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Abstract: Accelerating crop improvement for increased yield and better adaptation to changing
climatic conditions is an issue of increasing urgency in order to satisfy the ever-increasing global
food demand. However, the major bottleneck is the absence of high-throughput plant phenotyping
methods for rapid and cost-effective data-driven variety selection and release in plant breeding.
Traditional phenotyping methods that rely on trained experts are slow, costly, labor-intensive,
subjective, and often require destructive sampling. We explore ways to improve the efficiency of crop
phenotyping through the use of unmanned aerial vehicle (UAV)-based multispectral remotely sensed
data in maize (Zea mays L.) varietal response to maize streak virus (MSV) disease. Twenty-five maize
varieties grown in a trial with three replications were evaluated under artificial MSV inoculation.
Ground scoring for MSV infection was carried out at mid-vegetative, flowering, and mid-grain
filling on a scale of 1 (resistant) to 9 (susceptible). UAV-derived spectral data were acquired at these
three different phenological stages in multispectral bands corresponding to Green (0.53–0.57 µm),
Red (0.64–0.68 µm), Rededge (0.73–0.74 µm), and Near-Infrared (0.77–0.81 µm). The imagery captured
was stitched together in Pix4Dmapper, which generates two types of multispectral orthomosaics: the
NoAlpha and the transparent mosaics for each band. The NoAlpha imagery was used as input into
QGIS to extract reflectance data. Six vegetation indices were derived for each variety: normalized
difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), Rededge
NDVI (NDVIrededge), Simple Ratio (SR), green Chlorophyll Index (CIgreen), and Rededge Chlorophyll
Index (CIrededge). The Random Forest (RF) classifier was used to evaluate UAV-derived spectral and
VIs with and without variable optimization. Correlations between the UAV-derived data and manual
MSV scores were significant (R = 0.74–0.84). Varieties were classified into resistant, moderately
resistant, and susceptible with overall classification accuracies of 77.3% (Kappa = 0.64) with optimized
and 68.2% (Kappa = 0.51) without optimized variables, representing an improvement of ~13.3% due
to variable optimization. The RF model selected GNDVI, CIgreen, CIrededge, and the Red band as the
most important variables for classification. Mid-vegetative was the most ideal phenological stage for
accurate varietal phenotyping and discrimination using UAV-derived multispectral data with RF
under artificial MSV inoculation. The results provide a rapid UAV-based remote sensing solution that
offers a step-change towards data availability at high spatial (submeter) and temporal (daily/weekly)
resolution in varietal analysis for quick and robust high-throughput plant phenotyping, important for
timely and unbiased data-driven variety selection and release in plant breeding programs, especially
as climate change accelerates.
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1. Introduction

Maize (Zea mays L.) breeding success depends on developing adapted high yielding varieties that
are resistant or tolerant to both abiotic and biotic stresses found in the target production environments.
Accelerated crop improvement to increase yield and better adaptation to changing climate conditions is
an issue of increasing urgency to satisfy the ever-increasing global food demand [1,2]. Global warming
is predicted to continue due to the increase in greenhouse gases, which affects the rainfall patterns
in the 21st century [3], increasing the threats of abiotic and biotic stresses. For example, the rising
temperatures and altered rainfall patterns will affect the spatial distribution and development of crop
diseases, as different diseases may respond differently to the changing climate conditions [4].

The impact of climate change on crop diseases is well documented [5–7]. Certainly, climate
change will directly influence plant disease epidemics [8]. For instance, with particular reference to
maize streak virus (MSV), changes that result in environmental factors, which cause the leafhoppers
vectors (Cicadulina species) that transmit MSV to move long distances, will spread virus populations
and epidemics to non-endemic areas [9]. Climate change prediction models have shown a general
trend of increased rainfall in East Africa (EA), with a concurrent decrease in Southern Africa (SA) [10].
The increase in precipitation in EA will produce a conducive temporal overlap of seasons, which will
provide a “greenbridge” [11,12]. The greenbridge allows the leafhopper vectors that subsequently
spread the virus to survive throughout the year. On the other hand, decreasing precipitation in SA
will bring droughts, and MSV disease epidemics are frequently associated with droughts followed
by erratic rainfall at the start of the season [13], as occurred in the savanna region of West Africa
in the 1983 and 1984 seasons [14], and in Kenya in 1988–89 [15]. Furthermore, the prevalence of
Cicadulina species that spread the virus in the major crop growing regions of sub-Saharan Africa (SSA)
is influenced by altitude, temperature, and rainfall [16]. The tripartite biotic interaction involving
plant × pathogen × environment due to climate change, strongly influences disease prevalence and/or
severity, with the disease expected to have devastating effects in some years and being insignificant
in others [13]. The tripartite interaction functions within a continuum—it can create conditions
highly conducive to diseases (disease optima) or it may create those that totally discourage disease
development. The resultant environments may make the same variety appear completely resistant in
some situations and prove fully susceptible in others. Conversely, the pathogen itself might change
from being virulent to being merely weakly pathogenic as it continues to evolve to local conditions.
To address these various scenarios, there is need to develop new phenotyping tools for the rapid
evaluation of new varieties adapted to future climates.

An increase in plant disease prevalence coupled with the growing human population poses one
of the greatest challenges to achieving global food security in the face of climate change. Maize is one
of the main staple food crops in SSA, grown on a total of about 27 million ha according to FAO data.
Adapting maize production to future climates depends not only on our ability to precisely predict
future climate scenarios, but also on the development of robust adaptation strategies that address the
challenges associated with climate change. These adaptation strategies include, but are not limited
to, improved germplasm with resistance to diseases, and tolerance to heat and drought. For plant
breeders, the challenge is how to develop varieties resistant or tolerant to the major plant diseases
affecting modern agriculture today and in the future. Fortunately, plant breeders have access to a
plethora of cutting edge technologies to use to generate large numbers of superior new varieties for
selection due to advances in genomics, doubled haploid technology, rapid cycling, and molecular
breeding [17,18]. Crop breeding programs around the world generate a larger number of new varieties
each year for selection to meet the demand for new varieties to address multiple traditional stresses
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but also increasingly able to adapt to climate change. However, as these demands increase, the major
bottleneck is rapid variety selection and the absence of high-throughput plant phenotyping tools for
precise, cost-effective, and quick assessment of phenotypic expressions in the field [19–23].

