) was selected here. This method has been shown 

to result in very accurate regression accuracies (Breiman, 1996; Gessner et al., 2013) and was 

shown to be more accurate than, for example, linear regression, DT, or bagging in predicting 

spatial phenomena via regression (Löw et al., 2015; Prasad et al., 2006). Actually, RF is an 

ensemble of several decision trees (DT) that are independently trained on random subsets of 

the input data (predictor variables. DTs predict class memberships by recursively partitioning 

the given data set into more homogenous subsets (Hansen et al., 2000). Finally, the results of 

each DT are fused by a simple majority vote. The high prediction and regression accuracy of 

RF compared to other algorithms, based on diverse remote sensing data sets was 

demonstrated in numerous studies (Prasad et al., 2006; Waske and Braun, 2009). 

The RF method provides an original variable’s importance score for classification and 

regression. First, the individual regression trees were constructed. During this construction 

process, binary recursive partitioning is applied with the aim to estimate a dependent variable 

by means of multiple independent variables (here: explanatory variable defined in Table 2). 

The regression trees are constructed on the basis of a set of so called learning samples, which 

are comparable to the training data of traditional supervised classification approaches. 

Starting at the root of a regression tree (root node) and in a hierarchical sequence of binary 

splits, the dataset is divided into subspaces (nodes), which are as homogeneous as possible. 

As splitting criterion, a threshold value 𝑠 is chosen such that the following term is minimized. 

∑ (𝑦𝑖 −  𝜇1)2
𝑖:𝑥𝑗≤𝑠 + ∑ (𝑦𝑖 −  𝜇2)2

𝑖:𝑥𝑗>𝑠        Eq.  2 

Here, 𝑦 denotes the dependent and 𝑥𝑗 the independent variables. �̅� represents the mean of 

all elements 𝑦𝑖 within the regarded subnode (two values, one for the left sum, another for the 
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right sum), and the threshold value 𝑠 can take any value of the independent variables 𝑋𝑗. The 

final nodes of a tree are called leaves. The mean value of the dependent variable of all leaf 

elements is assigned to each of these leaves. 

A measure that indicates the importance of each of the independent variables is the increase 

in mean squared error (“%IncMSE”). The performance of each tree is computed over the 

corresponding OOB sample. %IncMSE is calculated by constructing each tree of an ensemble 

with and without the specific variable. The observations of each variable in the OOB sample 

are randomly permuted, and the trees’ performance is computed over the permuted OOB 

samples. For all trees, the differences in error of these two variants are recorded, averaged 

and normalized by their standard deviation. 

RESULTS 

Crop classification 

Crop maps were created for each survey year. Based on confusion matrices, the classification 

accuracy of these maps ranged from 0.78–0.85 (Table 4). Cotton, winter wheat and rice could 

clearly be distinguished from other crops as indicated by their high class-wise accuracies. Yet, 

classification accuracies were generally lower in 2014, most obvious because fewer reference 

samples were available for the classifier training (230 in 2014, compared to 602–1,425 (Conrad 

et al. submitted). Crop acreages are given in Table 5 and the spatial distribution of the three 

main crops is shown in (Figure 4). It shows that the dominant crop in the study site was cotton 

(39 % – 43 % of all fields from 2010–2014), followed by winter wheat (26 % – 36 % of all fields). 

Both crops were cultivated all over the landscape, albeit cotton tended to be more 

concentrated in the central parts of the study area. Rice fields only covered minor parts of the 

landscape (2 % – 6 % of all fields) and were almost exclusively cultivated in the central part.  

 

Table 4: Overall and class-wise accuracies for the crop maps. Note that for fishponds no 

reference data was available in 2014, hence the class water/fishponds, which cover less then 

0.5% of all fields, was assigned via visual interpretation of GoogleEarth images from 2014. 

