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Seed traits of bread wheat, including the seed size that is considered to be associated
with early vigor of the crop and end-use quality, are valuable to farmers and breeders.
In this study, a collection of 789 bread wheat landraces, held in-trust at the genebank
of the International Center for Agricultural Research in the Dry Areas (ICARDA) were
scanned for seed morphometric traits using GrainScan. Diversity analysis using the 12k
DartSeq SNP markers revealed that these accessions can be grouped into five distinct
clusters. To evaluate the performance for early selection from genebank accessions,
we examined the accuracy of genomic selection models with genomic relationship
that these landraces accounted for. Based on cross-validations, prediction accuracies
for seed traits ranged from 0.64 for seed perimeter to 0.74 for seed width. The
variability of prediction accuracies across random validations averaged at 0.14, with a
range from 0.12 to 0.18, suggesting stable predictability and reproducible results even
with a collection of much greater genetic diversity from genebank accessions. Adding
the climatic relationship matrix between accessions based on passport information
improved the predictive ability by 8%. Our results on seed traits demonstrated the
capacity for estimating important agronomic phenotypes for genebank accessions
directly based on genomic information, further advocating the advance in genomic
technologies for identifying parental germplasm as potential donors of beneficial alleles
for introgression.

Keywords: wheat, genomic selection, seed characteristics, landraces, genebank

INTRODUCTION

Wheat is one of the most important cultivated food crops, and its cultivation goes back some
11,000–10,000 years ago (Nesbitt, 2002; Zohary et al., 2012). Wheat has been the fundamental staple
food for the majority of human civilizations in Europe, West Asia, and North Africa (Curtis et al.,
2002) because of its crucial nutritional value and its significant contribution to daily energy intake.
Wheat is very diverse and widely adaptable (Levandi et al., 2014), and its gene pool is rich in genes
that can be used to improve resistance/tolerance to biotic and abiotic stresses and micronutrient
availability. However, to secure an efficient continuum between the conservation and the use of
genetic resources, wheat accessions need to be well-characterized and evaluated for a range of traits.
The study of this phenotypic diversity will result in better use in breeding programs.
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The major obstacle to enhance the use of genebank material
is the lack of adequate characterization and evaluation data, and
thus, the inability to adequately respond to inquiries for these
accessions that directly meet the needs of the users. Several
methods of linking traits to a genebank accession have been
reviewed (Anglin et al., 2018) including phenotyping of large
or random samples, core and mini core collections, the focused
identification of the germplasm strategy (FIGS) and Generation
Challenge Program subsets and use of molecular techniques
and genome wide association studies (GWAS). FIGS is a useful
approach developed at the International Center for Agricultural
Research in the Dry Area (ICARDA) to identify subset of
accessions with a high probability of containing specific target
traits based on the ecogeographical information of the sites
where the populations were collected (Mackay and Street, 2004).
Success in FIGS has been seen in the identification for sources
of resistance to Sunn pest in wheat in Syria (El Bouhssini et al.,
2009), and for Russian wheat aphid in bread wheat (El Bouhssini
et al., 2011) and further in the identification of the traits related
to abiotic stresses, such as drought adaptation in Vicia faba L.
(Khazaei et al., 2013). FIGS, however, has not been used to study
quantitative traits such as phenology and morphology.

Grain weight is one of the main wheat yield components, and
grain size and shape have a direct impact on wheat market value.
While flour is extracted from the endosperm, the inner part of the
grain, and therefore spherical grains tend to produce more flour
per kilogram of grain milled due to the lower surface/volume
ratio (Evers et al., 1990). Also, the grain size was found to be
associated with various characteristics of flour, such as protein
quality and hydrolytic enzyme activity, which in turn determine
baking quality and end-use suitability (Evers, 2000). Grain size in
wheat is associated with seedling emergence and development,
primarily through the influence on the rates of expansion of
the first two leaves (Aparicio et al., 2002). Furthermore, grain
weight has been associated with grain yield in a number of diverse
environments of contemporaneous varietal panels (Lopes et al.,
2012). In addition, research has found higher grain weight plays
an important role in the robust establishment of bread wheat
seedlings subjected to salinity stress (Grieve and Francois, 1992).

