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RESEARCH

Plant breeding programs aim to develop new crop varieties 
with improved characteristics over existing ones available to 

farmers. Appropriate methods of selection are crucial to success-
fully identify the best possible parents for crossing, and to choose 
the best performing genotypes to progress in the program. Both 
objectives generally involve evaluating the genotypes under 
consideration in series of designed experiments across several 
locations and years.

Multi-environment trials (MET) are series of field experi-
ments where genotypes grow under different conditions 
(environments) determined by combinations of year, location and 
sometimes management factors (Smith et al., 2001). The statistical 
analysis of MET data aims to provide reliable and accurate pre-
dictions of genotype performance across the target environments 
and information on specific performance from the interaction of 
genotypes with the environments (G ´ E) (Smith et al., 2001).
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ABSTRACT
The statistical analysis of multi-environment trial 
data aims to provide reliable and accurate pre-
dictions of genotype performance across the 
target environments and information on specific 
performance from the interaction of genotypes 
with the environments. Genetic gain can be 
achieved faster when selections are based on 
predictions from a model that accounts for the 
relationships among genotypes rather than from 
a model that assumes unrelated genotypes. 
Yield and plant height data from 37 international 
wheat trials were analyzed using a linear mixed 
model that accounted for relationships among 
the genotypes via a genomic relationship matrix 
G derived from 2487 polymorphic DArT molecu-
lar markers for 197 genotypes. The elements of 
this matrix reflect the actual proportion of the 
parts of the genome surveyed  that is identi-
cal by state between pairs of individuals, and 
including it into the model resulted in gener-
ally lower average prediction error variances of 
individual trials in the analyses. Partitioning the 
total genetic effects into additive and residual 
non-additive genetic effects has familiar inter-
pretations for plant breeders and facilitates 
exploring genotype by environment interactions 
for additive and total effects. This interpretation 
is still possible with the form of G  used in this 
paper. This method of analysis could be readily 
implemented to accelerate genetic gain by plant 
breeding programs that have molecular markers 
for the genotypes under study.
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Linear mixed models are widely used for the analysis 
of MET data. The model described by Smith et al. (2001) 
accounts for within trial design effects and spatial vari-
ability, between trial residual variance heterogeneity, and 
adopts a multiplicative factor analytic (FA) model for the 
G ´ E effects. The FA model is preferred in the MET 
setting because it allows for genetic variance heteroge-
neity between trials, different genetic correlation across 
trials and can have greater predictive accuracy than alter-
native models when there is substantial G ´ E (Kelly et 
al., 2007). This improved predictive accuracy positively 
impacts selection gains (Kelly et al., 2007). It is commonly 
assumed that genotype effects are independent, however, 
in breeding programs individuals are likely to be related.

The FA model may be extended to include a relation-
ship matrix reflecting the expected degree of co-ancestry 
among the genotypes under study (Oakey et al., 2007). 
This relationship matrix can be derived from the pedi-
grees of the individuals (Henderson, 1976) and is usually 
referred to as the numerator or additive relationship 
matrix, denoted by A. The elements in A reflect the 
predicted proportion of the genome that is identical by 
descent between two individuals (Hayes et al., 2009). This 
is a more realistic representation of the relationship among 
individuals than assuming them to be independent.

Additive genetic effects (or breeding values) are useful 
when selecting parents for crossing, while non-additive 
effects can be responsible for specific adaptation (Oakey 
et al., 2006). For the additive component, the A matrix 
models the covariance between relatives, and the identity 
matrix is used for the non-additive component (Oakey 
et al., 2006). The total genetic effects (i.e., the sum of 
the additive and non-additive genetic effects) predict the 
overall performance of genotypes in the target environ-
ments and are used in selecting genotypes for promotion 
in the breeding program and eventual release to industry 
as varieties. However, all selections made under the FA 
model that assumes unrelated genotypes are based on the 
total genotypic effects.

A limitation of the A matrix is that it is based on 
expected relationships between individuals given their 
pedigree. However, in plant populations where selec-
tion of genotypes is undertaken over several generations, 
relationships between individuals can be far from what is 
expected. For example, full siblings could have a greater 
proportion of the genome in common than expected and 
this proportion could also be greater with one parent 
than the other (Oakey et al., 2006). Additionally, pedi-
grees based on crossing history are not always known, are 
uncertain or incomplete.

A relationship matrix for the genotypes under study 
can also be derived from their molecular marker informa-
tion. The elements of this matrix reflect the proportion 
of the parts of the genome surveyed that is identical by 

state between pairs of individuals. Genotypes identi-
cal by state share the same genetic region, although it 
cannot be assumed that they inherited this region from 
a common ancestor ( Jordan et al., 2005). This matrix is 
often referred to as the realized or genomic relationship 
matrix, denoted by G .

Several methods for obtaining G  have been reported 
(see VanRaden, 2008 for three examples). The first method 
proposed by VanRaden (2008) derives a zero-centered 
and scaled matrix to calculate the genomic relationships. 
This form of the G  matrix is analogous to the additive 
relationship matrix A and can be used instead of A in 
the linear mixed model formulation. The advantage of 
using this form of G  is that the genetic effects can still be 
partitioned into additive and non-additive components, 
facilitating the interpretation of results and the selection 
process for plant breeders.

Most of the MET data analyses using an FA model 
for parent and varietal selection reported in the literature 
assume independent genotype effects (e.g., Smith et al., 
2007; Dreccer et al., 2007; Stefanova and Buirchell, 
2010), while some assume genotypes related through the 
A matrix (e.g., Beeck et al., 2010; Hardner et al., 2012). 
MET models for genomic selection incorporate some 
form of the genetic relationship matrix. The objective of 
these models is to achieve accuracy in the prediction of 
genetic values. For example, both Burgueño et al. (2012) 
and Dawson et al. (2013) fitted models for G ´ E using 
an FA model that incorporated a G  matrix. Their goal 
was to obtain genomic predictions, that is, to predict 
the performance of newly developed genotypes for 
which phenotypic data is not available and to predict the 
performance of genotypes across environments when not 
all genotypes are evaluated in all environments (Burgueño 
et al., 2012). There seems to be no applications that use the 
FA model for the analysis of MET data where correlated 
genotype effects are represented by the matrix G  that, 
with the objective of making selections, differentiate 
between total and additive genetic effects, and thoroughly 
explore the G ´ E patterns. The aim of the present paper 
is to show, through the analysis of an international wheat 
MET dataset, how to incorporate the G  matrix in the 
FA model and how to interpret the results of the analysis 
to make more robust selection decisions. The phenotypic 
traits yield and plant height were chosen for illustration due 
to their contrast in heritability and genetic complexity as 
well as their agronomic and commercial importance. This 
method of analysis could be readily implemented by plant 
breeding programs that have access to molecular markers 
for the genotypes under study.
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irrigated. Trial codes are composed of the last two digits of the 
year, two letters to identify the country, two or three letters for 
the location, and a suffix (IRR or Late) to indicate if the trial 
was irrigated and/or had late sowing (Table 1).

Composition and physical layout of 37 candidate trials for 
the MET analyses are summarized in Table 1 along with the 
trial means for yield (t ha-1) and plant height (cm). One trial was 
excluded from the analysis of yield (09AU_Gat_IRR_Late).
This was a late sown trial, with a short growing season that 
resulted in a narrow range of flowering dates and similar yield 
expression, and therefore its estimated genetic variance was 
zero. Five trials were excluded from the analysis of plant height 
because they had no data for this trait.