Class 

2010 2011 2012 2014 

Class wise 

accuracy 

Class wise 

accuracy 

Class wise 

accuracy 

Class wise 

accuracy 

Cotton 0.92 0.92 0.95 0.76 

Rice 0.85 0.82 0.71 0.50 

Winter 

wheat 0.94 0.85 0.84 

0.67 

Orchard 0.78 0.60 0.62 0.96 

Other 0.47 0.38 0.31 0.22 
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Fallow 0.77 0.86 0.88 0.90 

Water/fishp

onds 0.86 0.77 0.75 

- 

Overall 

accuracy 
0.85 0.81 0.84 

0.78 

 

Crop yield 

The potential accuracy of the yield estimations was assessed. Remotely sensed estimates of 

area and yield in Fergana Valley were compared with statistics provided by SIC-ICWC (Figure 

3). The estimates were both in agreement with statistics reported yet provide much finer 

spatial resolution (field scale) than the finest scale of available statistics (district averages). 

The assessment of yield using the proposed RUE model under- and overestimated reported 

yields, respectively, in all survey years of data by ∼10% on average (over all districts). 

Coefficients of determination (R2) were 0.846 (crop yield) and 0.866 (crop acreage). 

 

(a) 

  

(b) 

 

Figure 3: (a) Estimated crop yield by district and year plotted against reported crop yield for 

2010–2012. (b) Same as (a) but for estimated crop area. Coefficients of determination R2 

were 0.846 (crop yield) and 0.866 (crop acreage). 

Of particular interest for the current study were the temporal and spatial variations in crop 

yield. To assess these visually, the deviation o crop yield from the crops regional average yield 

was computed for each field (Figure 4).Two patterns are immediately evident in Figure 4. First, 

crop yields exhibit a high degree of spatial heterogeneity, with more than two-fold variation 

in yields, even across short distances. Second, lower crop yield tend to occur in the central 

parts of the study area, where crop yields deviate from the average by 10% to 40%. In 2011 
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and specifically in 2014, crop yields tended to be generally lower, as indicated by the higher 

amount of fields with negative yield deviations from the regional average (Figure 4), and these 

were also the years with the lowest share of rice fields (Table 5).

 

 

Figure 4: Spatial distribution of major crops and crop yields in Fergana Valley as percentage 

of the regional mean in the corresponding survey year.

At issue here is the average yield pattern and the relative importance of different yield 

constraints. Figure 5 shows the crop productivity as percentage of average regional mean crop 

yield. Clearly, fields the central parts of the study area tended to have below average crop 

yields (up to 40% deviation from mean), reflecting the observed annual crop yield pattern. 

Even at close distances, there were huge variations in average yields between fields (see small 

image subset in Figure 5).  

As proposed by Lobell et al. (2009), a useful initial analysis is to determine the level of 

persistency in observed yield patterns. That is, do fields with higher yields (relative to 

neighbouring fields) in one year tend also to have higher yields in the next, irrespective of the 

crop that was cultivated? Figure 6 illustrates one such measure of persistency, which is the 

effect of first averaging yields across multiple years before computing the spatial yield gap, 

defined here as the difference between the 95th percentile of yields and average yields 

(Bastiaanssen and Ali, 2003; Lobell, 2013). This approach assumes that some farmers achieve 
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maximum possible yield in a given year, which could then be used to assess the yield gap. As 

this could not be validated with official data, this approach gives a proxy of maximum possible 

yield. 

 

Table 5: Remotely sensed estimates of crop acreage [ha] and average yield [t/ha] for cotton, 

rice, and winter-wheat in the Fergana Valley. 

Class 

2010 2011 2012 2014 

Area Yield Area Yield Area Yield Area Yield 

Cotton 181,240 3.15 182,469 2.41 191,710 2.69 172,614 2.44 

Rice 22,289 3.25 6,891 2.85 26,170 2.91 12,141 2.89 

Winter wheat 159,615 4.88 159,489 4.77 141,069 4.91 116,787 4.73 

 

 

 

Figure 5: Spatial distribution of crop productivity in Fergana Valley. Crop productivity is 

given as percentage of average regional mean crop yield. 

If yields were perfectly persistent, with the same fields always performing better, than time 

averaging should have no effect on the computed yield gap (Lobell et al., 2010). The results in 

Figure 6 indicate that yields are neither perfectly persistent nor perfectly random (cf. Lobell et 
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al. (2010). Average yields for a given season tended to be roughly 1.6 t/ha below those 

achieved on the top 5% of fields, indicating a large spread between the best and average fields. 