Previous studies have found larger grain size and shape
variation in bread wheat landraces and old hexaploid species
as compared to the tetraploid Triticum species (Gegas et al.,
2010). This large variation has, however, decreased in modern
germplasm, suggesting a breeding-related bottleneck on grain
shape variability (Gegas et al., 2010). This bottleneck can be
one of the reasons of the low (Austin et al., 1989; Brancourt-
Hulmel et al., 2003; Sanchez-Garcia et al., 2013) or even negative
(Siddique et al., 1989; Royo et al., 2007) contribution of grain size
to wheat genetic gains in several countries. There is an urgent
need to overcome this bottleneck by bringing novel diversity from
genebanks to breeding programs.

Recent and rapid advancements in high throughput
genotyping have greatly aided plant science through
characterizing genetic diversity, genome-wide association
studies, and genomic selection (GS). GS, as predictive analytics,
uses genome-wide markers to predict genomic breeding values.
GS has been widely applied to elite wheat germplasm (de

los Campos et al., 2009, 2010; Crossa et al., 2010; González-
Camacho et al., 2012; Heslot et al., 2012; Pérez-Rodríguez et al.,
2012; López-Cruz et al., 2015; Hu et al., 2019). However, very few
studies that evaluated the performance of GS with the inclusion
of new diversity from genebanks can be found in the literature
including Thinopyrum intermedium (Zhang et al., 2016), wheat
landraces for rust resistance (Daetwyler et al., 2014; Pasam et al.,
2017), mineral contents (Manickavelu et al., 2017), and heat and
drought stress adaptation (Crossa et al., 2016).

Following the above, the objectives of this study were:
(1) to examine the genomic prediction accuracy within a
set of ICARDA bread wheat genebank collection for seed
morphometric traits, (2) to study the effect of including a non-
additive similarity matrix based on passport data, and (3) to
study the effect of accounting for population structure in genomic
prediction models.

MATERIALS AND METHODS

Landraces, Grain Color, and Morphology
Seven hundred eighty-nine (789) bread wheat landraces were
randomly selected from the 4000 landraces grown at the ICARDA
Marchouch station (33◦36′ N 6◦42′ W, 390 m a.s.l.) located
in central Morocco during the cropping season 2016–2017 for
the purpose of regeneration and characterization of accessions
of genebank. Landraces are planted in a non-designed trial
with two rows plot of 2 m long each. Best practices for the
regeneration of wheat genetic resources were applied including
supplemental irrigations and applying pesticides to control major
diseases and pests to allow for good growing conditions and full
expression of seed traits. Most accessions originated from North
Africa, Middle East, and southeast Asia with a majority from
Pakistan, Turkey and Morocco (Complete list can be found in
Supplementary Data Sheet 1).

Random samples of 250–400 grains were obtained from
the harvest of every plot and were scanned using a flatbed
scanner (CanoScan LiDE 220; Canon). The images collected
were analyzed using Grainscan software (Whan et al., 2014)
and the morphological characteristics of every grain in every
image obtained. Grain characteristics include the grain area
(mm2), perimeter (mm), grain length (mm), and width (mm).
Additionally, Grainscan software produce for every grain
analyzed an output of color channel intensity analogous to
the standardized CIELAB colourspace (Whan et al., 2014).
The color channels from GrainScan (ColCha1, ColCha2,
and ColCha3) are considered therefore to be proxies for
L∗, which represents the lightness of the color; a∗, which
represent green or magenta; and b∗, representing blue or
yellow, respectively.