MATERIALS AND METHODS

Trials and Traits
The MET dataset consists of 37 international wheat trials 
grown across 4 yr (2009–2012) in 17 locations spread across 
six countries (Australia, Ethiopia, Lebanon, Mexico, Morocco, 
and Syria). The trials were part of a Generation Challenge Pro-
gram project (http://www.generationcp.org/) where locations 
were chosen as representative of different drought mega-envi-
ronments characterized by summer, winter, or uniform rainfall 
distribution following Hodson and White (2007) and Drec-
cer et al. (2013). Most trials were planted at the conventional 
sowing time for the location and under rainfed conditions. 
For contrast, four trials were planted late and 10 trials were 

Table 1. Summary of the 37 candidate trials for multi-environment trials (MET) analyses of yield and plant height. Trials with no 
mean for a trait were excluded from the MET analysis for that specific trait.

Year Country Location Management† Trial code‡ Rows Columns Replicates Genotypes
Mean 
yield

Mean 
height

––––––––––––––––– No. ––––––––––––––––– t ha–1 cm

2009 Australia Gatton Conv., rainfed 09AU_Gat 18 12 3 72 5.2 86

2009 Australia Gatton Conv., irrigated 09AU_Gat_IRR 18 8 2 72 6.3 97

2009 Australia Gatton Late, irrigated 09AU_Gat_IRR_Late 18 8 2 72 82

2009 Ethiopia Dera Conv., rainfed 09ET_De 30 20 3 200 0.4 41

2009 Ethiopia Melkassa Conv., rainfed 09ET_Mel 30 20 3 200 0.8 59

2009 Mexico CIANO Conv., irrigated 09MX_CIA_IRR 32 3 2 47 4.1 91

2010 Australia Gatton Conv., rainfed 10AU_Gat 16 18 2 131 5.9 94

2010 Australia Gatton Conv., irrigated 10AU_Gat_IRR 16 18 2 128 5.9 92

2010 Australia Gatton Late, irrigated 10AU_Gat_IRR_Late 16 9 2 72 5.0 75

2010 Australia Leeton Conv., rainfed 10AU_Lee 16 9 2 72 3.7

2010 Australia Leeton Conv., irrigated 10AU_Lee_IRR 16 9 2 72 4.0 75

2010 Australia Temora Conv., rainfed 10AU_Tem 16 9 2 72 5.4

2010 Ethiopia Dera Conv., rainfed 10ET_De 10 40 2 200 2.3 75

2010 Ethiopia Kulumsa Conv., rainfed 10ET_Kul 10 40 2 200 3.6 87

2010 Ethiopia Melkassa Conv., rainfed 10ET_Mel 10 40 2 200 2.3 89

2010 Lebanon Terbol Conv., rainfed 10LE_Ter 13 31 2 200 3.1 90

2010 Morocco Sidi el Aidi Conv., rainfed 10MO_SEA 20 30 3 200 1.8 86

2010 Morocco Sidi el Aidi Conv., irrigated 10MO_SEA_IRR 20 30 3 200 1.9 87

2010 Mexico CIANO Conv., rainfed 10MX_CIA 16 12 4 47 3.0 73

2010 Mexico CIANO Conv., irrigated 10MX_CIA_IRR 12 8 2 47 6.5 101

2010 Syria Malkiya Conv., rainfed 10SY_Mal 12 50 3 200 2.0

2010 Syria Tel-Hadya Conv., rainfed 10SY_THa 50 12 3 200 3.0 82

2010 Syria Tel Tair Conv., rainfed 10SY_TTa 12 50 3 200 0.4

2011 Australia Temora Conv., rainfed 11AU_Tem 16 8 2 64 3.9 90

2011 Australia Yanco Conv., rainfed 11AU_Yan 16 8 2 64 5.5 99

2011 Lebanon Kfr-Dhan Conv., rainfed 11LE_KDa 9 44 2 200 4.0 99

2011 Lebanon Terbol Conv., rainfed 11LE_Ter 9 44 2 200 4.9 104

2011 Morocco Marchouch Conv., rainfed 11MO_Mar 20 20 2 200 3.2

2011 Morocco Sidi el Aidi Conv., rainfed 11MO_SEA 20 20 2 200 4.5 98

2011 Morocco Sidi el Aidi Conv., irrigated 11MO_SEA_IRR 20 20 2 200 4.2 98

2011 Mexico CIANO Conv., rainfed 11MX_CIA 8 12 2 47 1.2 57

2011 Mexico CIANO Conv., irrigated 11MX_CIA_IRR 12 8 2 47 5.5 91

2011 Syria Breda Conv., rainfed 11SY_Bre 33 12 2 200 2.8 57

2011 Syria Malkiya Conv., rainfed 11SY_Mal 23 18 2 200 4.9 93

2011 Syria Tel-Hadya Conv., rainfed 11SY_THa 40 10 2 200 3.3 73

2012 Morocco Sidi el Aidi Late, rainfed 12MO_SEA_Late 20 20 2 200 2.2 77

2012 Morocco Zemamra Late, rainfed 12MO_Zem_Late 20 20 2 200 2.5

† Conventional vs. late time of sowing for the location.

‡ Trial code acronym composed of two digits for the year, two letters for the country, two or three letters for the location, and the suffix _IRR to indicate if the trial was irrigated 
or _Late for late sown. Most trials were planted at the conventional sowing time for the location, under rainfed conditions (not indicated in the trial code).
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Germplasm
A total of 243 cultivars, recombinant inbred lines, and experi-
mental lines (collectively referred to as ‘genotypes’ in this 
paper) were included in the MET. From these, 211 were elite 
lines from drought nurseries from the International Center for 
Agricultural Research in the Dry Areas (ICARDA) and local 
checks, and 32 were lines from different origin contrasting for 
traits putatively involved in drought tolerance. The genotypes 
spanned a range of maturity groups. Genotype concurrence 
among trials was generally robust, with pairs of trials having 
between 46 and 200 genotypes in common. Two exceptions are 
the 2011 Australian trials (11AU_Tem and 11AU_Yan, Table 1). 
These trials have low concurrences with 12 other trials: four 
genotypes in common with all 2009 Australian and all Mexican 
trials, seven with the 2010 Australian trials in the same loca-
tions, and eight with 10AU_Gat_IRR_Late.

Genotyping
The germplasm panel was planted in the greenhouse. Young 
leaves were harvested from five plants per genotype, frozen in 
liquid nitrogen and stored at -80°C prior to DNA extraction. 
Genomic DNA was extracted according to Ogbonnaya et al. 
(2001). A 100 ng mL-1 DNA from each sample was used for 
whole-genome profiling using DArT markers by Triticarte Pty 
Ltd, Yarralumla, Australia (http://www.triticarte.com.au/). 
A final number of 2487 polymorphic markers with a quality 
parameter and a call rate greater than 80% and minor allele 
frequency >5% was retained from the 3051 initial markers. Of 
the 2487 polymorphic DArT markers, 2007 markers were of 
known map locations and the marker order and position infor-
mation were obtained from the integrated consensus DArT 
genetic map of wheat (Detering et al., 2010). The marker data 
had low proportions of missing values: 90 markers had >10% 
missing values and only 5 markers had between 20 and 35% 
missing values. DArT markers were available for 197 of the 243 
genotypes. The lines not genotyped were the sets contrasting 
for traits and some of the ICARDA lines that were discon-
tinued after assessment during the initial evaluation and/or 
multiplication.