Plant phenotyping is the measurement of individual traits and physiology at single plant-level or
canopy-scale [24]. High-throughput refers to the relative effort that is associated with the measurements.
Image-based phenotyping tools are capable of imaging thousands of plants or plots within a few hours,
and doing so at a very high level of accuracy [25]. Phenotypes are a set of visible characteristics of
the variety as a result of genotype × environment interaction, including light emission (fluorescence)
properties of the photosynthetic machinery, growth rates, morphology, tolerance to abiotic and biotic
stresses, yield, and yield components [24]. Variety selection efficiency relies on accurate field-based
phenotyping, which measures the relative genetic potential as influenced by the target production
environment and expressed in terms of grain yield, biomass, and tolerance of abiotic and biotic
stresses [20,26]. Rapid and robust field phenotyping, which establishes superior trait performance
by phenotypes at set levels of statistical significance, is key to plant breeding success and forms the
basis for successfully discriminating field selection. Such improved rapid phenotyping methods must
balance speed, cost, and accuracy [24].

The traditional phenotyping methods rely on trained experts to take crop records using visual
assessment of crop vigor and other abiotic stresses [27]. However, traditional crop phenotyping methods
are comparatively slow, costly, laborious, not easily applicable over large areas and numbers of varieties,
and frequently require destructive sampling [28–31]. Furthermore, field data collection requires
repeated measurements with a high risk of damaging the plants as researchers walk through fully
developed canopies [32]. The improvement in high-throughput plant phenotyping methods capable of
accounting for environmental factors like rainfall, temperature, humidity, solar irradiation, soil nutrient
levels, and biotic and abiotic stresses will increase selection efficiency in plant breeding [22]. Recently,
advances have been made in high-throughput crop phenotyping to speed up variety selection and
advancement in plant breeding using sensing and imaging systems [20,32–35]. Satellite remote sensing
technology delivers accurate, timely, and cost-effective measurements at large scale in maize [36,37].
However, current generations of satellite sensors are limited by their spectral and temporal resolution
for plot level variety analysis and data collection in plant breeding. High spectral resolution remote
sensing options from manned aerial platforms are costly and are limited by operational complexity for
application in small breeding plots [38,39]. Despite progress made so far in sensing systems, there are
few studies on disease phenotyping in maize varieties.

Recently, plant phenotyping studies are exploring UAV-derived data at submeter resolution and
accurate products that can be used cost effectively for agriculture and environmental analysis [40–44].
Chivasa et al. [45], using ground-based proximal sensing, have shown that it is possible to discriminate
maize varieties using multitemporal hyperspectral data. The ability to discriminate crop varieties
using their spectral reflectance showed the potential of proximal remotely sensed data in crop
phenotyping. A lot of studies estimating crop parameters used the characteristic spectra in the visible
and near-infrared (NIR) range [46–48]. Nevertheless, while proximal sensing eliminates bias that can be
introduced by visual scoring, it still remains labor-intensive to collect data from each breeding plot [49].
While phenotyping using satellite-derived data can cover large area instantaneously, it will not match
the spatial (submeter) and temporal (daily/weekly) resolution that can be achieved with UAV-based
phenotyping. Such a higher degree of resolution is required for distinguishing small changes in
plant response, such as for example, due to disease infection, heat and drought stress, or mineral
deficiencies. The resolution of UAV-based phenotyping is at plot level and provides the possibility of
instantaneous records of single or multiple plots and is therefore applicable to plant breeding [20,50].
Therefore, the potential application of UAVs mounted with hyperspectral and multispectral sensors
needs to be investigated for varietal classification on disease reaction for improved selection accuracy
in plant breeding.
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UAVs are relatively small and cheap to operate for the crop remote sensing community [44].
The usage of UAVs mounted with high resolution sensors is an emergent and affordable tool for
high-throughput crop phenotyping community [51]. UAVs are flexible and have the ability to fly
and hover over the area of interest making them a desirable tool for plot-level data collection [32].
Nevertheless, the ability of UAV-mounted sensors to discriminate crop varieties based on their response
to target production environmental constraints for adequate field phenotyping remains to be tested.
Grenzdörffer et al. [52] indicated that remotely sensed data for agricultural analysis needs to come from
high temporal resolution imagery. Obtaining high temporal and spatial resolution images in small
varietal plots commonly used in plant breeding is even more difficult and expensive using traditional
remote sensing platforms, and therefore UAVs seem a very attractive alternative [53–56].

Several studies using UAV-based remote sensing have been conducted to evaluate morpho-physical
characteristics of crops including crop growth, height, and vigor in plant breeding as indicators of
crop performance [57,58]. The potential of UAV-based remote sensing of crops has been demonstrated
in yield estimation [59], pest damage detection [54], physiological condition assessment [60,61],
and stress detection [39], including low-nitrogen stress [27]. Therefore, plant phenotypic responses
to biotic and abiotic stresses, growth, and yield prediction can be evaluated using remotely sensed
data [56]. For example, in a study of nitrogen response in maize, Zaman-Allah et al. [27], using
UAV-derived multispectral data, found significant correlation between maize yield and nitrogen stress
index (R = 0.40–0.79) and between crop senescence index and NDVI values (R = 0.84). Their findings
confirmed the utility of using UAV-derived remotely sensed data in field-based crop phenotyping.
Hairmansis et al. [62] used UAVs to evaluate rice varieties for tolerance to salinity. Calderón et al. [63]
and Garcia-Ruiz et al. [64] used UAV-based remotely sensed data to monitor citrus disease with up
to 85% accuracy. UAVs have also been used to monitor crop germination [65], vigor, and leaf area
index [53,66]. Recently, Sankaran et al. [65] used UAV in assessing emergence of spring wheat and
found good agreement (R = 0.86) with ground-based measurements. UAV-based remotely sensed
data can also be effective in detecting crop maturity [67], a key trait in variety selection. Similarly,
UAV-derived data can be used for such traits like plant height, canopy development, chemical damage,
nutrient deficiency or toxicity, insect damage, disease damage, and presence of weeds [22].

Evidence from previous studies has stimulated research interests to further refine the utility of
UAV-derived remotely sensed data in crop phenotyping. For UAV-derived remotely sensed data to be
useful in plant breeding and varietal selection, the ability to discriminate different varieties within
a single crop species using their spectral reflectance as they respond to disease infection is critical.
Using proximal sensing, Dhau et al. [68] confirmed the potential of remotely sensed data in detecting
maize streak virus (MSV) disease in maize. MSV (Genus: Mastrevirus; Family: Geminiviridae) is found
throughout SSA, causing the most severe viral crop disease on the continent [69,70]. MSV is obligately
transmitted by leafhoppers in the genus Cicadulina, mainly by C. mbila Naudé and C. storeyi. MSV
causes extensive damage to maize in the tropics (Africa and South America). This is exacerbated by the
rising temperatures, which promote development of vector populations [70]. Breeding for resistant or
tolerant varieties is the most economic way to combat the disease due to the lack of effective agronomic
and chemical control techniques. MSV-stressed plants are less able to effectively use light, leading
to reduced grain yield. Therefore, crop stresses may be sensed remotely due to temporal or spatial
variation in reflectance [71]. The spectral reflectance is controlled by the absorption properties of leaf
pigments (chlorophyll a and b, and carotenoids). Therefore, any change in pigment concentrations
relates strongly to the plant’s health status and productivity. In MSV-infected plants, the leaves become
streaked with narrow, broken, white, or yellow chlorotic stripes reducing the photosynthetic area of the
leaves. As the disease level increases, complete foliar chlorosis can occur in susceptible varieties because
of chloroplast destruction [72]. Therefore, individual variety pigments at canopy-level hold tremendous
potential for facilitating detection of MSV stress for varietal classification and estimating productivity
by measuring and interpreting their reflectance properties. Potential use of remotely sensed data to
detect plant diseases have been shown through comprehensive reviews [71,73] and empirical evidence
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using multispectral and hyperspectral remote sensing. Examples of diseases detection include head
blight in wheat caused by Fusarium [74,75] and soyabean root rot [76]. Yet, studies on the classification
of maize varietal response to disease (e.g., MSV) using UAV-derived remotely sensed data are limited
(to the best of our knowledge).