Genotypic Characterization and Diversity
of Wheat Landraces
A high-throughput genotyping method using DArTseqTM
technology was employed to generate genomic profile of the
germplasm at the Genetic Analysis Service for Agriculture
(SAGA) facility at the International Center for Maize and
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Wheat Improvement (CIMMYT) in Mexico. DArTseq raw
data were filtered according to markers criterion; minor allele
frequency > 5% and missing data ≤ 20%. This resulted in a total
of 12,472 Dartseq markers that were used in this study. Diversity
analysis was performed using a discriminate analysis of principal
component (DAPC) as described by Jombart et al. (2010) and
principal component analysis (PCA) using R Core Team (2016).

Environmental Similarity Between Wheat
Landraces
To characterize the environmental diversity and make an
environmental similarity matrix based on passport data between
bread wheat landraces, we collected datasets for a total of 36
potential drivers of crop diversity, including 35 climate variables
and altitude (Supplementary Table 1). The climatic variables
include the 19 bioclimatic variables from the WorldClim version
2 database (Fick and Hijmans, 2017), freely available at http:
//www.worldclim.org, and downloadable at 2.5 arc-min spatial
resolution. Additional 16 climate variables were downloaded at
the same spatial resolution from the Environmental Rasters for
Ecological Modeling (ENVIREM) database (Title and Bemmels,
2018). These 35 variables (19 from WorldClim and 16 from
ENVIREM) allow for a robust characterization of the climate
signature of landraces and wild relatives (Braunisch et al.,
2013; Title and Bemmels, 2018). The variables were scaled,
and an Euclidian distance was computed, resulting into an
environmental similarity matrix between landraces based on
passport information.

Statistical Analysis
Genomic best linear unbiased prediction (G-BLUP) was used
to perform genome wide predictions. We used a genomic
relationship matrix between landraces using marker information
defining covariance based on observed similarity at the genomic
level as described by VanRaden (2007). This model captures
a large additive genetic variance by accounting for genomic
information and increases the heritability and prediction
accuracy. Genomic heritability (h2) was computed as the ratio
between the genetic variance due to markers over the sum of
the genetic variance plus the error variance. We have used for
all models, as a more appropriate way, the complete dataset to
estimate variance components (additive and residuals) and hence
the genomic heritability.

Population structure might affect the estimation of heritability
and the prediction accuracy in a genome wide prediction
framework (Gou et al., 2014). To evaluate the impact of
population structure in the performance of genomic prediction,
we evaluated the following models:

(1) null model where no population structure was accounted
for;

(2) accounting for population structure using discrete
population resulting from DAPC with K number of
subpopulations equal to 2 which is the first level of genetic
separation (grp2);

(3) accounting for population structure using discrete
population resulting from DAPC with K optimal number
of subpopulations;

(4) accounting for population structure using 5 eigen vectors
PC1 to PC5 resulting from PCA analysis. We have
removed the population structure effect due to stratified
populations using the population proxies (two discrete
groups resulting from DAPC and PC1–PC5) as fixed effects
in our models (Daetwyler et al., 2015). In addition, and to
reduce the effect of population structure on the genomic
prediction accuracy, we have also run predictions for
separate subpopulations using groups resulted from DAPC
analysis for K number of populations equal to 2.

Genomic predictions only consider the additive effects using
the observed relationship between individuals using markers. It
has been suggested that the estimation of non-additive effect
can improve prediction accuracy (Varona et al., 2018). In
this study, resemblance between landraces using environmental
data from the site of the landrace’s origin was used as a
non-additive term, alone or in combination with the additive
matrix, in the G-BLUP mixed model to account for the non-
genetic effect.

To evaluate prediction model performance, cross-validation
(CV30) where 30% of landraces were included in the validation
set while the remaining 70% of landraces formed the training set,
was employed. The process was repeated randomly 50 times. The
prediction accuracy of a model was assessed using the Pearson
correlation between genomic predictions and BLUP from the
model using the full dataset.

All the above analyses were performed using a single stage
analysis, where raw data from a single seed was used directly in
the prediction models. Outliers were identified as data points with
studentized residuals superior to 3.5 and removed from the final
analysis. Models were fitted in ASReml v3.0-1 (Butler et al., 2009)
for R v3.3.1 (R Core Team, 2016).