Linear Mixed Model
A MET dataset consists of trait data collected for each plot in t 
trials, where m genotypes have been grown (not necessarily all 
genotypes in all trials). The ni plots for the ith trial are assumed 
laid out in a rectangular array of ri rows by ci columns, so that 
ni = ri ´ci, for i = 1, …, t. The model for a univariate analysis of 
the 1

t
i iN n== å  response vector y is

= t + + +g g p py X Z u Z u e

where t is a vector of fixed effects with associated design matrix 
X, ug is a mt ´ 1 vector of random genetic effects for each 
genotype in each trial with associated design matrix Zg, up 
is a vector of random non-genetic (or peripheral) effects with 
associated design matrix Zp, and e is the vector of combined 
residuals for individual trials. In the simplest case the vector 
t comprises an overall mean (intercept) for the trials but may 
include other effects such as specific trend terms. The vector 
up includes non-genetic factors such as trial-specific blocking 

and any other design factors. All trials used randomized com-
plete block designs with plots arranged in a rectangular grid 
indexed by column and row. The preferred approach was to 
include a random block term in the model for each trial to 
account for this design factor. Some trials showed global trends 
and required linear row or linear column effects, and others 
required random column or row effects due to the presence of 
extraneous variation. Relatively few trials needed a smooth-
ing spline term (Verbyla et al., 1999) along either the row or 
column dimension. The column and row correlations of the 
stationary spatial process were modelled by an autoregressive 
model of first order. For details on this approach regarding the 
analysis of individual trials, see Gilmour et al. (1997) and Ste-
fanova et al. (2009).

The vectors of random effects ug, up, and e are assumed 
pairwise independent and distributed as Gaussian with zero 
means. The variance matrix of up is given by p 1 p

b
l l== ÅG G , 

where b is the number of sub-vectors in up, which are assumed 
mutually independent, and Å is the direct sum operator. Each 
Gpl is assumed to be a scaled identity matrix. The variance 
matrix of e is given by 1

t
i i== ÅR R , a block-diagonal matrix 

with errors from individual trials, which are assumed mutu-
ally independent. In the general case, each Ri is assumed to 
be a function of some vector of variance parameters Fi, that 
is var(ei) = Ri(Fi). In agricultural field experiments, a sepa-
rable first-order autoregressive process provides a plausible 
model for the residuals (Gilmour et al., 1997). In this case, 
Fi = (Fic, Fir, si

2)¢ and Ri(Fi)  = si
2Ric(Fic) Ä Rir(Fir) where 

Ric and Rir are the (parameterised) correlation matrices for the 
column and row dimensions, respectively, of the ith trial, and 
Ä is the Kronecker product.

The model for ug considered in this paper is ug = ua + ue 
where ua and ue represent the additive and non-additive (or 
residual) genetic effects, respectively; ua and ue are assumed 
independent. In hybrid crops, non-additive effects may reflect 
both dominance and epistasis, while in self-pollinated or inbred 
crops such as wheat, non-additive effects likely reflect epistatic 
interactions because inbreeding will mostly eliminate domi-
nance effects (Oakey et al., 2006).

Assuming that G ´ E effects are represented by a simple 
two-way structure and that the variance matrix for geno-
type effects in individual trials has a separable form, then 
var(ug) = Gt Ä Gv. The t ´ t positive definite variance matrix 
Gt has diagonal elements representing the genetic variances for 
individual trials (environments) and off-diagonal elements rep-
resenting genetic covariances between pairs of environments; 
Gv reflects the relationship between genotypes and can take 
different forms. Smith et al. (2001) assumed unrelated geno-
types and therefore Gv = Im. Oakey et al. (2006, 2007) assumed 
genotypes related according to the additive relationship matrix 
A and therefore var(ug) = Ga Ä A + Ge Ä Im, where Ga and 
Ge are the additive and non-additive genetic variance matrices 
across trials.

In this paper A is replaced by G , a genomic relationship 
matrix calculated from molecular markers for the genotypes as 
proposed by VanRaden (2008) which ensures that interpreta-
tion of the predicted genetic effects remains unchanged. The 
method to obtain the genomic relationship matrix is explained 
in detail in the following section.
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significant bias was detected when using EM algorithm. For 
these reasons we chose the approach based on the EM algorithm.

The marker scores must be converted to {–1, 0, 1} to be 
used in rrBLUP. The original 1’s in M were preserved, indicat-
ing presence of the dominant marker, and the original 0’s were 
changed to -1’s, indicating absence of the dominant marker. 
No score was changed to 0 in this context.

Software and Estimation
Variance parameters in the linear mixed model were estimated 
by residual maximum likelihood (REML) (Patterson and 
Thompson, 1971). Empirical Best Linear Unbiased Estimates 
(E-BLUEs) for fixed effects, and Empirical Best Linear Unbi-
ased Predictions (E-BLUPs) for random effects were obtained 
using ASReml 4 (Gilmour et al., 2015). Commonly, genomic 
relationship matrices based on molecular markers are not posi-
tive definite and cannot be inverted. Note that even though the 
zero-centered G  matrix is singular and therefore non-invert-
ible, ASReml 4 can use it when fitting the linear mixed model. 
This feature of ASReml 4 was the main reason to choose this 
software. As an example, the code for the last model fitted to 
plant height is given in the Appendix.

Post-Processing of Results
Heatmaps and cluster analysis were applied to the additive and 
total genetic correlation matrices to identify environment groups 
where genotypes performed similarly (Cullis et al., 2010).

Cluster analysis was performed using the agnes agglom-
erative hierarchical algorithm from the package cluster in R 
(Maechler et al., 2014), as described by Cullis et al. (2010). The 
clustering algorithm uses average linkage and was applied to 
the dissimilarity matrix for the genetic effects, obtained by 
subtracting the estimated genetic correlation matrix from 1197. 
Clusters for additive and total genetic effects were determined 
using 0.5 as the cut-off point on the dissimilarity scale of the 
dendrogram to ensure that the average genetic correlation 
among trials in any given cluster is at least 0.5. Each cluster 
represented a different environment group.

The interpretation of the environment groups generated 
by cluster analysis when the G  matrix is included in the MET 
analysis contains an extra layer of useful information because 
both additive and total genetic effects can be investigated. 
Environment groups for total genetic effects could differ from 
those for additive genetic effects. For low-heritability traits such 
as yield, trials tend to have a reasonable proportion of non-addi-
tive genetic variance. When this non-additive genetic variance 
is well accounted for by the model, trials may belong to differ-
ent environment groups for additive and total genetic effects. 
Thus, the best candidate lines for release to industry may differ 
from the best candidate parents for future crosses. We propose 
a novel way for the interpretation of the environment groups 
through two scenarios introduced below.