This study sets out to assess the utility of UAV-derived remotely sensed data for phenotyping
maize varietal response to maize streak virus (MSV) disease. We hypothesized that UAV-derived
multispectral imaging data is sensitive to MSV disease symptoms that cause distinct discoloration of
the aerial parts of maize varieties, and are able to discriminate varieties on the basis of their response
to disease infection.

2. Materials and Methods

2.1. Study Area

The study was carried out at Rattray Arnold Research Station (RARS) in Zimbabwe, Longitude
31◦12′41.35′′ E, Latitude 17◦40′20.07′′ S, and an altitude of 1360 m above sea level (Figure 1). The climate
is sub-tropical with a mean temperature range of 28 to 32 ◦C between November and April, and mean
annual precipitation of 865 mm per annum received between November and April. RARS represents
the mid-altitude moist environments in Zimbabwe, which is the main maize belt of the country.
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Figure 1. The location of the study area at Rattray Arnold Research Station. The figure on the right is
the aerial image of Rattray Arnold Research Station (Source: Google Earth images).

The trial was planted on 23 November 2018. The vegetative stage of the crop was in December
2018 and January 2019. Figure 2 shows the monthly rainfall; heat units; and maximum, minimum, and
mean temperatures during the crop growing period. The weather data was recorded using an advanced
automatic weather station Pro (supplied by Dacom Farm Intelligence, The Netherlands). The weather
station Pro was installed outside the experimental plots in the study area to record temperature,
relative humidity, rainfall, wind speed, wind direction, and radiation. Plant and insect growth and
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development depend on temperature, often described as heat units (HU). HU were calculated using
Equation (1):

HU = ((Maxi. Temp. + Min. Temp.)/2) − Threshold/Base Temp. (1)

where HU = heat units and base temperature = 10 ◦C.
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Figure 2. Monthly rainfall, heat units, mean, maximum, and minimum monthly temperatures during
the crop growing season (November 2018–April 2019).

2.2. Maize Varieties, Experimental Design, and Ground Truth Data

Twenty-five maize varieties were grown in a 5 × 5 partially balanced alpha lattice design (Figure 3).
A total of 75 six-row plots constituted the experimental area (25 varieties × 3 replications). Three known
check varieties representing resistant, moderately resistant, and susceptible responses to MSV were
included. Maize seeds were sown on a flat soil surface at 0.5 m within rows and 0.75 m between
rows spacing. Four seeds were planted per station and after germination thinned to two at 21 days
after sowing to achieve a final plant population of 53,333 plants ha−1. Uniform management was
applied to all varieties. Fertilizer application was done at a rate of 450kg ha−1 basal (13:26:13 – N:P:K)
at planting. Top dressing was applied at a rate of 450 kg ha−1 using ammonium nitrate (34.5% N)
fertilizer. Top dressing was split into two equal amount applications. The first half (225 kg ha−1)
of the top dressing was applied at early vegetative and the second half (225 kg ha−1) at booting
(pre-flowering) stage. A combination of manual hand weeding and herbicide application was done to
keep the experimental plots free of weeds.

To evaluate resistance to MSV, varieties need to be assessed under artificial inoculation where
the whole procedure is controlled. Every plant was artificially infested when four leaves had fully
expanded with mass reared viruliferous leafhoppers (Cicadulina mbila Naudé) [77] previously fed with
MSV infected maize plants.

The white lines on the left image of Figure 3 indicate plot divisions into 75 plots. The individual
gross plot area was 7.5 m × 4.5 m × 6 rows, and the whole experimental area was 126.5 m × 22.5 m
planted to 25 varieties. The ground truth MSV scores were taken on all 25 maize varieties in
all replications. Each plot was rated for MSV using visual scoring at mid-vegetative, flowering,
and mid-grain filling growth stages on a scale of 1 to 9. We used the visual scoring of disease severity
according to Eyal et al. [78], where 1 denotes resistant (absent to very slight symptoms) and 9 is
susceptible (very severe symptoms).
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Figure 3. Field layout showing (a) the experimental area (aerial image to the left with plots demarcated
using agricultural lime—white lines) taken using the unmanned aerial vehicle (UAV) RGB camera and
(b) the experimental layout (right) of 25 varieties × 3 replications (R1–3) in different colors. The insert
shows individual plot dimensions.

2.3. UAV Platform, Imagery Acquisition, and Processing

2.3.1. The UAV Platform

The imagery was acquired using a Parrot Sequoia multispectral camera mounted on eBee SQ UAV
(manufactured by Swiss Geo Consortium Sensefly, Cheseaux-Lausanne, Switzerland). The UAV is a
Delta Fixed Wing craft with greater speed and superior aerodynamics compared to multi-rotor craft.
It is designed strictly for agricultural purposes. The Parrot sequoia sensor is made up of 5 cameras, with
4 discreet bands: Green (0.53–0.57 µm), Red (0.64–0.68 µm), Rededge (0.73–0.74 µm) and Near-Infrared
(0.77–0.81 µm). The fifth camera functions as a composite color capture sensor (red, green, and blue
(RGB)). The sensor unit has a sunshine sensor with GPS, sunshine detection unit, and the Inertial
Measuring Unit (IMU). The GPS unit receives positional information so that the imagery produced is
subsequently georeferenced. The IMU captures the attitudes of the sensor at the times of image capture
(through rotations about the X, Y, and Z axes). The sunshine unit captures and records the sunshine
radiance value to allow for radiometric correction of the imagery. The imagery was captured using a
single grid mapping pattern, with flight plan designed to map an area in excess of the area of interest
to minimize the effects of radial distortion around the periphery of the area of interest. The flight
plan had the following parameters: 42.5 m altitude, with a ground sampling distance of 8 cm in the
RGB and 11.5 cm in the multispectral; 75% forward overlap and 75% side overlap as per Sensefly’s
recommendation. Table 1 shows some of the sensor parameters and spectral ranges for the Red (R),
Green (G), Rededge (RE), and Near-Infrared (NIR) bands of the camera used.
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Table 1. UAV sensor parameters and spectral ranges for the Red (R), Green (G), Rededge (RE), and
Near-Infrared (NIR) bands of the camera used in this study.