RESULTS

In this study, seven (7) seed traits were captured to determine
grain shape, size and color for wheat landraces. The genomic
heritability (Table 1) of the traits under this study ranged
from moderate 0.47 for grain area and perimeter to high 0.78
for one of the color channels (ColCha1). As expected, large
variation was found within the landraces used in this study
(Table 1); the grain width showed less variability (range of
1 mm) than grain length with a range of 2 mm; and, grain
area and perimeter ranged from 12 to 19.2 mm2 and 17 to
22.3 mm, respectively.

For diversity analysis, PCA showed that the first five (5)
eigen values explained 80% of the genetic variance. The set
of landraces used in this study exhibited population structure
as shown by plotting first versus second principal component
(Figure 1). This structure was mainly due to the country
of origin as landraces from the same country were clustered
together. DAPC proposed K = 5 as the optimal number of
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TABLE 1 | Summary statistics and genomic heritability for grain characteristics for the entire set collection and per subpopulation when K = 2 (grp1 and grp2) of the
bread wheat landraces.

Area Perimeter Length Width ColCha1 ColCha2 ColCha3

h (Heritability) 0.47 0.47 0.52 0.54 0.77 0.78 0.68

Mean 15.0 19.7 6.5 2.9 158.6 130.6 102.6

Maximum 19.2 22.3 7.5 3.5 180.4 151.4 118.5

Minimum 12.0 16.9 5.5 2.5 133.5 110.7 87.6

SD 1.4 0.9 0.3 0.2 9.2 9.1 6.1

grp1 Mean 15.3 19.7 6.5 3.0 158.0 130.0 102.4

Maximum 19.2 22.3 7.5 3.5 178.2 150.1 118.5

Minimum 12.0 16.9 5.5 2.6 133.5 110.7 89.5

SD 1.5 1.1 0.4 0.2 7.3 7.3 5.4

grp2 Mean 14.8 19.7 6.6 2.9 159.0 130.9 102.6

Maximum 18.3 21.9 7.4 3.3 180.4 151.4 118.0

Minimum 12.0 17.3 5.7 2.5 138.0 111.8 87.6

SD 1.2 0.8 0.3 0.2 10.0 9.9 6.5

subpopulations as it presented the lowest Bayesian Criterion
index value. Increasing K to more than five did not identify
any further clear genetic group. The first level of separation
K = 2 has clearly distinguished between landraces from Pakistan
and Turkey and landraces from the other countries. However,
when K was set to 5, the landraces were correctly classified into
their agro-ecologies (Figure 2). The first subpopulation (red) is
composed of landraces collected from hot environments, mainly
from Pakistan, Egypt, and Oman. The second subpopulation
(green) comprised of landraces collected in winter areas from
Turkey. The third subpopulation (light blue) mostly made of
landraces from Mediterranean environments and the spring
type, whereas the fourth subpopulation (dark blue) composed
of landraces collected in favorable Mediterranean environments.
Finally, the last and fifth subpopulation (black) is the smallest
one with 37 landraces originated mainly from North Africa and
most probably are genetically similar to the beard wheat landraces
from Southern Europe. The assignment of the wheat landraces
to subpopulations for K = 2, 3, 4, and 5 can be found in the
Supplementary Table: list of accessions.csv.

The grain characteristics have shown the same range of
variation between the two subpopulations resulting from DAPC
for K = 2 (Table 1 and Supplementary Figure 1). Nevertheless,
using the optimal number of subpopulations K = 5 revealed that
some subpopulations (1 and 4) do not present as much variability
as the other subpopulations (Supplementary Figure 2).

The prediction models showed medium to high accuracies
for all grain traits (Figure 3 and Table 2). The Perimeter
showed the lowest prediction accuracy with an average of
0.64, followed by Length and ColCha3, ColCha1, Area and
ColCha2 with an average accuracy of 0.66, 0.69, 0.7, and 0.74
respectively. The prediction accuracy reach its greatest value
for grain width with 0.74 in average. Overall, the variability in
accuracy between the 50 random cross-validations had similar
trend as average accuracies, where the highest variation was
identified in perimeter, length and the ColCha1 and ColCha2,
and the lowest variation shown by grain area and grain
width (Figure 3).