In Scenario I, trials belong to the same environment group 
for both additive and total genetic effects when most of the pat-
tern in the genotype rankings is due to additive effects. This 
happens when the proportion of additive genetic variance in 
the trials is high, well explained by the model, and trials have 
either (i) a low proportion of non-additive genetic variance or 
(ii) a higher proportion of non-additive genetic variance but 

The FA model based on h factors, denoted FAh, applied to 
the genotype effects in each trial is ug = (L Ä Im)f + d, where 
L is a matrix of environmental loadings, f contains scores for 
each genotype, and d is the vector of residuals (or lack of fit) 
for the model (Smith et al., 2001). Consequently, var(uj) is 
Gj = LjLj ¢ + Yj,  with j = a, e. In this context, LjLj ¢ is referred 
to as the regression part of the model and Yj is referred to as the 
lack of fit of the model and is a diagonal matrix with specific 
variances for each trial, reflecting the specific G ´ E from the 
trials not accounted for by the regression part of the model.

Not all genotypes in all trials had marker information. 
Additional independent trial-specific model terms (having 
simple variance components) were included for those trials 
where genotypes without marker information were present. 
Relationships among them, if any, were ignored.

Genomic Relationship Matrix Based 
on Molecular Markers
The genomic relationship matrix was constructed based on the 
molecular markers of the 197 genotypes, which were arranged 
in a matrix of genotypes by markers, M197´2487. The elements 
of M are 0 (indicating absence of the dominant marker), 1 
(indicating presence of the dominant marker, either heterozy-
gous or homozygous), or a missing value in cases where the 
marker score could not be determined. The calculation of the 
G  matrix used in this paper involves two steps: the first one 
centers the matrix of allele effects around zero and the second 
one scales the matrix so it becomes analogous in interpreta-
tion to the additive relationship matrix A. The formula for G  
below is that proposed by VanRaden (2008) for an unselected, 
outbred population; Endelman and Jannink (2012) derived the 
same formula from an identical-by-state approach, justifying its 
use with any population when the number of markers is much 
larger than the number of genotypes. Let the matrix P197´2487 
contain elements 2(pk – 0.5) in the kth column, where pk is the 
frequency of the dominant allele at marker k, that is, the sum of 
1’s in marker k divided by the number of non-missing values for 
that marker. Then, P = M – P is the zero-centered matrix of 
allele effects. A divisor equal to twice the sum of the variances 
of the markers scales PP¢, so that 

2 (1 )k kp p

¢
=

-å
G PP

 

The G  matrix was obtained from the A.mat function in the 
R (R Core Team, 2014) package rrBLUP (Endelman, 2011). 
This function provides two methods for imputation of missing 
marker values: using the marker mean and using the Expecta-
tion–Maximization (EM) algorithm based on the multivariate 
normal distribution, which is a useful approximation in the 
context of predicting breeding values with a genomic relation-
ship matrix (Poland et al., 2012). In a simulation study, Poland 
et al. (2012) found that imputing with the marker mean had 
higher error than using the EM algorithm but no significant 
differences with respect to genomic prediction accuracy were 
found. However, when using the mean for imputation signifi-
cant bias in the estimation of breeding values was found (there 
was a trend to underestimate the true breeding values) but no 
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poorly explained by the model. Best potential parents and best 
candidates for release to industry will be in better agreement in 
type (i) than in type (ii) environment groups.

In Scenario II, trials belong to different environment 
groups for additive and total genetic effects when non-additive 
effects change the pattern in the genotype rankings. This hap-
pens when the proportion of additive genetic variance in the 
trials is moderate, relatively well explained by the model, and 
trials also have a moderate proportion of non-additive variance 
well explained by the model. Consequently, the top yielding 
genotypes and best potential parents will generally not overlap.

Models Fitted and Selection Indices
The FA models were fitted in a (nested) hierarchical sequence 
and the log-likelihood ratio test was used to assess the signifi-
cance of the improvement in fit after each higher-order model 
was fitted. The initial model assumed no covariance between 
trials for both additive and non-additive genetic effects. Sub-
sequent models added one FA factor at a time for the genetic 
effects. The initial parameter estimates for any given FA model 
were derived from the preceding lower order model.

The final model for yield was the highest order FA model 
that could be fitted that had a significant improvement with 
respect to the previous model. Higher order FA models for yield 
failed to converge, which could indicate a flat likelihood sur-
face in the region of the solution (Section 15.5 of the ASreml 
Manual, Gilmour et al., 2015). The final model for plant height 
was the last one with a significant (P < 0.001) improvement 
according to the log-likelihood ratio test.

An indicator of the goodness of fit of the final FA model 
is the percentage of genetic variance it explains out of the total 
genetic variance. This indicator, called the percentage of vari-
ance accounted for (%vaf ), is defined as

%vaf = 100[diag(LL¢)/diag(LL¢ + Y)]

where L is the matrix of environmental loadings, and Y is the 
diagonal matrix with specific variances for each trial. Addition-
ally, the FA model that assumes independent genotype effects 
was also fitted to both traits.

The prediction error variance for each trial (PEVi) is 
defined as

=
é ù= - - -ê úë ûå  

2

g g g g1

1
PEV ( ) ( )

m

i ij ij ij ijj
E

m
u u u u

for i = 1, …, t, that is, the variance of the difference between the 
true genetic effects for each genotype  and the predicted genetic 
effects (E-BLUPs). For comparative purposes, estimated PEVs 
for each trial were obtained from the fitted models as the square 
of the average standard error of difference.

Genotypes for the different environment groups can be 
selected using selection indices for the additive and total genetic 
effects. The simplest index, as used in this paper, gives equal 
weights to all trials that belong to a particular environment 
group. Therefore, the selection index for additive (total) genetic 
effects is the average of the additive (total) E-BLUPs across all 
trials in the environment group. For a summary of weighted 
and unweighted selection indices see Oakey et al. (2007).

RESULTS

Yield: Additive and Total Effects
Yield is a very complex trait and remains a major objective 
of most breeding programs worldwide. The MET analysis 
for yield included 36 of the 37 trials. The model of best 
fit to the data included three factors (FA3) for the addi-
tive genetic variance matrix and two factors (FA2) for the 
non-additive genetic variance matrix.

Additive Effects
Four environment groups were identified for the additive 
effects (A1.yld–A4.yld, Table 2; Fig. 1a), and are described 
in terms of trial mean yield and country of origin for illus-
tration purposes. All environment groups contained the 
197 genotypes.

Environment group A1.yld comprised mainly high 
yielding Australian trials (5–6.3 t ha-1, Table 1) plus 
11MO_Mar and 11SY_Mal (Table 2). All trials except for 
11SY_Mal had 56 to 99% additive genetic variance, with 
a high percentage of the variance accounted for (%vaf ) 
by the model (66–100%vaf, Table 2). Trial 11SY_Mal is a 
high yielding trial (4.9 t ha-1, Table 1) with only 22% addi-
tive genetic variance and the lowest genetic correlations 
with all other trials in the group (Fig. 1a). Knowledge of 
the specific trial would determine if it should be included 
in this environment group. The average additive genetic 
correlation among trials was 0.65.

Environment group A2.yld was formed by trials from 
Australia, Lebanon, Mexico, and Syria with the widest 
range in trial mean yield of all groups (2.8–6.5 t ha-1, 
Table 1). In general, trials in this group had lower per-
centages of additive genetic variance than those in A1.yld 
(Table 2). This group had the highest average additive 
genetic correlation among trials (0.72).