Sensor Specifications Spectral Features

Sensor type Multispectral sensor + RGB camera
Multispectral sensor 4-band

RGB resolution 16 mega-pixel (MP), 4608 × 3456 px
Single-band resolution 1.2 MP, 1280 × 960 px

Multispectral bands Green (0.55 ± 0.04 µm); Red (0.66 ± 0.04 µm);
Redeedge (0.735 ± 0.01 µm); Near Infrared (0.79 ± 0.04 µm)

Field of view 64◦

Data spectral resolution Green, Red, Rededge, NIR
Image spatial resolution 11.5 cm at 42.5 m altitude

2.3.2. Image Acquisition and Processing

Aerial imagery was collected at three different phenological stages (mid-vegetative, mid-flowering,
and mid-grain filling) using a UAV-mounted multispectral camera. The imagery was processed
using Sensefly’s Pix4D Structure from Motion (SfM) software (Cheseaux-Lausanne, Switzerland in
collaboration with Pix4D SA, Lausanne, Switzerland). SfM works by finding correspondence between
images, features and coordinates by tracking one imagery to the next using the scale-invariant feature
transform (SIFT). The SIFT uses the maxima from a difference-of-Gaussians (DOG) pyramid as features.
The precise mechanics of Pix4d’s structure from motion are proprietary and therefore cannot be
described further. These steps were followed during image processing:

(a) Initial processing involved key points identification, extraction, and matching; camera model
optimization—calibration of the internal (focal length) and external parameters (orientation) of
the camera; and geolocation GPS/GCP (Ground Control Points).

(b) Point cloud and mesh: this step builds on the automatic tie points, which entail point densification
and creation of 3D textured mesh.

(c) Digital Surface Model (DSM) creation to determine orthomosaics and vegetation indices maps.
Orthomosaics creation was based on orthorectification to remove perspective distortions from
the images to produce vegetation index maps with the value of each pixel with true-to-type
reflectance from the area of interest.

Comprehensible mosaics at high spatial resolution (11.5 cm × 11.5 cm) were produced using
four multispectral bands: Green (0.53–0.57 µm), Red (0.64–0.68 µm), Rededge (0.73–0.74 µm),
and Near-Infrared (0.77–0.81 µm). Spectral reflectance values were extracted and vegetation index (VI)
values were calculated per each variety. Maps of VIs were produced at all UAV flight/data acquisition
dates (phenological plant stages), showing the evolution of the maize varieties throughout the different
phenological stages (Figure 4). The maps are crucial in analyzing the differences between varietal
responses to environmental conditions. They provide rich information about the biotic stress that was
affecting the varieties. The prevalent biotic stress that was recorded was MSV. The maps generated
at the pixel scale allow obtaining precise data to examine the varietal variation for rapid assessment
of maize varieties in breeding programs to improve the selection process. Comparison of VIs maps
provides excellent visual analysis at different phenological stages (Figure 4).
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Figure 4. UAV-based multispectral images at different phenological plant stages. VIs = Vegetation
Indices; NDVI = Normalized Difference Vegetation Index; GNDVI = Green Normalized Difference
Vegetation Index; NDVIrededge = Rededge Normalized Difference Vegetation Index; SR = Simple Ratio,
CIgreen = Green Chlorophyll Index; CIrededge = Rededge Chlorophyll Index.

2.3.3. Reflectance Data Extraction

The imagery captured over the study site was stitched together in Pix4D mapper, which generates
two types of multispectral Orthomosaics: the NoAlpha and the transparent mosaics. These were
generated for each band of the imagery (Green, Red, Rededge, and NIR). The NoAlpha imagery was
used as input into QGIS for reflectance data extraction. A shape file was created by converting a
Google earth Key Markup Language (KML) file of the mapped area. The shape file was then used to
clip the imagery of the mosaic to the extent of the study area. Shape files were then drawn for each of
the compartments (individual plots) according to the experimental layout shown in Figure 3. The “Clip
Multiple Layers” plugin was used to simultaneously clip each of the band images using the shapefile
for each plot. Once the shapefile compartments were extracted for each shapefile, the maximum,
weighted mean, minimum reflectance, and their standard deviations were generated for each plot in
each layer. The average reflectance for each plot was determined by taking into account a buffer of
25 cm on each of the four plots sides to restrict the analysis to the center of the plot, making the net
plot area 7.0 m × 4.0 m. Ground-truth biophysical measurements for each micro-plot were taken from
the center of the plot, consistent with UAV data. Extracted reflectance data were exported into excel
spreadsheet format for each of the phenological stages. Vegetation indices were calculated from the
plots’ mean reflectance values.
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2.3.4. Vegetation Indices

For complete phenotyping, this study used reflectance values in multispectral bands corresponding
to Green (0.53–0.57 µm), Red (0.64–0.68 µm), Rededge (0.73–0.74 µm), and Near-Infrared (0.77–0.81 µm)
taken at mid-vegetative, flowering, and grain filling stages. The reflectance data were used to
calculate the normalized difference vegetation index (NDVI), green normalized difference vegetation
index (GNDVI), Rededge NDVI (NDVIrededge), Simple Ratio (SR), green Chlorophyll Index (CIgreen),
and Rededge Chlorophyll Index (CIrededge). Table 2 shows the VIs used in this study.

Table 2. List of vegetation indices (VIs) and their formulas used in this study.

Indices Equation Reference

NDVI NIR−Red
NIR+Red [46]

GNDVI NIR−Green
NIR+Green [79]

NDVIededge
NIR−Rededge
NIR+Rededge [80]

SR NIR
Red [81]

CIgreen
NIR

Green − 1 [82]

CIrededge
NIR

Rededge − 1 [82]

2.4. Varietal Classification

Prior to varietal classification, we ran descriptive and correlation analyses of ground truth and
spectral data. For determining classes, we used the Jenks natural breaks algorithm, which divides a
dataset into homogenous classes [83]. One of the requirements of the Jenks method is that the number of
desired classes be specified prior to applying the algorithm to the dataset. In this study, the mechanism
for determining the classes was based on the fact that for disease evaluation in plant breeding, the main
objective is to classify varieties into either resistant or susceptible. However, there are certain varieties
that fall in between the two classes. Thus, a third class (moderately resistant) was included and the
visual MSV scores were divided into three categories: resistant (1–3.4), moderately resistant (3.5–5.4),
and susceptible (5.5–9) for analysis.

