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Abstract. The International Center for Agricultural Research in the Dry Areas
(ICARDA) has a unique germplasm collection of barley, among many other crops
that it holds in its genebank. This collection contains landraces and barley wild
relatives and most of them are georeferenced. Distribution of genetic resources is
a core genebank activity aiming at responding to requests from various users in-
cluding breeders, researchers, farmers, etc. ICARDA has developed over the last
decade an efficient approach for better targeting adaptive traits called the Focused
Identification of Germplasm Strategy (FIGS). FIGS approach links adaptive traits
to environments (and associated selection pressures) through filtering and machine
learning and it focuses on accessions that are most likely to possess trait specific
genetic variation. In this paper, we present a work of predictive characterization on
ICARDA barley collection using the FIGS approach and its algorithms combining
several machine learning methods, and using several characterization traits. Most
of the studied traits have shown a high predictability. Outcomes from this analysis
are then used to make a predictive characterization of the entire ICARDA barley
collection by assigning probabilities of each trait to the non-evaluated accessions.
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1. Introduction

Genebanks worldwide hold collections of plant genetic resources for long-term conser-
vation and maintain crop diversity for current and future use by crop improvement re-
search, direct use and training. Most of genebanks are facing major problems of size and
organization. Some collections have grown so large making their main activities which
are the conservation and the use of the genetic diversity challenging. Another challenging
aspect of plant genetic resources conservation is the lack of information about accessions
specifically a precise evaluation information. This is mainly due to the challenge of eval-
uation the entire collection of a genebank. However, several genebanks have done a great
job on maintaining and curating passport information. But passport data does not help a
user of the genebank to discern which accession in a database is potentially containing
the trait of interest. The concept of core and mini-core collections have been proposed
as a strategy that allows the use of small portion of a germplasm collection to represent
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the total collection. Core collections [1],[2] should be dynamic and need to be adjusted
when additional germplasm and new information become available. The remaining ac-
cessions in the collection should however still be conserved as a secondary source of
diversity. Concerns about core collections include rendering the reserve collection more
vulnerable to loss, lack of representation of rare, endemic alleles, and poor relation to the
specific needs of users. To address the latter concern, specialized core collections have
been established around a particular trait, region, or type of material.
For adaptive traits, core and mini-core collections may not capture the needed diver-
sity [3]. An alternative to random selection and core collections, the use of the focused
identification of the germplasm strategy (FIGS), which is a trait-based approach, as-
sists genebank managers identify desired genetic material with high probability of hav-
ing the sought trait. In the last 10 years, ICARDA in collaboration with Vavilov in-
stitute in Russia and GRDC-Australia have invested in the development of FIGS that
uses germplasm collection site agro-climatic and edaphic information to predict adaptive
traits. The premise behind this approach is that the environment under which wild mate-
rial and landraces will drive the evolution and selection of adaptive traits that could be of
use to plant breeders. It seeks to determine and quantify relationships between collection
site agro-climatic conditions and the presence of specific traits, such as disease resistance
or heat resistance. FIGS has been successfully used to identify sources of resistance for
several useful traits for breeding globally such as Sunn pest in wheat in Syria, Russian
wheat aphid in bread wheat [4], abiotic stresses, such as drought adaptation in Vicia faba
L. [5], resistance to stem rust in bread and durum wheat in [6] and [7], and stem rust and
stripe rust in accessions of wheat landraces in [8] and [9]. FIGS is also as an efficient
tool of linking genebank accessions to a trait of interest [10].

In this paper, we present a work of a predictive characterization on for ICARDA
barley collection building on the FIGS approach by means of:

1. Assessing machine learning predictability for barley collection’s characterization
traits

2. Using the modeling outcomes to make a predictive characterization of the en-
tire ICARDA barley collection by assigning probabilities to non-evaluated acces-
sions.

2. Materials and Methods

2.1. Datasets Description: Accessions and Traits

ICARDA accessions database contains more than 32000 barley accessions including
around 2400 wild relatives, distributed worldwide but collected mainly from the Fertile
Crescent, North Africa, Ethiopia, East Europe and South East Asia (see Fig.1). ICARDA
barley collection is ranked the second globally and represents 18% of the barley ac-
cessions conserved worldwide. More than 40 traits are used at ICARDA, as part of
the genebank conservation effort, to characterize barley accessions including phenology,
growth habit, morphology, yield components and some diseases. In this study, we used
eight characterization traits as presented in Table 1. Table 1 showed a description of the
traits that we are using for modeling in this study. The number of accessions evaluated
is however greater than the number of geographic sites as we have multiple accessions
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per sites in several cases. The sites are characterized by geographic coordinates (Lon-
gitude and Latitude). These traits were used as a response or dependent variable in the
modeling.

Figure 1. ICARDA barley accessions

Table 1. Characterization traits used for barley modeling

Trait Accessions evaluated Unique site evaluation trait values
Days to heading 15027 3779 early, late
Days to maturity 15012 3775 early, late
Kernel weight 5413 1881 low, high
Productive tillering capacity 10286 2844 low, high
Kernel covering 18220 4562 naked, covered
Kernel row number 20256 4610 six-rowed, two-rowed
Growth class 18376 3932 winter, spring
Yellow rust 1683 756 resistant, susceptible

2.2. Predictors: WorldClim and ENVIREM Data

In the modeling, we used environmental data from WorldClim1 and Envirem2 databases
as predictors.