Environment group A3.yld included only Moroccan 
trials. The four Sidi el Aidi trials had >50% additive genetic 
variance, well explained by the model (>75%vaf, Table 2). 
12MO_ZEM_Late had only 35% additive genetic vari-
ance, of which 59% was explained by the model (Table 
2), and was mainly correlated with the 2010 Sidi el Aidi 
trials (Fig. 1a). Trial mean yields ranged 1.8–4.5 t ha-1 and 
average additive genetic correlation among trials was 0.70.

Environment group A4.yld, formed mainly by trials 
from Ethiopia, also included 10MX_CIA. Mean yields of 
trials in this group were extremely variable, with the 2009 
Ethiopian trials yielding 0.3 and 0.8 t ha-1 and the remain-
ing four trials yielding 2.3 to 3.6 t ha-1 (Table 1). The 
average additive genetic correlation among trials in this 
environment group was the lowest of all groups (0.62).

Correlations between environment groups ranged 
from low-positive to negative (Fig. 1a). The top 20 
genotypes to be considered as potential parents gener-
ally differed between environment groups. Most pairs of 
groups had a maximum of four genotypes in common in 
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the top 20; only A2.yld and A3.yld had ten (i.e., half of 
them) in common.

Total Effects
Six environment groups were identified for the total 
genetic effects (T1.yld–T6.yld Table 2; Fig. 1b), and illus-
trate the two scenarios for interpretation proposed earlier. 
Not all of the 197 genotypes were represented in each of 
the environment groups: T1.yld and T6.yld had 100 and 
193 of the 197 genotypes, respectively.

In Scenario I, trials belong to the same environment 
group for both additive and total genetic effects when 
most of the pattern in the genotype rankings is due to 
additive effects. In this situation, additive and total effects 
tend to be similar and top yielders and best candidate par-
ents tend to agree, as is the case in environment groups 
T1.yld, T3.yld, T4.yld and T6.yld.

Environment group T1.yld included five of the seven 
trials that belonged to A1.yld, specifically high yielding Aus-
tralian trials (5–6.3 t ha-1, Table 1) mainly located at Gatton 

Table 2. Yield MET results. For each trial, estimated total genetic and residual variances, percentages of the total genetic vari-
ance that are additive and non-additive (these two columns add to 100%), percentages of additive and non-additive genetic 
variances explained by the regression parts of the final model (FA3 for additive effects and FA2 for the non-additive effects), 
and environment group to which each trial belongs for additive and total effects.

Trial code†
Total genetic 

variance
Residual 
variance

Additive 
genetic 
variance

Non-additive 
genetic 
variance

%vaf‡ FA3 
additive

%vaf‡ FA2 
non-additive

Environment group§ (n)
Additive effects 

(An.yld)
Total effects 

(Tn.yld)
–––––––––––––––––––––– % ––––––––––––––––––––––

10AU_Gat 0.730 0.560 99 1 84 100 1 1

10AU_Gat_IRR 0.824 0.685 97 3 80 100 1 1

10AU_Tem 0.265 0.244 79 21 80 100 1 1

09AU_Gat_IRR 0.196 0.449 75 25 100 23 1 1

10AU_Gat_IRR_Late 0.418 0.433 56 44 100 11 1 1

11MO_Mar 0.285 0.495 60 40 66 100 1 2

11SY_Mal 0.249 0.620 22 78 88 48 1 2

10MX_CIA_IRR 0.738 0.298 53 47 100 100 2 2

11MX_CIA_IRR 0.550 0.231 53 47 85 89 2 2

11LE_KDa 0.106 0.176 99 1 67 100 2 4

09AU_Gat 0.177 0.198 75 25 100 100 2 4

11AU_Yan 0.088 0.161 57 43 69 32 2 4

10SY_THa 0.017 0.056 57 43 93 30 2 4

10AU_Lee 0.087 0.104 53 47 92 55 2 4

10AU_Lee_IRR 0.083 0.097 33 67 100 36 2 4

11SY_Bre 0.021 0.052 32 68 68 37 2 4

09MX_CIA_IRR 0.290 0.106 93 7 93 100 2 6

11LE_Ter 0.146 0.369 53 47 57 48 2 –

10MO_SEA_IRR 0.137 0.416 97 3 100 100 3 3

10MO_SEA 0.093 0.462 84 16 100 100 3 3

11MO_SEA_IRR 0.555 1.288 68 32 87 19 3 3

11MO_SEA 0.397 1.152 50 50 79 23 3 3

12MO_Zem_Late 0.255 0.917 35 65 59 21 3 –

09ET_De 0.012 0.019 70 30 93 34 4 5

09ET_Mel 0.037 0.083 77 23 79 100 4 5

10ET_Mel 0.219 0.179 71 29 82 21 4 6

10MX_CIA 0.239 0.078 86 14 56 100 4 6

10ET_De 0.066 0.250 90 10 85 100 4 6

10ET_Kul 0.225 0.305 93 7 74 100 4 6

10LE_Ter 0.142 0.219 39 61 33 45 – –

10SY_Mal 0.389 0.197 53 47 23 6 – –

10SY_TTa 0.002 0.014 58 42 46 100 – –

11AU_Tem 0.081 0.272 54 46 30 48 – –

11MX_CIA 0.078 0.053 99 1 32 100 – –

11SY_THa 0.042 0.053 66 34 36 9 – –

12MO_SEA_Late 0.264 0.376 38 62 18 27 – –

† Trial code acronym composed of two digits for the year, two letters for the country, two or three letters for the location, and the suffix _IRRI to indicate if the trial was irrigated 
or _Late for late sown. Most trials were planted at the conventional sowing time for the location, under rainfed conditions (not indicated in the trial code).

‡ Percentage of variance accounted for by the factors included in the model.

§ Trials that remained ungrouped are indicated with “–”.



crop science, vol. 56, september–october 2016 	  www.crops.org	 2619

Fig. 1. Heatmaps of the (a) additive and (b) total genetic correlation matrices for yield. The scale on the right side of each figure indicates 
the magnitude and direction of the genetic correlations. Red-orange indicates strong positive genetic correlation (i.e., strong agreement 
in genotype rankings) between pairs of trials. Dark shades of blue indicate strong negative genetic correlation (i.e., strong disagreement 
in genotype rankings) between pairs of trials. Yellow, pale blue, and green indicate weak or no correlation between the trials.
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(Table 2). Except for 10AU_Gat_IRR_Late, all trials had 
mainly additive genetic variance (75–99%) well explained 
by the model (80–100%vaf ). Trial 10AU_Gat_IRR_Late 
had a higher proportion of non-additive variance (44%) but 
poorly explained by the model (11%vaf ). For this environ-
ment group, the top 20 yielders coincided with the top 20 
candidate parents for future crosses.

Environment group T3.yld contained the four 
Morocco trials from Sidi el Aidi, which were also in A3.yld. 
The 2010 trials yielded 1.8 and 1.9 t ha-1, while the 2011 
trials yielded 4.2 and 4.5 t ha-1 (Table 1). All trials had 
50–97% additive genetic variance well accounted by the 
model (79–100%vaf ) (Table 2). The two 2011 trials had 
>30% non-additive genetic variance but poorly accounted 
for by the model (19 and 23%vaf, Table 2). For this envi-
ronment group, 17 of the 20 top yielders are also the best 
candidate parents for future crosses (Fig. 2).