The Random Forest model was then used to classify varietal response to MSV under artificial
inoculation. RF was chosen for this classification task due to its proven robustness and effectiveness
found in other studies for vegetation condition classification in comparison to other supervised
parametric and machine learning (ML) classifiers [84–87]. The RF algorithm also has in-built
functionalities for optimizing variables, making it more suitable for classifications that require selection
and ranking important variables [87,88]. Furthermore, this study required a robust method suitable for
sample sizes that are relatively small and well suited for cross-validation in accuracy assessment [87].
The data were split randomly into training (70%) and validation (30%) sets [89]. The general rule that
applies to remote sensing is also important for ML, that one should assess classification accuracy using
data not used in training the classifier [90]. Raw data was used for analysis without any correction for
experimental design or spatial variability. RF utilizes a specified number of variables (mtry) drawn
at each individual node from a random subset of the variables and computes the best split where a
subset of variables is used without pruning [91–93]. Classification accuracy is improved through RF
parameter optimization (mtry and ntree) [91,94]. The RF classification model was developed in this
study using the “caret” package within R version 3.6.1 [95].
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2.4.1. Variable Optimization

The selection of bands and VIs to use in varietal classification was carried out using the RF variable
importance measure. The most important variables were determined and those found important for
varietal classification were then used in the model. RF classifier estimates the importance of each
input variable to the classification by comparing the magnitude of out-of-bag error when a variable
is excluded, while retaining others [96,97]. Thus, RF ranks the variables according to the average
error reduction as a result of inclusion of that variable in the classification. Variables with high mean
decrease in errors are deemed important for classification and are therefore selected. The tuning of the
parameters (ntree and mtry) of RF guarantees high classification accuracy. The default ntree (n = 500)
was used. The mtry was optimized by testing all possible values [91,93].

2.4.2. Accuracy Assessment

Confusion matrices were used to assess classification accuracies [98,99]. The overall accuracy (OA)
denotes the likelihood that a randomly selected variety is correctly classified according to its reaction
to the MSV disease. Ground truth MSV scores were used to assess classification accuracy. The term
resistant here was defined as varieties showing no symptoms to very slight symptoms with no effect
on final yield; moderately resistant refers to a variety that exhibits symptoms of a partially suppressed
virus multiplication and with fewer symptoms than the susceptible. The OA, user’s accuracy (UA),
and producer’s accuracy (PA) were determined using the following equations,

OA =
1
N

r∑
i=1

nii × 100% (2)

where N is the total number in a confusion matrix, r is the number of rows, and nii is the number of
varieties correctly classified in a category.

PA =
nii

nicol
× 100% (3)

UA =
nii

nirow
× 100% (4)

The Kappa coefficient (Kc), which is also a measure of classification accuracy, was computed as
follows [100,101],

Kc = N
r∑

n=1

nirownicol

N2 −

r∑
i=1

nirownicol (5)

where nii is element at position ith row and ith column, nicol is column sums, and nirow is row sums.

3. Results

3.1. Varietal Response to MSV

Significant levels of MSV developed on susceptible varieties by their mid vegetative stages.
MSV measurements at the different stages were highly correlated (R = 0.88–0.95), thus subsequent
models were developed using average MSV severity. Figure 5 represents the mean disease severity
scores. Response among varieties differed significantly (p < 0.001) with a maximum severity mean
score of up to 7.3 for most susceptible variety on the 1–9 scale. Conversely, the most resistant variety
had a mean score of 1.8. Using ground truth data, of the 25 maize varieties tested, six varieties were
classified, in order of increasing mean MSV score, as resistant (V15, V9, V16, V13 V19, and V17), twelve
as moderately resistant (V20, V12, V8, V18, V6, V24, V7, V21, V23, V25, V10, and V14), and seven
varieties as susceptible (V22, V4, V3, V5, V11, V2, and V1) (Figure 5). The best top six varieties in terms
of resistant to MSV had mean scores ranging between 1.8 and 3.4.
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Figure 5. Mean disease response of the 25 varieties evaluated. The disease was rated on a score of 1–9,
where a mean score of 1–3.4 (resistant), 3.5–5.4 (moderately resistant), and 5.5–9 (susceptible). (V1 to
V25 = varieties 1 to 25.).

3.2. Comparison of UAV-Derived and Ground Truth Data

A descriptive analysis, including descriptive statistics and correlation of ground truth
measurements and UAV-derived data, follows. The analysis shows that there are no outliers in
any variable. Figure 6 shows phenotypic correlations between ground-truth (manual) scoring and
UAV-derived data at each phenological stage. Correlations between the UAV-derived data and
manual MSV scores are significant for the shown variables. In absolute terms, the highest correlations
between UAV-derived and manual scoring were Red band (R = 0.78), NDVI (R 0.75), SR (R = 0.74),
CIgreen (R = 0.83), CIrededge (R = 0.78), and GNDVI (R = 0.84). These significant agreements between
UAV-derived and ground truth data suggest that UAV-based phenotyping of MSV in maize is feasible.
This is critical because, to be effective, image-based phenotyping methods need to achieve a level
higher or equivalent to the accuracy achieved using manual phenotyping methods, and in a shorter
time and at lower costs.



Remote Sens. 2020, 12, 2445 13 of 27
Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 28 

 
Figure 6. Box plots of correlations for ground truth average MSV measurements and UAV-derived 
multispectral data. CIg = Green Chlorophyll index; CIre = Rededge Chlorophyll index; NDVIre = 
Rededge Normalized Difference Vegetation Index; G = Green; R = Red; NIR = Near-Infrared; RE = 
Rededge; SR = Simple Ration. 

3.3. Phenology-Based Classification Using UAV-Derived Data 

3.3.1. The Effect of RF Input Parameter on Classification 

Prior to evaluation of variable importance, we assessed the results of the user-specified 
parameters (mtry) using the default ntree (n = 500) on the classification accuracy. Figure 7 indicates 
that the default setting of mtry (n = 14) was the best, beyond which no further improvement in 
classification accuracy was achieved. The advantage of using the R statistical package is that it 
provides straightforward optimization techniques, which are not always available in most other 
commercially available remote sensing software packages [90]. The results showed that when 
optimizing the RF model, the default setting of mtry is sufficient (in this case mtry = 14) and RF was 
not sensitivity to the chosen mtry, agreeing with other studies by Liaw and Wiener [102], Díaz-Uriarte 
and Alvarez de Andrés [103], and Adam et al. [104].  

Figure 6. Box plots of correlations for ground truth average MSV measurements and UAV-derived
multispectral data. CIg = Green Chlorophyll index; CIre = Rededge Chlorophyll index; NDVIre
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RE = Rededge; SR = Simple Ration.