The yield gap increased as yields are averaged over more years. This indicates that factors 

contributing to maximum yields had to a certain degree consistent effects across years. In 

contrast, if yields were perfectly random in space, and if there were only very there are very 

few persistent factors explaining factors the observed yield gap in Fergana Valley, then time 

averaging should tend to reduce the yield gap towards zero, which is indicated in Figure 6 

(grey line). 

 

Figure 6: Yield gap curves for Fergana valley, displaying the difference between the 95th 

percentile and mean yield where yields are averaged over different numbers of years. A 

single year corresponds to the typical definition of yield gaps. For each average, all possible 

combinations of images were used. The gap shrinks as yields are averaged over more years, 

indicating that factors contributing to maximum yields do not have persistent effects across 

years. The grey line represents the expected change in yield gap with increasing years if yield 

patterns were entirely random in space (computed by randomly re-ordering the spatial 

distribution of yields in each year). 

In order to assess which factors explain association of high (or low) yields the most, the RF 

regression was applied in each year for each crop separately (Table 6-Table 8 
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Table 6) and a %IncMSE-based ranking of each factor was calculated. The RF could explain the 

spatial variation of crop yields quite well, with R² values ranging from 0.60 to 0.80. In general, 

R² values were higher for cotton (0.71-0.80) than for the reminder crops (0.60-0.71). 

Among the factors that could explain association of high (or low) yields with particular 

locations the most, i.e. with highest %IncMSE-rank, ranged infrastructure density, distances 

to settlements and intake points. However, the indices describing cropping pattern and 

diversity, SID, AV, and PERC, plus elevation were the most important factors. From these 

factors, road density, elevation, SID, AV and PERC were among the five most important in four 

years. For rice, the distance to the intake points tended to be more important than for the 

other crops. Most factors tended to have a similar rank across years, i.e. the important 

(unimportant) factors tended to remain important (unimportant) across years. An exemption 

from this the distance to intake points, canal density, and road density, which either tended 

to become more important from 2010-2014 or were the most important in 2014. 

This indicates the relative importance of factors related with the agricultural management and 

irrigation infrastructure (e.g. access to the fields, distance to markets, distance to intake points 

and canal density). The importance of infrastructure is also visually evident on the average 

yield map overlaid with canals, intake points, roads, and settlements (Figure 5), showing that 

most high yielding areas are near settlements and in areas with higher road density. Yet, even 

more important appeared the spatial and temporal diversity of crops, i.e. areas with higher 

cropping diversity (or fields were different crops were cultivated across years) tended to have 

persistently higher yields. 

 

Table 6: Variable importance predicted by RF for cotton yields, averaged over the period 

2010-2014. 

 Cotton 

Variable  2010 2011 2012 2014 Range N top-
5 

(a) Site specific  

Canal density 𝑥1 8 6 9 6 6-9  
Road density 𝑥2 5 4 5 1 1-5 4 
Soil salinity 𝑥3 21 23 21 19 19-23  
Slope 𝑥4 15 11 12 15 11-15  
Elevation 𝑥5 2 1 2 2 1-2 4 
Soil type 1 𝑥6 20 20 22 20 20-22  
Soil type 2 𝑥7 22 21 20 23 20-23  
Soil type 3 𝑥8 18 18 18 17 17-18  
Soil type 4 𝑥9 11 17 6 11 6-17  
Soil type 5 𝑥10 23 22 23 21 21-23  
Soil type 6 𝑥11 12 16 15 14 12-16  
Soil type 7 𝑥12 14 13 16 16 13-16  
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Soil type 8 𝑥13 19 19 19 22 19-22  
Soil type 9 𝑥14 13 12 17 18 12-18  

(b) Proximity characteristics  

Distance to canals 𝑥15 10 10 11 9 9-11  
Distance to roads 𝑥16 9 9 10 10 9-10  
Distance to 
settlements 