Prediction models using the climatic similarity matrix
showed low values for prediction accuracy compared to the
prediction model based on markers. On average for all traits,
a maximum of 0.1 prediction accuracy was reached for the
grain width (Table 2). The maximum prediction accuracy
for the 50 random replicates reached more than 0.2 for all
grain traits. Adding the climatic similarity to the genetic
similarity in the prediction model has shown a slight increase
in the prediction accuracy for all traits with a maximum
increase of 0.06 (8%) achieved for the grain perimeter and
ColCha1 and ColCha3.

Figure 4 displays genomic prediction accuracies comparing
the null model with the ones that incorporated different
population structure covariates. When accounting for population
structure in the genomic prediction models, the change in
the prediction accuracies showed different patterns depending
on the variables used to correct for stratified populations
and/or the trait under evaluation. Generally, when accounting
for population structure using grp2, the accuracies were
similar to the null models without accounting for population
structure for all grain traits. However, when accounting for
population structure using grp = 5, compared to the null
model, there was a significant reduction of prediction accuracy
at ∼0.06 (8%, p-value ∼ 0) found for all the traits; the
lowest decrease was observed for the grain width (0.04).
The most significant reduction in prediction accuracy was
found when accounting for population structure using PC1–
PC5. This decrease ranged from 0.33 for ColCh2 to as low
as 0.11 and 0.14 for grain perimeter and area, respectively.
Making genomic predicitions for grain characteristics for each
subpopulation when K number of populations was equal
to 2 has given contrasting results (Table 2). For the first
subpopulation, increased prediction accuracy was obtained
for the grain area, perimeter, and length, whereas prediction
accuracies were found lower for the second subpopulation.
A completely opposite pattern was observed for the width
and the three color channels where subpopulation two showed
a decreasing prediction accuracy for the area, length, and
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FIGURE 1 | PC plot of a set of bread wheat landraces from PCA using DarTseq markers. Colorsed by country of origin. Dot shape gives the assignment to
subpopulations when K = 5.

perimeter and an increasing prediction accuracy for the
three color channels.

DISCUSSION

Variation and Prediction Accuracies for
Wheat Landrace’s Grain Traits and
Building on FIGS
Variability among bread wheat landraces was assessed for grain
traits using image analysis. The seven grain traits exhibited
medium to high heritability with considerable variation, at a
similar order of heritability and scale of variabilities found

in other studies (Gegas et al., 2010). Grain traits, especially
grain shape and size, have a direct influence on yield and
quality, and consequently, the market value of the wheat
product. Ample evidence has also suggested that, compared to
landraces and primitive wheat species, the significant reduction
in grain shape and size of modern varieties is a result of
domestication and breeding (Gegas et al., 2010). Landraces
held in genebanks can have a crucial role in wheat breeding
for grain traits because of their wide variability in terms of
grain size and shape.

However, sending genebank’s requesters the appropriate
material to meet their demands is not a straightforward task. This
means the genebank manager would have a complete description
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FIGURE 2 | Geographic distribution of the five subpopulations of bread wheat landraces found using Discriminant Analysis of Principal Component.

of all the genebank holdings. As a result, characterizing
agronomically important grain traits has become an important
activity within a genebank as it is essential to identify accessions
with the desirable traits to be used as parental material in
a breeding program. Characterization at the genebank level
as well as at the breeding level is mainly based on 1000
kernel weight and hectoliter weight. However, characterization
of large number of accessions held in the global collections
is resources consuming. Several solutions have been developed
and tested to address this issue, including core collections,
FIGS, and GWAS (Anglin et al., 2018). The performance of
core collection and GWAS to link a trait of interest to a
genebank accession has been evaluated (Anglin et al., 2018);
however, the application of FIGS has yet not been examined
for quantitative morphological traits such as grain traits. In this
research, we reported the efficiency of genome-wide prediction
to predict the ICARDA genebank wheat landraces using high-
density DartSeqTM markers. This is done by characterizing
a portion of the wheat collection for grain traits, including
grain area, perimeter, length, and width and using DartSeqTM

and GS to predict the unevaluated genebank accessions. Our
results suggest that genomic prediction is a useful tool for
predictive characterization of genebank accessions, allowing
phenotyping to be restricted to a portion of the collection
in order to predict trait genomic estimated breeding value
(GEBV) for the entire collection (Crossa et al., 2016; de
Azevedo Peixoto et al., 2017; Thorwarth et al., 2017). We used