3.3. Phenology-Based Classification Using UAV-Derived Data

3.3.1. The Effect of RF Input Parameter on Classification

Prior to evaluation of variable importance, we assessed the results of the user-specified parameters
(mtry) using the default ntree (n = 500) on the classification accuracy. Figure 7 indicates that the default
setting of mtry (n = 14) was the best, beyond which no further improvement in classification accuracy was
achieved. The advantage of using the R statistical package is that it provides straightforward optimization
techniques, which are not always available in most other commercially available remote sensing software
packages [90]. The results showed that when optimizing the RF model, the default setting of mtry is
sufficient (in this case mtry = 14) and RF was not sensitivity to the chosen mtry, agreeing with other studies
by Liaw and Wiener [102], Díaz-Uriarte and Alvarez de Andrés [103], and Adam et al. [104].
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Figure 7. Impact of the number of variables attempted at each node (mtry) on RF classification performance.

3.3.2. Classification with All Variables

Figure 8 shows all variables used for classification. The different variables were ranked as a measure
of their importance in the classification process. The determination of variable importance identified
the band(s) and VI(s) that are significant in the classification. An analysis of the four bands at different
phenological stages indicates that only Red (vegetative and flowering) and Green (vegetative) bands were
ranked in the top ten important variables as significant for classification process using our data. On the
other hand, examination of the six VIs shows that five VIs (CIgreen, GNDVI, CIrededge, NDVI, and SR)
measured at vegetative stage were selected as important variables for classification of the varieties by the
RF model (Figure 8). The overall accuracy of 68.2% (Kc = 0.51) was achieved using all variables. However,
to improve the classification accuracy, variable optimization was implemented using RF.
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Figure 8. Variable importance at different phenological stages used in the classification process without
optimization. NDVI = Normalized Difference Vegetation Index; GNDVI = Green Normalized Difference
Vegetation Index; NDVIrededge = Rededge Normalized Difference Vegetation Index; SR = Simple
Ratio, CIgreen = Green Chlorophyll Index; CIrededge = Rededge Chlorophyll Index.
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3.3.3. Variable Optimization

Variable optimizing was implemented on all the thirty variables, and only seven variables (i.e., two
bands and five VIs) were selected as important using the RF OOB (Figure 9). During optimization the
RF model dropped less important variables. Dropping less important variables has been confirmed in
others studies to enhance the performance of RF in classification [87,104]. When variable importance is
very low, it either means the variable is not important or it is highly collinear with one or more other
variables. The two spectral bands (Red and Green) at vegetative stage were retained as important.
A total of five VIs (CIgreen, GNDVI, CIrededge, SR, and NDVI) at vegetative stage were selected. All the
selected variables by the RF model for classifying different varieties were spectral bands or derived
VIs measured at mid-vegetative stage (Figure 9). Therefore, mid-vegetative appeared to be the most
appropriate phenological stage for accurate classification of maize varietal response to MSV using
UAV-derived multispectral data with RF under artificial MSV inoculation. This might be because after
flowering, tassels could mask the detection of MSV by the multispectral cameras.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 28 
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bands and vegetation indices. The vertical dotted line indicates the cut-off point for selected variables.
NDVI = Normalized Difference Vegetation Index; GNDVI = Green Normalized Difference Vegetation
Index; NDVIrededge = Rededge Normalized Difference Vegetation Index; SR = Simple Ratio, CIgreen
= Green Chlorophyll Index; CIrededge = Rededge Chlorophyll Index.

The variable importance approach used in this article considers each variable individually,
assuming all variables are totally independent and not correlated in any way. However, two or more
variables may be collinear. One important advantage of RF is that it has functionalities for dealing
with collinear variables. To identify if variables are correlated, a correlation matrix was constructed in
R at different phenological stages. Highly correlated variables indicates that the variable is completely
predictable using the other variables, which means it could be dropped without affecting model
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accuracy. For example, the CIgreen and GNDVI at vegetative stage were highly correlated (R = 0.991).
Thus, similar classification results can be achieved using either one of the two. Similarly, SR and NDVI
at vegetative stage (R = 0.966), CIrededge and NDVIrededge (R = 0.997) at flowering, CIgreen and GNDVI
(R = 0.997), and SR and NDVI (R = 0.988) at grain filling are highly correlated. The discussion of
multicollinearity of these variables is beyond the scope of this article; therefore, the detailed matrix
results of multicollinearity are not shown.

3.3.4. Classification Using Optimized Variables

Table 3 shows the results of varietal classification after variable optimization. Use of optimized
UAV-derived VIs resulted in increased varietal classification accuracies into different classes (resistant,
moderately resistant, and susceptible) compared to variables without optimization. The results indicate
a notable improvement in accuracy of varietal classification using optimized variables. The performance
of the RF model in classifying the varieties was improved through variable optimization, with the RF
model achieving overall varietal classification accuracies of 77.3% (Kc = 0.64) with optimized variables
compared to 68.2% (Kc = 0.51) without variable optimization, representing an improvement of ~13.3%.
Furthermore, optimization reduced the number of variables from thirty to seven, which were then
used by the RF model (Figure 9). Improvement in classification accuracies obtained in this study
agrees with previous work by Adam et al. [104] and Chemura et al. [87], who found improvements in
classification accuracies when variables are optimized. Moreover, our results are comparable to the
accuracies found by Sankaran et al. [105] using ground-based sensors.

Table 3. Classification accuracies using optimized variables (all seven selected variables were at
vegetative stage). PA and UA are producer’s and user’s accuracy, respectively.

Resistant Moderately Resistant Susceptible Total UA (%)

Resistant 4 1 0 5 80
Moderately resistant 1 7 1 9 77.8

Susceptible 0 2 6 8 75
Total 5 10 7 22 -

PA (%) 80 70 85.7 - -
Overall accuracy (%) 77.3 - - - -

Kappa coefficient 0.64 - - - -

4. Discussion

The recent progresses in the use of sensing and imaging systems, including UAV-derived data
with high spatial (submeter) and temporal (daily/weekly) resolution, present a step-change towards
data availability and turnaround time in varietal analysis for quick and robust high-throughput plant
phenotyping in plant breeding programs. This study set out to assess the utility of UAV-derived
multispectral data for improved phenotyping of maize varietal response to MSV disease under field
conditions. The UAV-derived VIs maps produced using UAV-derived data show comprehensive
temporal and spatial variations at varietal level (Figure 4), providing significant information about
the variability in varietal response that can be explained by varietal interaction with the MSV disease.
Although UAV-derived multispectral imageries have limited spectral range and resolution, they offer
robust spatial and temporal resolutions that allow variation associated with different varieties to be
quantified. Maize varieties are evaluated for disease resistance to select appropriate varieties for the
target production environment, to address global food demand and responding to changing climate
conditions. Undoubtedly, the continuing climate changes are threatening the currently vulnerable
global food security in a number of ways, as well as exacerbating major crop diseases and creating
weather conditions conducive for the emergence of new devastating diseases in major food-producing
regions. Therefore, the call for intensified crop breeding efforts and the need to bring phenotyping
up to speed with genomics by harnessing the power of computing, robotics, machine learning (ML),
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artificial intelligence, and image analysis is urgent, if we hope to meet the global food demand to feed
10 billion people by 2050.