𝑥17 3 5 7 8 3-8 2 

Distance to intake 
point 

𝑥18 7 8 8 3 3-8 1 

(c) Object characteristics  

Object perimeter 𝑥19 16 14 14 13 13-16  
Object area 𝑥20 17 15 15 12 12-17  

(d) Cropping pattern characteristics  

Land use intensity in 
the neighbourhood 

𝑥21 4 7 3 7 3-7 2 

Cropping diversity AV 𝑥22 6 3 4 4 3-6 4 

Cropping diversity SID 𝑥23 1 2 1 5 1-5 4 

R²  0.80 0.71 0.78 0.75 3.6  

 

Table 7: Variable importance predicted by RF for wheat yields, averaged over the period 

2010-2014. 

 Wheat 

Variable  2010 2011 2012 2014 Averag
e 

N top-
5 

(a) Site specific  

Canal density 𝑥1 7 7 7 7 7-7  
Road density 𝑥2 5 6 8 1 1-8 2 
Soil salinity 𝑥3 21 21 21 19 19-21  
Slope 𝑥4 12 14 11 12 11-14  
Elevation 𝑥5 1 1 2 2 1-2 4 
Soil type 1 𝑥6 20 18 18 20 18-20  
Soil type 2 𝑥7 22 22 23 23 22-23  
Soil type 3 𝑥8 18 19 20 18 18-20  
Soil type 4 𝑥9 17 8 9 10 8-17  
Soil type 5 𝑥10 23 23 22 22 22-23  
Soil type 6 𝑥11 13 17 14 15 13-17  
Soil type 7 𝑥12 14 10 15 16 10-16  
Soil type 8 𝑥13 19 20 19 21 19-21  
Soil type 9 𝑥14 11 16 10 17 10-17  

(b) Proximity characteristics  

Distance to canals 𝑥15 9 11 12 9 9-12  
Distance to roads 𝑥16 10 12 13 11 10-13  
Distance to 
settlements 

𝑥17 8 9 5 8 5-9 1 
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Distance to intake 
point 

𝑥18 3 5 6 4 3-6 3 

(c) Object characteristics  

Object perimeter 𝑥19 15 13 16 13 13-16  
Object area 𝑥20 16 15 17 14 14-17  

(d) Cropping pattern characteristics  

Land use intensity in 
the neighbourhood 

𝑥21 4 2 3 3 2-4 4 

Cropping diversity AV 𝑥22 6 4 4 5 4-6 3 

Cropping diversity SID 𝑥23 2 3 1 6 1-6 3 

R²  0.68 0.63 0.71 0.63 3.2  

 

Table 8: Variable importance predicted by RF for rice yields, averaged over the period 2010-

2014. 

 Rice  

Variable  2010 2011 2012 2014 Averag
e 

N top-
5 

(a) Site specific  

Canal density 𝑥1 6 7 11 5 5-11 1 
Road density 𝑥2 4 6 5 3 3-6 3 
Soil salinity 𝑥3 23 23 23 20 20-23  
Slope 𝑥4 12 13 14 13 12-14  
Elevation 𝑥5 10 8 7 1 1-10 1 
Soil type 1 𝑥6 22 20 21 21 20-22  
Soil type 2 𝑥7 21 22 20 22 20-22  
Soil type 3 𝑥8 11 16 16 17 11-17  
Soil type 4 𝑥9 16 17 9 14 9-17  
Soil type 5 𝑥10 19 21 22 23 19-23  
Soil type 6 𝑥11 15 15 15 15 15-15  
Soil type 7 𝑥12 17 14 16 16 14-17  
Soil type 8 𝑥13 20 19 19 19 19-20  
Soil type 9 𝑥14 18 18 17 18 17-18  

(b) Proximity characteristics  

Distance to canals 𝑥15 9 9 13 10 9-13  
Distance to roads 𝑥16 1 11 8 8 1-11 1 
Distance to 
settlements 

𝑥17 3 2 2 6 2-6 3 

Distance to intake 
point 

𝑥18 7 4 3 2 2-7 3 

(c) Object characteristics  

Object perimeter 𝑥19 14 12 12 11 11-14  
Object area 𝑥20 15 10 10 12 10-15  

(d) Cropping pattern characteristics  
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Land use intensity in 
the neighbourhood 