GBLUP as a method of genomic predictions because of its
performance stability and flexibility of applications regarding
the genetic architecture (Meuwissen et al., 2001). Our study
has shown that GS can be implemented within a genebank
to predict important traits such as grain characteristics with
accuracies of more than 0.7, more specifically for the trait
with moderate to high heritability. Further work is needed to
validate if those predictions are stable from year to year, knowing
that our regeneration/characterization trials are done in the
same experimental station and applying the same optimal field
management practices.

We have shown that reasonable prediction accuracies for
genomic predictions can be achieved using a randomly chosen
subset from genebank wheat collection representing a wide
genetic variability. These findings should encourage genebank
managers to identify novel variation for potential use in
breeding programs and facilitate broad, detailed phenotypic
characterization of the entire genebank collection. Further,
genotyping the entire ex situ collection is then needed to take full
advantage of such technology.

Genomic Predictions in Stratified
Populations
Genebank collections generally exhibit a wide array of genetic
diversity, as well as the population structure due to the
domestication process, including natural and farmer selection,
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FIGURE 3 | Densities for prediction accuracy using validation set for grain
traits of bread wheat genebank accessions.

genetic drift, and local adaptation. The knowledge of this
diversity and structure is essential to genebanks when optimizing
the collection’s conservation policy to secure a continuum
between the conservation and the use of the germplasm. As
expected, a significant population structure in the collection
of wheat landraces was identified in this study, with the
first five principal components accounting for 80% of genetic
variation. The strong population structure also showed a
negative impact on performance in association studies and
genomic prediction models, which was also found in other
studies (Gou et al., 2014; Daetwyler et al., 2015). This degree
of decrease was, however, dependent on way we accounted
for the population structure in this study. For example, our

study has noted that using a continuous axis from PCA
analysis or discrete population assignment from structure or
DAPC gave very contrasting results from almost no change
in prediction accuracy to a significant reduction in prediction
accuracy. Also, running genomic prediction for each of the
subpopulation may or may not improve the accuracy depending
on the subpopulation and the trait under study. Previous
studies have shown that accounting for stratified populations
is not an easy task in a genomic prediction models and
this is generally done using the first five eigen values as
covariates in a the GS model (Patterson et al., 2006; Daetwyler
et al., 2014; Crossa et al., 2016; Norman et al., 2018).
Further work and simulations should be undertaken to study
the population structure effect carefully in the framework of
genomic predictions.

Building on FIGS: FIGS +

FIGS has shown its relevance on delivering sources of resistance
to diseases and sources of variation for important desirable
trait to breeders worldwide for wheat and other ICARDA
mandate crops (El Bouhssini et al., 2009, 2011; Khazaei et al.,
2013). In recent years, FIGS is used by ICARDA to make
predictive characterization for the genebank characterization
traits for its collection (Azough et al., 2019). This is done
by quantifying a relationship between collection site agro-
climatic conditions and the presence of specific traits using
machine learning algorithms. Moreover, the application FIGS
has been successful for categorical traits such as growth
stages, class of maturity, and tillering capacity. Other
unpublished results have shown that the performance
of these machine learning algorithms for quantitative
traits was limited.

With rapid advances in genomics techniques, genetic
resources users should be able to mine quickly genetic diversity
as part of pre-breeding programs to achieve better and faster
breeding outcomes and gains. More specifically, GS, which uses

TABLE 2 | Prediction accuracies for grain traits using only markers (All), passport information (Env) and combining both (All + Env), and for separate subpopulations grp1
and grp2 of bread wheat landraces.