4.1. Comparison of UAV-Derived Data and Ground Truth Measurements

There were generally strong correlations between UAV-derived data and ground-based MSV
scoring in this study, suggesting the value of UAV-derived data in plant phenotyping. These are
encouraging results given the bottlenecks experienced in manual phenotyping, especially in plant
breeding where screening of a large number of varieties is needed before suitable ones are selected for
advancement, release, and commercialization. Our results agree with Garcia-Ruiz et al. (64) who found
significant correlation between UAV-based data and the ground truth measurements for detection of
bacterial Huanglongbing (Citrus Greening) disease in citrus trees. Jarolmasjed et al. [106] compared
UAV-derived multispectral imaging data and found significant correlation with ground truth rating of
fire blight disease (Erwinia amylovora) in apples. Similarly, Mahlein et al. [107] also reported a significant
agreement (R2 = 0.89) between NDVI and ground truth leaf disease severity with a classification
accuracy of 80% in sugarbeet Cercospora leaf spot. Jansen et al. [108], using noninvasive spectral
phenotyping to screen Cercospora disease resistance in sugar beet, similarly established significant
correlations between spectral data and ground truth scores confirming the potential use of remotely
sensed data in disease resistance phenotyping.

However, most of these studies were based on snapshot (single phenological stage) spectral
data collection. Our approach in this study was based on multitemporal spectral data. For example,
Garcia-Ruiz et al. [64] recommended that future work should study temporal effects in aerial remote
sensing of plant diseases. Thus, using multitemporal data, we identified not only the optimal bands and
indices, but also the ideal growth stage for accurate varietal phenotyping. The results demonstrated
that VIs measured at vegetative stage are the most important for classification of maize varietal response
to MSV. The MSV disease symptoms on a susceptible variety result in changes in color, size and shape.
Our results show that these morpho-physical changes can be measured accurately using spectral data
at the vegetative stage. Furthermore, measurements after flowering could suffer from masking effects
by the flowers (tassels) and old senescing leaves at mid-grain filling.

4.2. RF Classification Performance Using Spectral Bands and VIs

The results of this study show that UAV-derived VIs produced plausible varietal classification
and that the majority of selected important variables were VIs compared to spectral bands (Figure 9).
This agrees with previous studies, for example, Chemura et al. [87] who found vegetation indices to
perform better than spectral bands in discriminating coffee (Coffea arabica) leaf rust (Hemileia vastatrix)
using RF. Furthermore, the overall classification accuracy results obtained in this study using
UAV-derived multispectral VIs are comparable to similar studies. For example, Garcia-Ruiz et al. [64],
using UAV-based multispectral data from six bands and seven indices for classification and identification
of citrus greening disease, obtained accuracies ranging from 62% to 82% using linear discriminant
analysis and between 63% and 85% using support vector machines. As indicated above, our study
demonstrates that crop phenological stage is critical when assessing varietal variation in crop
phenotyping using UAV remotely sensed data. Most of the best selected variables were measured at
the vegetative stage (Figure 9). This is important in field-based high-throughput plant phenotyping for
characterizing maize varieties at multiple scales, and at different levels of resolution and dimensionality
using remote sensing. Thus, aerial imaging using UAVs can offer the plant breeding, phenotyping, and
remote sensing community the ability to quickly record high temporal and spatial resolution data for
maize varietal analysis and allow rapid, cost-effective, and comprehensive data-driven variety selection
and release in plant breeding programs. Robust plant phenotyping is critical in plant breeding because
it forms the basis for selection of new varieties. However, UAVs do not provide a substitute for the
breeder’s eye, but augment the effort and inform better phenotype-based selections [24]. The advantage
of the UAV-based imaging data is the high-throughput capability and ability to measure multiple traits
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instantaneously [109,110]. Furthermore, UAV-based phenotyping does not suffer from low repeatability
associated with manual records [111]. Thus, UAVs eliminate subjectivity and reduce labor costs, spatial
singularity, and fatigue associated with manual methods [87,112]. Additionally, the naked eye may not
be able to identify physiological/metabolic differences caused by different stresses [113], which can
be possible with imaging tools [114]. For example, Nutter et al. [115] found improved precision in
characterizing bent grass dollar spot (Agrostis palustris Huds.) using spectral data compared to a visual
scoring method. Condorelli et al. [111] reported higher repeatability when screening drought-adaptive
traits in wheat using UAV phenotyping methods compared to ground-based methods.

4.3. Variable Optimization Effect on RF Algorithm Classification

In this study, RF successfully ranked each variable importance both UAV bands and VIs on
the classification output (Figures 8 and 9), providing an insight into which UAV-derived bands and
VIs are critical in the classification process using our data. The classification improved by ~13.3%,
when optimized variables were used indicating that variable importance is efficient and improves
RF modeling. There are various reasons why variable optimization achieves better classification
results in comparison to using all available variables. For example, Chemura et al. [87] reasoned that
multispectral sensors are meant for multiple purposes that range from water, agricultural, forestry to
urban applications, and therefore just a limited number of parameters may be useful for the intended
purpose. Furthermore, several variables maybe correlated or may not provide useful information,
and these are dropped in the classification and modeling process. The removal of these redundant
variables enables the model to achieve better results, agreeing with studies by Pal and Foody [116] and
Chemura et al. [87].

Machine learning algorithm classification accuracy is affected by training data quality, sample size,
and user-specified parameters [117]. In this study, the sample size was relatively small (n = 75), split
randomly into training (70%) and validation (30%), and a robust RF model suitable for such scenarios
was used, consistent with the recommendation by Maxwell et al. [90]. In parametric maximum
likelihood classifiers, the rule of thumb requires the training sample be at least 10 times the number of
variables [118]. However, for ML classifiers, the literature is silent on the optimum size of the training
sample [90]. Huang et al. [117] posit that in ML, the size of the training sample may vary depending on
the ML algorithm used and the number of input variables. On the other hand, Lu and Weng [119] and
Li et al. [120] recommended a large training data set regardless of the algorithm used. Indeed, Huang
et al. [117] showed that increased training sample size gave higher accuracy. However, in practice,
there is a need to balance the size, quality, cost, and the limited time available. RF has been found
to be insensitive to the size of training sample compared to single decision trees methods [121,122],
and has proved to be appropriate for small samples in disease classification in coffee leaf rust [87],
in Sirex noctilio infestation in pine trees [123], and classification of alfalfa (14 training samples) and oats
(with only five training samples) [90].