Environment group T4.yld included seven of the 11 
trials in A2.yld (Table 2). Trial mean yields range from 2.8 
to 5.5 t ha-1 (Table 1). Trials in this environment group 
generally had moderate to high non-additive genetic 
variance (25–68%), partially accounted for by the model 
(30–55%vaf ). In this case, eight of the top 20 selections are 
different for additive and total effects. The first and second 
ranked genotypes as potential parents are ranked 5th and 
28th, respectively, for yield and the first and second top 
yielders ranked 5th and 7th, respectively, as potential 
parents. This is an example of Scenario I, case (ii): even 
though the trials remain in the same environment groups 

for additive and total effects there is more disagreement 
in the selections than for A1.yld and T1.yld or for A3.yld 
and T3.yld.

Environment group T6.yld contained the three 2010 
Ethiopian trials and two Mexican trials (Table 2). All 
trials except 09MX_CIA_IRR were in A4.yld, whereas 
09MX_CIA_IRR was in A2.yld. Except for 10ET_Mel, 
all trials had low percentage of non-additive genetic vari-
ance (7–14%), totally accounted for by the model. Even 
though 10ET_Mel had 29% non-additive genetic vari-
ance, only 21% of it was explained by the model. Although 
four of the top 20 selections are different for additive and 
total effects, the top 10 selections coincide.

In Scenario II, trials belong to different environ-
ment groups for additive and total genetic effects when 
non-additive effects change the pattern in the genotype 
rankings. In this situation additive and total effects tend to 
differ and top yielders and best candidate parents gener-
ally disagree, as is the case in environment groups T2.yld 
and T5.yld.

Environment group T2.yld contained two trials from 
A1.yld (11MO_Mar and 11SY_Mal) and two from A2.yld 
(10MX_CIA_IRR and 11MX_CIA_IRR) (Table 2). 
Trial mean yields in this group ranged between 3.2 to 
6.5 t ha-1 (Table 1). These four trials had a high pro-
portion of non-additive genetic variance (40–78%) well 
accounted for by the model (48–100%vaf ) and constituted 
an environment group that did not line up with any of the 
environment groups for additive effects. Only two gen-
otypes identified as potential parents in A1.yld and nine 
in A2.yld coincide with the genotypes identified as best 
yielders in environment group T2.yld (Fig. 3).

Environment group T5.yld was formed by the two 
2009 Ethiopian trials. These trials had the lowest mean 
yields of all trials (0.3 and 0.8 t ha-1, Table 1) and were 
included in environment group A4.yld. These two trials 
formed a separate environment group for total effects 
because their non-additive effects changed the genotype 
rankings for total effects (34 and 100%vaf for the non-
additive genetic variances). Half of the selections are 
different for additive and total effects.

In the heatmap (Fig. 1b) there are mainly green and 
light yellow areas at the intersection of most environment 
groups, indicating that the top ranking genotypes are 
mostly different for all groups. The intersections of T5.yld 
with T1.yld and T3.yld, and of T6.yld with T1.yld contain 
blue areas indicating crossover G ´ E and reversed rank-
ing of the genotypes. All pairs of environment groups had 
a maximum of eight genotypes in common.

Seven trials remained ungrouped for both additive 
and total effects (Table 2). They had varying percentages 
of additive variance (38–99%), not well explained by the 
model (18–46%vaf ) and most of them also had <50%vaf 
for non-additive variance, except for 11MX_CIA and 

Fig. 2. Average additive E-BLUPs for A3.yld and average total 
E-BLUPs for T3.yld. These environment groups contain the four 
Moroccan Sidi el Aidi trials. Points to the right of the vertical 
dashed line are the 20 top-yielding genotypes, that is, potential 
varieties to release to industry. Points above the horizontal 
dashed line are the top 20 candidate parents for future crosses. 
Seventeen selections coincide.
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10SY_TTa. However, 11MX_CIA only had 1% of non-
additive variance and 10SY_TTa had the lowest proportion 
of genetic versus residual variance (17%) of all trials. Rea-
sons for these trials to remain ungrouped could include, 
for example, untimely rain and management problems. 
All these ungrouped trials would not be used to make 
selections for yield. However, they can be useful to iden-
tify selections for other traits.

Plant Height: Additive and Total Effects
In contrast to yield, plant height is a highly heritable 
trait, so trials would be expected to have mostly addi-
tive genetic variance. The MET analysis for plant height 
included 31 of the 37 trials. The model of best fit to the 
data included two factors (FA2) for each of the additive 
and the non-additive genetic variance matrices. Most of 
the trials belong to the same environment group for both 
additive and total effects (Table 3).

Environment group A1.ht was formed by 25 trials 
with average additive genetic correlation equal to 0.88. 

The two trials that had lower additive genetic correla-
tions with the remaining trials in the group (11MX_CIA 
and 12MO_SEA_Late, Fig. 4a) had only 52 and 48% of 
the additive genetic variance accounted for by the model, 
respectively, while all others had 83–100%vaf (Table 3).

Twenty three out of the 25 trials in A1.ht remained 
together to form T1.ht (Table 3). These trials had 58–100% 
additive genetic variance highly explained by the model. 
The only exception was 11MX_CIA with 52%vaf, but all 
the genetic variance in this trial was additive. Two trials 
(11MO_SEA_IRR and 11AU_Yan) had 38 and 42% non-
additive variance but poorly accounted for by the model 
(~30%vaf ). This is an example of Scenario I.

All other groups formed (A2.ht, A3.ht, T2.ht, and 
T3.ht) contained trials with a much higher proportion 
of non-additive than additive variance (51–92%), which 
was not expected for a highly heritable trait such as 
plant height. These environment groups very likely lack 
meaning for selection purposes. As a result, environ-
ment groups A1.ht and T1.ht are the most meaningful 
ones. All top 20 selections coincided for additive and 
total effects (Fig. 5). In contrast to a similar graph pre-
sented for yield (Fig. 2), the points in this Figure are 
much closer together around a straight line because the 
pattern in the genotype rankings is controlled by addi-
tive effects in a much stronger way than for yield. This is 
a characteristic of highly heritable traits.

Comparison of MET Analyses Considering 
Related and Independent Genotypes
To compare the FA model including G  with the FA model 
that assumes unrelated genotypes, the latter was also fitted 
to both traits. The models that best described the data 
were an FA5 for yield (overall 81%vaf ) and an FA3 for 
plant height (overall 90%vaf ). For both traits, the major-
ity of trials had a lower average PEV under the FA model 
including G  (18 out of 36 for yield and 20 out of 31 for 
plant height; Fig. 6). For yield there were more trials with 
approximately the same average PEV under both models 
(15 for yield and 9 for plant height; Fig. 6). For both traits 
there were only a few trials poorly explained by the FA 
model using G  and that had a lower average PEV under 
the FA model that assumes unrelated genotypes (3 for 
yield and 2 for plant height, respectively).