𝑥21 5 5 5 4 4-5 4 

Cropping diversity AV 𝑥22 8 3 4 9 3-9 2 

Cropping diversity SID 𝑥23 2 1 1 5 1-5 4 

R²  0.69 0.69 0.61 0.60 4.0  

 

The RF variable importance only gives insight into which factor are important but without 

quantifying these impacts. Hence, plots of average crop yield versus distance to intake points, 

settlements, and roads (Figure 7) were created. They support the results from RF regression 

analysis and present evidence for a rather strong influence of infrastructure and accessibility 

of fields on crop yields. In particular, fields that are 5–6 km apart from settlements tended to 

have 5% (cotton and wheat) or 10% (rice) lower crop yields than fields adjacent to settlements, 

with the strongest impact of distance on rice yield. Whilst cotton yields were almost 

unaffected by the distance to the next intake point, rice fields were the most impacted, with 

fluctuations up to 10% but with no clear trend as a function of the distance. It must be noted 

that ∼80% of all rice fields were more than 6 km from the nearest intake point and 

concentrated in the central parts of the study region. On the other site, only ∼20% of all cotton 

and wheat fields, respectively are more than 5-6 km from the next settlement, hence the 

overall effect of this remoteness on crop yields is less severe. For example, cotton yields within 

1 km distance of settlements average 2.69 t/ha or less than 1% higher than the regional 

average (2.65 t/ha). For wheat, yields within 1 km distance of settlements average 5.02 t/ha 

or 4% higher than the regional average (4.83 t/ha). In general, fields remote from 

infrastructure tended to be stronger affected in dryer years (Table 9). 



 

8 
 

 

Figure 7: Average model estimates for crops yields as a function of distance from the nearest 

intake point (top row), roads (middle row) and settlements (bottom row). Yield averages 

represented are calculated at 1,000 m increments in t/ha and represent average crop yield 

of all fields at given distance from intake point, roads or settlements. 

The impact of the cropping pattern, as quantified by 𝑥21−23, shows that a higher share of crop 

rotations results in higher crop yield (Figure 8). The impact of AV (𝑥22) was more persistent on 

all crops than SID (𝑥23). For the latter, rice yields showed no such clear decreasing yields trend 

with higher values than for AV. Besides this, higher crop yields were found in areas with a 

higher share of agricultural area (PERC, 𝑥21). An exemption from this is  rice yields in 2011, as 

well as cotton and wheat in 2014, where lower yields were found in areas with highest PERC 

values. 
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Figure 8: Average model estimates for crops yields as a function of AV (top row), SID (middle 

row) and PERC (bottom row), expressed as average crop yields in t/ha. 

DISCUSSION 

Crop rotation 

The crop maps provide valuable information for land use and management efforts like crop 

water requirements assessments (Conrad et al., 2013). The overall high classification accuracy 

of the crop maps was comparable to other object-based crop classifications in Central Asia. 

For instance, Conrad et al. (2013, 2014) achieved overall accuracies of 86.2 in Fergana and 

88.0% in Khorezm. Whilst errors in the maps could be reduced with more frequent 

observations, the low error rates of the three focused crops offer positive prospective for an 

operational monitoring and the maps provide useful input to the RUE based crop yield model. 

The area shares of cotton (41% on average) and wheat (32% on average) fit well with reference 

statistics (Figure 3). 

Crop yield – uncertainty, official statistics, usability for operational monitoring 

The agreement between estimated crop yields and acreages, based on remote sensing and 

official statistics were notable. It must be noted that the parameters for fPAR derivation were 

calibrated to the local data in Fergana valley (Lex et al., 2015), which is assumed by some 
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authors to have a higher impact on the final model results than, for example, biases in the 

estimates of HI or 𝜀 resulting from inter-annual changes in in practices, cultivars or 

environmental conditions (Choudhury 2000, Lobel). The reported deviation between 

estimated and reported yields is comparable to the accuracies of yields in other studies. 