4.4. The Utility of UAV-Based Multispectral Data in High-Throughput Phenotyping

Most of the recent studies that systematically attempt to validate spectral indices in plant
phenotyping at field scale are based on proximal measurements [45,49,87]. However, proximal sensing
is associated with the challenges alluded to above. It is difficult to use when fields are under irrigation
or pesticides applications, and not practical for rapid evaluation of multiple varieties at scale and
high temporal resolution in breeding programs [20,50]. Furthermore, proximal remotely sensed data
can fail a precision test for high-throughput because of fluctuations in weather conditions in between
measurements (i.e., from start to finish), which may take one to several hours where large numbers of
breeding plots are involved [49]. Extended time taken in manual scoring introduces variation due to
phenological changes, environmental conditions, and recorder fatigue thereby affecting repeatability
and leading to inaccurate data and even unjustified conclusions [111,124]. Speed is therefore essential
in achieving high precision in high-throughput phenotyping. Although this study did not compare
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the time difference between manual scoring and UAV-based phenotyping, researchers have found
UAV-based phenotyping to be 10 times faster than manual scoring [125]. Similarly, Guan and
Nutter [126] found remote sensing to be 15 times faster at estimating alfalfa leaf disease. Therefore,
UAV offers real-time and fast crop phenotyping and will reduce dependence on time-consuming and
resource-intensive manual phenotyping in plant breeding and varietal evaluation, leading to speeding
up breeding and selection processes.

The opportunities presented by UAV-derived data have to take into account the practical limitations
imposed by field conditions to the applications of the technology where a complex of different diseases
are existing in the same field or area of interest. The UAV-derived spectral bands and indices applied
in this study are not disease-specific (to the best of our knowledge), and therefore can only be useful in
quantifying different levels of infestation or damage when a single disease affects the crop with no ability
to distinguish between different types of diseases. This makes the current UAV-derived spectral data
relevant in phenotyping of disease with a prior knowledge of the type of disease that exists in the target
area of interest. Studies into development of disease-specific VIs have been reported [107,127,128].
However, this is an area that needs further exploration. In addition, although VIs derived from
multispectral data are informative, they utilize less than 1% of available spectra [129], and as such
may lack detail compared to, for example, hyperspectral data. Therefore, further investigations are
necessary to refine the use of UAV-derived data in high-throughput crop phenotyping. It is also
noteworthy to mention that this study only used one ML algorithm (RF), while there are several other
classifiers, which can be used.

4.5. Leveraging High-Throughput Image-Based Phenotyping Technology to Fast-Track Crop Improvement
under Changing Climate Conditions

MSV disease can be controlled using systemic insecticides that control the vector through spraying
or treatment of seed. However, spraying and use of seed treatments against MSV are expensive and
beyond the reach of most of the resource-poor farmers. Furthermore, spraying and seed treatment
options offer only temporary protection when disease pressure is severe. The development and
cultivation of varieties tolerant or resistant to MSV is arguably the most cost-effective and climate-smart
way of preventing MSV epidemics and protecting farmers’ livelihoods. To breed for resistance, breeders
evaluate large numbers of lines or varieties to select suitable ones for commercialization. However,
as previously alluded to, rapid and accurate phenotyping of traits associated with grain yield is presently
creating serious bottlenecks [20,28]. Robust phenotyping is critical in plant breeding programs because
it forms the basis for new variety selection. In this study, our method has demonstrated the utility
of image-based high-throughput phenotyping to relieve the breeding community of phenotyping
bottlenecks. Image-based high-throughput phenotyping technology will help accelerate crop breeding
in the face of changing climate conditions and associated new challenges. This will be achieved
by screening large numbers of varieties for multiple traits with higher accuracy and at reduced
costs [35]. In addition, high-throughput image-based phenotyping will enable the evaluation of
physiological/metabolic differences caused by different stresses [113], which may not be possible with the
naked eye but possible with imaging tools [114,130]. This will help broaden the genetic variation in the
germplasm pool if such traits are accumulated in the breeding pipeline. Furthermore, high-throughput
phenotyping data can be combined with genomic data to further improve genetic gain [130–132].
The key to the successful application of image-based high-throughput plant phenotyping for diseases
and other stresses lies in our ability to develop reproducible protocols that are user-friendly, including
image-based data retrieval, analysis, and interpretation. This will increase crop genetic improvement
efficiency and our ability to satisfy future food requirements, especially as climate change accelerates.
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5. Conclusions

This study evaluated the utility of UAV-derived multispectral data with the RF algorithm
to classify different maize varieties under artificial MSV inoculation. The results showed that
UAV-based multispectral data combined with advanced classifier RF analysis can be useful in
field-based high-throughput maize phenotyping. Therefore, we conclude the following.

1. UAV-based remotely sensed data provides plausible accuracy, thereby offering a step-change
towards data availability and turnaround time in varietal analysis for quick and robust
high-throughput plant phenotyping in maize breeding and variety evaluation programs, to address
the vagaries brought by climate change and meet global food security. Specifically, the study has
demonstrated that VIs measured at vegetative stage are the most important for classification of
maize varieties under artificial MSV inoculation using UAVs.

2. UAV-derived remotely sensed data correlates well with ground truth measurements, confirming
the utility of a UAV approach in field-based high-throughput phenotyping in breeding programs,
where final varietal selection must be based on extensive screening of multiple genotypes. This will
reduce selection bottlenecks caused by manual phenotyping and offers decision support tools for
large-scale varietal screening.

3. Variable optimization improves classification accuracy when compared to the use of variables
without optimization. Thus, the RF classifier is a robust algorithm capable of determining the
depth of variable importance and their rankings using our data.

4. Image-based high-throughput phenotyping can relieve the breeding community of phenotyping
bottlenecks usually experienced when evaluating large populations of genotypes in order to
accelerate crop breeding and selection addressing multiple stresses associated with climate change.

The study shows that cost-effective UAV-derived multispectral data is capable of classifying maize
varieties susceptible to MSV with good accuracy, and therefore can complement and eventually replace
visual ratings, especially for large-scale canopy-level measurements when multiple genotypes are
evaluated in plant breeding. However, current VIs are not disease-specific and therefore can only be
useful in different levels of infestation or damage due to a singly present disease with no ability to
distinguish between complex types of diseases. This makes the current UAV-derived spectral data
relevant in phenotyping of disease with a prior knowledge of the type of disease that exists in the
target area of interest. Three research gaps have been identified for further inquiry: (i) comparison of
multiple ML algorithms to identify the best performing classier(s); (ii) evaluation of whether UAVs
mounted with hyperspectral high-resolution cameras improve detection and classification accuracies;
and (iii) development of disease-specific VIs.
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