Area Perimeter Length Width ColCha1 ColCha2 ColCha3

All Mean 0.70 0.64 0.66 0.74 0.69 0.71 0.66

Maximum 0.76 0.73 0.74 0.80 0.78 0.80 0.73

Minimum 0.64 0.55 0.57 0.67 0.60 0.62 0.59

All-Env Mean 0.75 0.70 0.70 0.78 0.75 0.76 0.72

Maximum 0.78 0.75 0.77 0.81 0.79 0.80 0.75

Minimum 0.66 0.59 0.59 0.69 0.61 0.63 0.60

Env Mean 0.06 0.04 0.03 0.10 0.03 0.05 0.04

Maximum 0.20 0.19 0.22 0.29 0.20 0.25 0.24

Minimum −0.12 −0.19 −0.16 −0.07 −0.16 −0.13 −0.13

grp1 Mean 0.73 0.76 0.79 0.65 0.58 0.63 0.58

Maximum 0.82 0.86 0.88 0.75 0.78 0.80 0.71

Minimum 0.64 0.67 0.69 0.49 0.42 0.47 0.40

grp2 Mean 0.67 0.54 0.51 0.73 0.73 0.74 0.69

Maximum 0.74 0.67 0.65 0.80 0.79 0.79 0.75

Minimum 0.58 0.46 0.40 0.65 0.63 0.64 0.61
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FIGURE 4 | Comparison between densities for prediction accuracy using validation set using different population structure covariates for grain area, perimeter,
length, and width of bread wheat landraces.

a genomic relationship matrix to predict the performance of
germplasm based on GEBVs, could be more reliable and useful
to harness genetic gain from genetic resources (Bernardo, 2016).
Since it has been shown that the environment of landrace’s
origin strongly influences gene flow and natural selection (Lin
et al., 1975; Epperson, 1990), we have incorporated in this
study an environmental similarity matrix based on landrace’s
passport data in addition to the genomic relationship matrix
in the framework of GS. The increase in the prediction
accuracy was noticeable but not significant. End-use and
quality traits are the important factors that influence the
market values, as well as the maintenance of landraces and
then genetic diversity by the farmers (Negri, 2003; Seboka
and van Hintum, 2006; Shewayrga and Sopade, 2011). Thus,
we suspect that the grain traits used in this study were
not only resulting from a natural selection but also affected
by farmer selection and preferences. To summarize, genomic

predictions for genebank accessions could benefit from using
other characterization data such as phenology, morphology, and
yield components.

Genebank Conservation and Use in the
Era of Genomic Predictions
To safeguard future food, fiber and fuel resource, global
germplasm conservation will increasingly rely on genomic
technologies. Beyond the conservation aspects where identifying
duplicates and redundancies between collections can be assessed
by using genomics (Singh et al., 2019), there is an opportunity
of using high-density markers to mine more efficiently genetic
resources for better use of genebank accessions in pre-breeding
programs (Rasheed et al., 2018). GS, for example, was identified
as an optimal mining tool to identify genetic resources for
quantitative traits, as also shown in the current study. Moving
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forward, several challenges might limit the broad and routine
use of GS, which include (1) the cost-effectiveness of genotyping,
as the entire collection should be genotyped to take full
advantage of GS; (2) aligning the genotyped and field-
evaluated grains from the genebank; and finally, (3) dealing
with population structure and forming the optimal training
subset. The results in this study have shown that the
use of passport information can be of a good start, but
extra attention might be required for several collections that
contain limited information on coordinates, especially for the
old collections.

CONCLUSION

Evaluating the entire collection held by a genebank for all
traits needed by breeding programs is resources consuming.
Genebanks should stay innovative in the way where technologies
could aid the identification of accessions that possess traits
for new desirable variation. Our study demonstrated that
genomic prediction has the potential of matching these
outputs alone or augmented by passport information. This
result will help breeders make better use of untapped
genetic diversity.
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