Reported deviations of estimated and reported governmental yield statistics with similar 

approaches were reported to be 11% for cotton yield in Khorezm, Uzbekistan based on MODIS 

data (Shi et al., 2007). Lobell et al. (2003) reported 3.3% over-estimation of wheat yields in 

Yaqui Valley, Mexico for a RUE model based on Landsat data. Fritsch (2013) reported 16.8% 

error on average for cotton yield in the period 2004-2009, and 9.0% for rice over the same 

period in Khorezm, Uzbekistan, based on MODIS data and at the district level. Reeves et al. 

(2005) found accuracies to within 5% for state level estimates of wheat yield in North Dakota 

and Montana. Crop yields reported by Doraiswamy et al. (2005), using a crop growth 

simulation model based on MODIS were within 10% official county yield statistics for corn and 

soybean. Although it is difficult to precisely measure the skill of the remote sensing data 

without an independent estimate of the reliability of reported district yields (which could not 

be obtained in this study), the observed agreement is statistically significant and suggests that 

the estimates provide useful information on spatial yield variability. 

Overall, the accuracy and low uncertainty of yield and area estimates in this study strongly 

support the use the RUE model (Eq. 1) for regional studies on agricultural production in 

Fergana Valley, and specially for identifying potential yield gaps. This offers positive 

prospective towards an operational used of this approach, which has the advantage that 

relatively few parameters are required as input, compared to approaches that fully integrate 

crop simulation models with remote sensing data (e.g. Doraiswamy et al. (2004). It should be 

noted, however, that yields were not evaluated with field scale measurements in the current 

study and potential improvements like fine-tuning of the parameters HI and 𝜀 could be 

envisaged. 

Explanation of the observed crop yield pattern 

Despite a certain degree of random distribution of yields, which was evidenced by the analysis 

of yield gap persistence (Figure 6), there was a steady influence by some of the investigated 

factors. 

Diversity 

Most notably, cropping diversity (𝑥22) and rotation diversity (𝑥23), had a pronounced impact 

across the observation years for all crops and ranging among the top-5 factors. Diverse 

spatiotemporal patterns of land use in agrarian landscapes can influence the agricultural 

production (Ekroos et al., 2014). For instance, cropping of various crops and multi-annual 

rotation of crops instead of monoculture use if land can contribute to preventing soil 

degradation, maintaining soil fertility, or reducing soil erosion (Black et al. 1981, Bullock 1992, 
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Wright et al. 2005). These practices also help to avoid pest propagation and harvest damage 

(Matson et al. 1997, Bellinger 2010). The implementation of such practices is, among others, 

assessed valuable for maintaining soil health, which in turn ensures sustainable production 

(Dick 1992). Moreover, diverse cropping patterns can also contribute to biodiversity and 

positively affect the ecosystem functions within an agricultural landscape (Thrupp 2000, 

Chapin et al. 1997, Naeem et al. 1994). Favourable approaches for enhancing crop nutrition 

and improving resilience of agricultural ecosystems also include the cultivation of wide ranges 

of annual and perennial plant species such as fruit trees, shrubs, pastures, and crops (FAO 

2011). 

The unprecedented intensification of cotton production in the former Soviet Union replaced 

historical crop rotation patterns. Crop rotations are globally among the oldest-known cultural 

practices to prevent soil degradation, maintain soil fertility, or reduce soil erosion (Bullock 

1992, Wright et al. 2005). They are also declared means to avoid pest propagation and harvest 

damage (Bellinger 2010). Cotton rotations with wheat, irrespectively if one or two years of 

cotton are followed by the grain crop, have been more economically profitable than other 

cotton rotating schemes (Hullugalle et al. 1998). However, attempting to reach economic 

sustainability by solely implementing rotations for maximizing the profits has been critically 

discussed. Hake et al. (1991) for instance emphasized that cotton mono-sequences can be 

supported by rotations in areas suffering from soil-borne diseases or weed problems, and 

where these cannot be managed otherwise. The same authors state, however, that cotton in 

rotation with other profitable crops can support economic stability. Cotton rotation systems 

are thus considered an important instrument for economically sustainable and soil conserving 

crop production.  