Comparison of the top 20 yielding genotypes under 
both models (Fig. 7a) showed that 18 out of the 20 coin-
cided. However, the relativities of the genotype rankings 
changed. For example, the second and sixth best yielders 
that would have been selected under the model that assumes 
unrelated genotypes ranked 13th and 19th, respectively, 
under the model that assumes them related through G . Sim-
ilar results were observed for plant height (Fig. 7c), where 17 
of the top 20 selections coincided but, for example, the first 
and seventh ranked under the model that assumes unrelated 

Fig. 3. Average additive E-BLUPs for (a) A1.yld and (b) A2.yld 
against average total E-BLUPs for T2.yld. Points to the right of the 
vertical dashed line are the 20 top yielding genotypes, i.e., potential 
varieties to release to industry. Points above the horizontal dashed 
line are the top 20 candidate parents for future crosses. Only two 
and eight selections coincide, respectively.
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genotypes ranked 3rd and 12th, respectively, under the 
model that assumes them related through G .

Furthermore, the model that includes G  provided pre-
dictions for genotype additive effects (or breeding values), 
allowing more accurate selection of parents for future 
crosses instead of choosing the best performers as parents, 
as is the case with the model that assumes unrelated geno-
type effects. Comparison of the top 20 potential parents 
that would be chosen under the two models (Fig. 7b and d) 
showed that for yield and plant height 4 and 5 selections 
would be different for each trait. Additionally, rankings 
of the common genotypes were in disagreement. For 
example, for yield (Fig. 7b) the second and sixth preferred 
parents under the model that assumes unrelated genotypes 
ranked 17th and 12th, respectively, for additive effects, and 

the fifth preferred parent based on additive effects would 
have been discarded under the model that assumes unre-
lated genotypes, for which it ranked 54th. Similar results 
were observed for plant height (Fig. 7d), where for exam-
ple, the first and eighth preferred parents under the model 
that assumes unrelated genotypes ranked 4th and 15th for 
additive effects, and the first preferred for additive effects 
ranked sixth under model with unrelated genotypes.

DISCUSSION
In this paper we showed how to include a genomic rela-
tionship matrix G  that accounts for relationships among 
genotypes (Oakey et al., 2007) into the FA model for anal-
ysis of MET data for the purpose of parental and varietal 
selection. The relationship matrix typically used in this 

Table 3. Plant height MET results. For each trial, estimated total genetic and residual variances, percentages of the total 
genetic variance that are additive and non-additive (these two columns add to 100%), percentages of additive and non-additive 
genetic variances explained by the regression parts of the final model (FA2 for both additive and non-additive effects), and 
environment group to which each trial belongs for additive and total effects.

Trial code†
Total genetic 

variance
Residual 
variance

Additive 
genetic 
variance

Non-additive 
genetic 
variance

%vaf‡ FA2 
additive

%vaf‡ FA2 
non-additive

Environment group§ (n)
Additive effects 

(An.ht)
Total effects 

(Tn.ht)
–––––––––––––––––––––– % ––––––––––––––––––––––

09AU_Gat_IRR 25 18 100 0 93 – 1 1

09AU_Gat_IRR_Late 34 7 100 0 100 – 1 1

10AU_Lee_IRR 30 7 100 0 88 – 1 1

10ET_Mel 41 38 100 0 95 – 1 1

10MX_CIA 40 8 100 0 86 – 1 1

10MX_CIA_IRR 69 14 100 0 91 – 1 1

11AU_Tem 40 31 100 0 89 – 1 1

11MX_CIA 51 23 100 0 52 – 1 1

11MX_CIA_IRR 52 17 100 0 96 – 1 1

09AU_Gat 33 10 98 2 100 18 1 1

10ET_Kul 51 48 96 4 94 100 1 1

11SY_THa 30 10 94 6 83 100 1 1

11LE_Ter 46 16 89 11 95 100 1 1

10ET_De 42 33 86 14 95 76 1 1

10MO_SEA_IRR 32 52 84 16 99 100 1 1

11MO_SEA 33 39 84 16 96 100 1 1

11SY_Mal 36 55 84 16 88 100 1 1

10MO_SEA 44 45 82 18 99 90 1 1

10LE_Ter 62 30 78 22 98 100 1 1

11LE_KDa 40 21 75 25 96 91 1 1

10SY_THa 41 21 72 28 100 93 1 1

11MO_SEA_IRR 27 63 62 38 100 36 1 1

11AU_Yan 63 8 58 42 100 31 1 1

12MO_SEA_Late 24 73 42 58 48 13 1 –

11SY_Bre 17 15 35 65 100 68 1 2

10AU_Gat_IRR_Late 46 20 49 51 100 8 2 –

10AU_Gat_IRR 95 35 32 68 100 95 2 3

10AU_Gat 82 28 29 71 100 100 2 3

09ET_De 11 31 25 75 48 100 3 2

09MX_CIA_IRR 6 1 8 92 100 15 3 –

09ET_Mel 25 53 41 59 41 79 – 2

† Trial code acronym composed of two digits for the year, two letters for the country, two or three letters for the location, and the suffix _IRR to indicate if the trial was irrigated 
or _Late for late sown. Most trials were planted at the conventional sowing time for the location, under rainfed conditions (not indicated in the trial code).

‡ Percentage of variance accounted for by the factors included in the model.

§ Trials that remained ungrouped are indicated with “–”.
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Fig. 4. Heatmaps of the (a) additive and (b) total genetic correlation matrices for plant height. The scale on the right side of each figure 
indicates the magnitude and direction of the genetic correlations. Red-orange indicates strong positive genetic correlation (i.e., strong 
agreement in genotype rankings) between pairs of trials. Dark shades of blue indicate strong negative genetic correlation (i.e., strong 
disagreement in genotype rankings) between pairs of trials. Yellow, pale blue and green indicate weak or no correlation between the trials.
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model is the additive genetic relationship matrix A, con-
structed from pedigree information. The construction of A 
assumes that the base (or founder) population from which 
the genotypes in the MET come from has not undergone 
selection. This is rarely the case in plant breeding programs 
(Mathews et al., 2007; Oakey et al., 2006; Piepho et al., 
2008). Additionally, A reflects the expected proportion 
of the genome that is identical by descent between two 
individuals, but relationships between individuals in plant 
populations where selection of genotypes is undertaken over 
several generations can be far from what is expected (Oakey 
et al., 2006). To overcome these problems, DArT molecular 
markers of the genotypes were used in the construction of 
G. It should be noted that other types of molecular markers 
can also be used, such as SNP markers.

The form of G  used in this paper (VanRaden, 2008) 
is analogous to the A matrix and has the advantage that 
genetic effects can be partitioned in a way that is familiar 
to plant breeders: additive genetic effects useful when 
selecting parents for crossing and residual non-additive 
genetic effects that can be responsible for enhanced or 
reduced performance of the genotypes in the different 
environments. The total genetic effects predict the overall 
performance of genotypes in target environments and are 
useful when selecting genotypes for release to industry.

Environment groups where genotypes perform 
similarly were identified for the international wheat 
MET dataset by applying the multivariate technique of 
cluster analysis to the additive and total genetic correlation 
matrices. These environment groups should be interpreted 
in conjunction with the percentages of additive and 

non-additive genetic variances for each trial forming 
the group, and how well the model explains them. 
Graphical representations of the environment groups on 
the heatmaps of the genetic correlation matrices facilitated 
the interpretation by providing the (approximate) 
magnitudes of the genetic correlations within and between 
environment groups at a glance. Knowledge about the 
individual trials that form the specific environment 
groups together with a thorough understanding of the 
meaning of the environment group will determine if an 
environment group should be considered for selection 
purposes. For example, for plant height two of the three 
environment groups formed for additive effects as well as 
two of the three formed for total effects contained only 
a few trials each. Further examination of the results for 
those individual trials indicated that those environment 
groups were not meaningful.