WordClim Data WorldClim is an open access database providing global climatic layers
describing past climatic profiles of collection sites and intended for spatial modeling or
mapping. It includes average, monthly minimum and maximum temperatures, precipita-
tion and bioclimatic variables [11].

1https://worldclim.org/
2https://envirem.github.io/
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ENVIREM Data ENVIronmental Rasters for Ecological modeling (ENVIREM) is an
open database of climatic and topographic variables used in species distribution mod-
eling and other applications. The database contains 41 variables including aridity and
potential evapotranspiration [12]. An example of rasters from the ENVIREM database is
represented in the figure 2.

Figure 2. Annual Mean Temperature Distribution

2.3. Approach

The approach we used in this work is FIGS, which is a method based on two distinct
pathways. The first pathway is using filtering when no evaluation data is available. This
approach mimics the adaptation patterns of a trait and applies same selection pressure
exerted on plants by evolution to develop a best subset containing accessions with high
probability of having the adaptive traits. The second pathway is the machine learning ap-
proach used when partial evaluation of the collection is available. The machine learning
algorithms find a function that links adaptive traits, environments (and associated selec-
tion pressures) with genebank accessions.
In the modeling, the following machine learning algorithms were used: K-nearest
neighbours(KNN)[13], Support Vector Machines(SVM)[14], Random Forest(RF)[15],
Artificial Neural Networks(NNET)[16] and Bagged Carts(BCART)[17]. Each machine
learning model was tuned to select best tuning parameters using a training set and then
the best model was selected between different machine learning models based on several
metrics including accuracy, specificity and Kappa. These metrics were computed on the
test set.
Then each trait was predicted for non-evaluated ICARDA barley accessions and we as-
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signed probability of having the trait. The variable importance on the training set for
all predictors were extracted from the best model. The importance of a predictor from a
machine learning algorithm is generally calculated based on the increase in the model’s
prediction error after permuting the predictor.

In this study, R language was used, caret library was used for machine learning[18],
rworldmap for geographic plotting[19].

3. Results

All studied traits showed high to medium predictability with a modeling accuracy be-
tween 0.757 for productive tillering capacity and 0.968 for kernel covering. Random
forest(RF) model was selected as the best model for 6 traits while BCART was selected
as the best model for two traits, see Table 2. Kappa was high for all traits, ranging from
medium (between 0.5 and 0.6) and substantial (more than 0.6) showing that our predic-
tions are not happening through random predictions. Sensitivities and specificities were
also high for all traits validating the high predictability of the studied traits using envi-
ronmental characterization of the landrace collection sites.

Table 2. Summary of modeling results

Trait Best model Accuracy Kappa Sensitivity Specificity
Days to heading BCART 0.789 0.575 0.752 0.822
Days to maturity RF 0.772 0.543 0.784 0.761
Kernel weight BCART 0.847 0.687 0.868 0.819
Productive tillering capacity RF 0.757 0.514 0.667 0.847
Kernel covering RF 0.969 0.759 0.711 0.99
Kernel row number RF 0.862 0.634 0.935 0.667
Growth class RF 0.865 0.533 0.484 0.97
Yellow rust RF 0.815 0.561 0.872 0.686

Using the best model from machine learning modeling, the non-evaluated acces-
sions for each trait are predicted using class probabilities at the threshold of 0.5. The
predicted probabilities were plotted as a histogram (see Fig.3) to assess the patterns of
class probabilities and show the power of the modeling in distinguishing between classes
of a trait. Different patterns were found for different traits in separating between classes.
Growth class and productive tillering capacity showed a clear separation between pre-
dicted classes while the models for the remaining traits had a medium capacity in sepa-
rating between classes. Model for kernel weight and yellow rust had almost no capacity
in separation between trait’s classes. We extracted the variable importance from the best
model for each trait. Figures 4 and 5 show two examples for kernel weight and covering.
Potential evapotranspiration (PET) of the driest month, Precipitation of Driest Month
and distance to rivers showing also the availability of water were important factors influ-
encing whether an accession has a high or low kernel weight. On the other hand, mean
temperature of wettest quarter and precipitation of warmest quarter were the climatic
variables the most influencing whether a barley accession has a covered or naked kernel.
Figure 6 is showing a map of the trait and the predicted characterization for the entire
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barley collection at ICARDA for trait kernel row number.

Figure 3. Predicted probabilities histograms for the studied trait (blue and orange are for positive and negative
class respectively)

Figure 4. Variable importance graph for the kernel covering model
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Figure 5. Variable importance graph for the kernel weight model

Figure 6. Classes and predictions map
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4. Conclusion and Future Work

This work shows that FIGS approach through machine learning algorithms were efficient
in finding environmental signals for the characterization traits measured as part of con-
servation efforts done by the ICARDA genebank. The high predictability of models for
all traits was used later in predicting the non-evaluated accessions hold at ICARDA to
assign probabilities for the characterization traits to accessions and stored in ICARDA
genebank database and used as predictive characterization. This will assist genebank
managers at ICARDA on replying more precisely to seed requests from users. This work
will be enhanced by using molecular markers techniques to finetune further FIGS ap-
proach.
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