On the other site, Abdullaev et al. (2009) identified winter wheat scattered throughout the 

landscape having negative impact on the maintenance on the irrigation infrastructure. Before 

the introduction of winter wheat, the irrigation channels were cleaned and repaired in the off-

season period (October-March). They argue that having different crops on neighboured fields 

requires more frequently watering of the channels, which in turn lowers the water use 

efficiency at the system level. Further, Abdullaev et al. (xxxx) states that low cotton 

productivity Fergana is strongly influence by policy (quota system), i.e. the stagnation in 

cotton yield in the last years appears to be largely a response to government’s quota system 

for the cotton area, which gives little, if any, incentive to increase productivity beyond the 

levels required to meet production quotas. The persistent impact of distances to settlement 

(𝑥17) and roads (𝑥16) and road density (𝑥2) are likely to reflect the unwillingness or inability 

(e.g. due to financial constraints) of the farmers to maintain the irrigation infrastructure 

especially in remote areas. Any citation for this, is my line of argumentation at least a little 

logical? 



 

12 
 

Elevation 

Besides cropping diversity, elevation strongly influenced crop yields of wheat and cotton. 

Areas in elevated areas can be assumed those near the intake pints or source regions of water, 

as most water is distributed gravitational.  Hence, elevated terrain can be assumed better 

supported with irrigation water, compared to downstream or down canal areas where some 

of the water has already been consummated. On contrast, rice yield was only strongly 

influenced in the year 2014. Although this seems at first counterintuitive, since rice needs 

more irrigation water than cotton (xxx), it can be explained by the fact that rice fields are 

mostly located in the central part of the study area, with no big differences in elevation, e.g. 

range of DEM in cotton is xxx meters, for rice only xxx m. 

Intake points and canal density, and their changes over the year 

Distances to intake points (𝑥18) and canal density (𝑥1) were important factors that relate to 

the water supply of fields. Locations close to the intake points tended to have a persistently 

higher yield, which likely reflects the importance of access to irrigation water. Likewise, in 

dryer years like 2014 (Table 9) their relative importance of these factors increased for cotton 

and rice, whilst there was no such clear trend for wheat (Table 7). Besides factors related to 

the water distribution system, the impact of read density was the most important in 2014 for 

all crops including wheat. The most obvious reason for this is that in years with only low water 

supply, areas near the intake points or main canals are usually better supplied than remote 

areas, which also tend to be characterized by a lower canal density. Some ideas what exactly 

the reasons for this are? 

Table 9: Water inflow [Million m3] from the three main tributaries of the Syrdarya: Naryn, 

Karadarya and Tschirtschik from 2007-2014 (source: SIC-ICWC 2014). 

Year Naryn Karadarya Tschirtschik Total 

2008 13,335 3,764 7,723 24,822 
2009 19,166 7,628 9,301 36,095 
2010 13,783 4,131 5,509 23,424 
2011 12,401 3,625 6,825 22,851 
2012 11,776 3,484 6,277 21,537 
2013 10,079 2,591 6,734 19,404 
2014 9,884 2,361 5,061 17,307 

 

Road density, distance to settlements 

Further, road density (𝑥2) and distance to settlements (𝑥17) tended to be the important 

variables. The reduction of funding for the operation and maintenance of the irrigation 

infrastructure in all Central Asian states after independence has led to a deterioration of the 
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infrastructure and to a decrease of the management control (SIC ICWC, 1999). Infrastructure 

deterioration has widely been reported as one major factor limiting crop productivity 

(Abdullaev 2009; Cai et al. 2003). The results of this study suppose the assumption that the 

condition of the irrigation infrastructure near settlements or in areas with higher road 

densities could be better maintained, compared to remote areas which could explain the 

persistent, i.e. across all years, effect of the observed yield decline (Figure 7).  

The results imply that providing widespread access to water at the level currently experienced 

near settlements could improve crop yields by roughly up to 5% in this region, corresponding 

to xxx t/ha (cotton), xxx t/ha (wheat), and xxx t/ha (rice). Compared with this, there seems to 

be less room for improvements when looking at the distances to the intake points, at least for 

cotton and wheat (Figure 7). However, it must be considered that there remain uncertainties 

in this estimate because  

Also calculate this figure for different AV/SID/PERC levels, how much higher could it be? 