The very weak and even negative correlation between 
environment groups for yield, both for additive and total 
effects, highlights that high yielding genotypes and 

Fig. 5. Average additive E-BLUPs for A1.ht against average total 
E-BLUPs for T1.ht. Plant height is a highly heritable trait, so total 
genetic effects are mainly additive genetic effects. The top tallest 
20 and candidate parents coincide.

Fig. 6. Estimated prediction error variances (PEVs) for trials 
included in the (a) yield and (b) plant height MET analyses. The 
majority of trials had higher PEV under the model that assumes 
unrelated genotypes (points above the 1:1 line).
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candidate parents for crossing do not necessarily agree 
across environment groups, and it may be necessary to 
make selections within each of them. For plant height, a 
more heritable trait than yield, most trials were grouped 
into one main environment group for both additive and 
total genetic effects, with the top 20 genotypes and top 
20 candidate parents for crossing coinciding. It should be 
noted that breeders do not necessarily look for the ‘tallest’ 

genotypes but more commonly those with a height 
between 70 and 100 cm (Richards, 1992), and data should 
be looked at from this perspective. When environment 
groups (nearly) coincide for additive and total genetic 
effects, the agreement in selections for candidate parents 
and best performers depends on the percentages of additive 
genetic variance in the trials that form the environment 
groups and how well explained they are by the model. 

Fig. 7. Rankings of the top 20 individuals and potential parents for yield (a, b) and plant height (c, d). The y axis in all graphs presents the 
rankings for the predicted total effects of the genotypes obtained from the model that assumes independent genotypes. The x axis presents 
the rankings for the predicted total effects (a, c) and the predicted additive effects (b, d) under the model that assumes genotypes related via 
the genomic relationship matrix. Although the majority of the selections coincide, the relativities of the genotype rankings change.
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The higher the percentage of additive genetic variance 
in the trials and the better explained by the model, the 
higher the coincidence will be.

One of the advantages of including the G  matrix in 
the analysis of the wheat dataset presented in this paper 
was predominantly lower average PEVs for total effects of 
individual trials under the FA model with the G  matrix, 
compared with those from the FA model that assumed 
unrelated genotypes. This could be due to the G  matrix 
describing the underlying distribution in a more realistic 
way. These results are in agreement with those reported 
by other authors that included A in the FA model: Oakey 
et al. (2006) reported that models including A had lower 
average PEVs for the genetic effects for 14 individual wheat 
trials, making it preferable for estimating the genetic value 
of a genotype; Beeck et al. (2010) and Oakey et al. (2007) 
reported that the FA model that included A also fitted sig-
nificantly better than the model that ignored pedigrees for 
canola and sugarcane MET datasets, respectively. When 
comparing genotype rankings between the model that 
included G  and the model that assumed unrelated geno-
types for our wheat dataset, nearly all top 20 selections 
coincided. However, the changes in relativities for yield 
were generally more extreme than for plant height, and 
this is likely related to the less heritable nature of yield 
compared to plant height. Additionally, selecting parents 
based on the model that assumed unrelated genotypes 
would have ignored highly ranked genotypes identified by 
the model that included the known genetic relationships.

The comparison of PEVs from FA models using 
matrices A and G  for this wheat dataset was not under-
taken because of limitations with A. First, the pedigree 
information was incomplete, a common problem in many 
breeding programs; and second, fitting the model using an 
A matrix based on information from the available geno-
types was computationally expensive, even when using a 
pedigree of modest depth (four generations) because the 
number of individuals in the pedigree was several times 
the number in the data.

In summary, the elements of G  reflect the actual 
proportion of the parts of the genome surveyed that is 
identical by state between pairs of individuals under 
consideration and by including the form of G  proposed 
by VanRaden (2008) in the FA model the genetic effects 
can be partitioned in a way familiar to plant breeders. 
Additionally, for the international wheat MET dataset 
analyzed, the genotype predictions for the trials generally 
had lower average PEVs.  This method of analysis could 
be readily implemented to accelerate genetic gain by plant 
breeding programs that have molecular markers for the 
genotypes under study.
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APPENDIX

Cont’d

Table A1. Residual maximum likelihood (ASReml) code used 
for fitting the final model for plant height.

Line Code
1 † ASReml code – Plant height MET
2 Trial 31 !A !LL 17

3 replicate !I

4 row !I

5 column !I

6 Genotype 243 !A !LL 60

7 GenoYES 197 !A !LL 60 !L geno_order.txt !LSKIP 1

8 GenoNO   46 !A !LL 20

9 plntht

10 lrow

11 lcol

12 Gmat.grm !skip 1 !PSD    

13 alldata.height.csv !CSV !skip 1 !mvinclude !maxit 5

14 !SUBSET IDETrial Trial 3:9,11:12,14:16,19,21:25,28:31

15 plntht ~ mu + Trial + at(Trial,14,30).lcol,

16 !r xfa(Trial,2).giv(GenoYES) +

17 xfa(IDETrial,2).ide(GenoYES)+

18 at(Trial,1:5,7:16,19:25,28:31).GenoNO +

19 at(Trial).replicate + at(Trial,7,9,11,19,28,30,31).column

20 + at(Trial,4,14,23,30).row,

21 !f mv

22 31 2 2 !NODISPLAY

23 8 column AR 0.2    # 09AU_Gat_IRR 1

24 18 row    ID

25 8 column AR 0.2    # 09AU_Gat_IRR_Late 2

26 18 row    AR 0.4

27 …

28 20 column AR 0.2   # 12MO_SEA_Late 31

29 20 row    AR 0.4

30 xfa(Trial,2).giv(GenoYES) 2

31 xfa(Trial,2) 0 xfa2 !+93 !G31P31PF30P

32 1.7  1.8  1.3  2.4  8.6  2.2  32.9  5.6  39.7  2.7  3.6 

33 3.7  2.6  1.2  0.5  0.7  9.3  6.7  0.5  4.1  1.7  1.2

34 3.7  0.1  0.5  2.2  25.6  1.4  4.5  3.5  6.0

35 5.0  6.2  5.8  1.2  2.2  -0.4  1.6  2.9  2.6  5.7  6.2 

36 7.5  6.8  7.9  5.8  6.8  8.1  6.3  6.1  6.4  6.6  6.0

37 7.1  4.4  5.8  7.5  5.4  2.6  6.0  5.3  2.4

38 0 30*0.05
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39 giv(GenoYES) 0 GIV1
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Table A1. Cont’d.

Table A2. R code to write the genomic relationship matrix 
obtained through rrBLUP in sparse format.†

mat2sparse <- function (X, rowNames = dimnames(X)[[1]])

{

which <- (X != 0 & lower.tri(X, diag = TRUE))

df <- data.frame(row = t(row(X))[t(which)], col = t(col(X))[t(which)],   

val = t(X)[t(which)])     

if (is.null(rowNames))

rowNames <- as.character(1:nrow(X))

attr(df, “rowNames”) <- rowNames

df

}

write.table(mat2sparse(G.mat), ’Gmat.grm’,row.names=FALSE)

† G.mat is the relationship matrix obtained through the A.mat function in rrBLUP.
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