It must be noted that the method to estimate the yield gap in, namely by comparing farmer´s 

yields with maximum farmer yields, could even underestimate the actual yield gap. As was 

discussed by Lobell (2009), estimates of maximum possible yields by crop growth models could 

be higher than what can be expected from the maximum of farmer´s yields. On top of this, 

there was a consistently decline in average crop yields in the study area. For example, wheat 

yield decreased from 5.18 t/ha (2010) to 4.48 t/ha (2014), and cotton yields decreased from 

3.18 t/ha to 2.21 t/ha in 2014. It is likely that Fergana Valley experiences a serious decline in 

water inflow from the three main tributaries in the observation period of almost 26% (Table 

9). Although this impact of overall water availability cannot be neglected, the infrastructure 

(roads and settlements) but especially the cropping diversity played an important role on top 

of this, as was demonstrated by a more persistent impact on yields, compared to distance to 

intake points or canal density. 

Beyond the persistent factors of cropping diversity, infrastructure and proximity to intake 

points and canals, however, there appears to be little yield impact of persistent differences 

between field sizes, slope or soil conditions in different fields. Although (Giese and Sehring 

2007?) reported that in Fergana valley up to 80% of the soils were affected by salinization, 

there was little evidence, for instance, that soil salinity is a major constraint to yields in this 

region, as this would reveal itself in a high fraction of consistently underperforming areas 

within the image. There is however, evidence that differences among farmers in persistent 

factors such as distance to roads has a significant yield effect. It must be noted that the overall 

quality of the RS regression in terms of R² might be improved by the provision of other factors 

like drainage infrastructure or groundwater table and salinity. Hence, whether these lessons 

hold true beyond the extent of this study will require future work in adjacent areas. 
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CONCLUSIONS 

The application of the RUE based crop yield model, in combination with remote sensing and 

GIS has provided several insights into the agricultural system in Fergana Valley. Remote 

sensing allowed assessing agricultural production (yield) at the per-field level, which is a 

critical contribution to agricultural management in Fergana Valley. Results show that there is 

strong indication that there was heterogeneity in crop yields even within small distances. The 

most prominent factors affecting yield was the spatial and temporal diversity of the cropping 

pattern, i.e. locations with a higher diversity tended to have higher yields. Further, fields 

located in areas with a small share of agricultural tended to be less productive.  

Further analysis to explain the observed yield pattern depend in data availability but could 

include to assess the impact of distances to location of wheat mills or cotton producing 

factories, and the inclusion of ground water data (depth and salinity). 

The cropping pattern, i.e. the presence or absence of multi-annual crop rotations, and the 

spatial diversity of crops had the most persistent effects on crop yields across years. Areas 

with a lower diversity or abundance of crop rotation tended to have lower crop yields, with 

differences of partly more than one t/ha yield. 

It was shown that factors related with the infrastructure, for example the distance of farms to 

the next settlement or the density of roads had a strong effect on crop yields over several 

years. Potential improvements of cotton and wheat yields were estimated 5%, compared to 

crop yields of farms directly adjacent to settlements or roads. The irrigation infrastructure had 

a less pronounced impact on crop yields, which were most likely stronger impacted by the 

decreasing overall water availability observed between 2010-2014, which lead to a region 

wide decline of all crop yields. 

The study demonstrate the ease with which ten-thousands of fields in Fergana Valley can be 

monitored through time, and although there was some error in the satellite remote sensing 

based crop yield estimates, it was very useful to assess the spatial and temporal variations in 

crop yields and to assess the potential factors that explain the observed pattern. Given the 

growing demand for food and the environmental consequences associated with over-

application of inputs, improved understanding of spatial variations in crop yields is greatly 

needed. Remotely sensed estimates of crop production provide a unique perspective that, 

when combined with field surveys, should enhance the ability to identify management 

priorities for improving regional production and/or reducing environmental impacts. The 

methods could be implemented in other irrigated areas worldwide by adapting regional 

meteorological and crop-specific parameters. 


