Can improved food legume varieties increase technical efficiency in crop production?

A Case Study in Bale Highlands, Ethiopia

Girma T. Kassie, Aden Aw-Hassan, Seid A. Kemal, Luleseged Desta, Peter Thorne, Mulugeta Yitayih

Outline

- Motivation
- The key questions
- Methodology
- Results and discussion
- Conclusion and more questions

Motivation

- Faba bean (broad bean), field pea, and lentil are very important legumes in the highlands of Ethiopia.
 - Ethiopia is the largest producer of faba bean in SSA.
 - In 2012/13, about 4.4 million smallholder farmers planted 574,000 ha of faba bean producing 0.9 million tons at an average productivity of 1.6 tons per ha.
 - Field pea is also an important source of protein in Ethiopia.
 - In 2012, the crop ranked fourth in area coverage with an acreage of 212,890 ha and annual production of 2.6 million tons (FAO, 2012).
- We all agree (it seems) that legumes are essential for the regeneration of nutrient-deficient soils.
 - They fix nitrogen!
- Bale highlands in south Eastern Ethiopia is known for mono-cropping production system: wheat and barley dominated.

Motivation

Mono-cropping:

- Growing one crop year after year on the same plot of land
- Non-diverse rotations Only a single crop is grown at a time within a field.
- Associated with two problems:
 - Soil degradation
 - Increased vulnerability to risk
- Implies lower efficiency [broadly defined] compared to poly-cropping systems.

The key questions

- Our question(s)
 - How efficient are improved legume growers compared to nongrowers?
 - If there is a considerable difference in efficiency, can we attribute this to the inclusion of improved legume crops?
 - Does crop productivity [crop output per unit of the most limiting input] vary between improved food legume growers and nongrowers?
- Our objective
 - To empirically show whether the adoption of improved food legume varieties increases the technical efficiency of crop production.

Methodology

- Sampling
 - Multi-stage (mixed) sampling
 - 3 of the 4 major legume producing districts in Bale highlands were selected.
 - 4 peasant associations in each district were selected randomly.
 - 200 farm households from the 4 PAs/District selected using proportionate random sampling.
 - Total sample size 600 farm HHs.

Analytical framework 1. Efficiency analysis (SF Model) $y_i = \alpha + x'_i \beta + \varepsilon_i, \quad i = 2, ..., N$ y_i is log of total crop yield $\mathcal{E}_i = \mathcal{U}_i - \mathcal{U}_i$ x_i vector of (log of) inputs ε_i composite error $v_i \sim N(0, \sigma_n^2)$ v_i idiosyncratic error u_i inefficiency (one-side disturbance) $u_i \sim F$

The assumption about the distribution (F) of u_i term is needed to make the model estimable. Four options so far:

- 1. Half normal distribution $u_i \sim N^+(0, \sigma_u^2)$ (Aigner et al., 1977).
- **2.** Exponential distribution $u_i \sim \varepsilon(\sigma_u)$ (Meesun and van den Broeck ,1977)
- **3.** Truncated normal (Stevenson, 1980)
- 4. Gamma distribution (Greene, 1980, 2003).

SF Model (2)

- Two step estimation
 - 1- estimates of the model parameters \hat{h} are obtained by maximizing the LL-function $l(\hat{h})$
 - 2 point estimates of inefficiency can be obtained thru the mean (or the mode) of the conditional distribution $f(u_i | \hat{\varepsilon}_i)$ where $\hat{\varepsilon}_i = y_i - \hat{\alpha} - x'_i \hat{\beta}$
- Post-estimation procedures to compute efficiency parameters:
 - Jondrow et al (1982): $E = exp(-E(s.u/\varepsilon))$
 - Battese and Coelli (1988): $E = E[exp(-s.u/\varepsilon)]$

SFA models

- -Y= bread wheat equivalent in birr
 - Efficiency model 1
 - Jondrow et al (1982)
 - Stoc. frontier normal/tnormal model
 - Efficiency model 2
 - Battese and Coelli (1988)
 - Stoc. frontier normal/tnormal model
 - Efficiency model 3
 - Jondrow et al (1982)
 - Stoc. frontier normal/exponential model
 - Efficiency model 4
 - Battese and Coelli (1988)
 - Stoc. frontier normal/exponential model

Analytical framework 2. Impact analysis

$$\delta_i = Y_i^A - Y_i^N$$

Where $\boldsymbol{\delta}_i$ is impact on individual '*i*';

- Y_i^A Is potential outcome of adoption for individual 'i'.
- Υ_i^N Is potential outcome of non-adoption for individual 'i'.

Let **D** denotes adoption decision (assumed to be binary) and takes the value 1 for adopters (*A*) and 0 for non adopters (*N*).

Any problem in estimating this?

- YES! B/C only one of the potential outcomes is observed for each individual *i*. Missing data problem!!
- Therefore, estimating the individual trt effect δ_i is not possible because it is unobservable.
 - Hence we concentrate on (population) average trt effects.

2. Impact analysis

$$Y_{i} = \begin{cases} Y_{i}^{A} & \text{if } D_{i} = 1 \\ Y_{i}^{N} & \text{if } D_{i} = 0 \end{cases}$$

$$ATET = E[\delta_{i} \mid D_{i} = 1] = E[Y_{i}^{A} \mid D_{i} = 1] - E[Y_{i}^{N} \mid D_{i} = 1]$$

$$ATU = E[\delta_{i} \mid D_{i} = 0] = E[Y_{i}^{A} \mid D_{i} = 0] - E[Y_{i}^{N} \mid D_{i} = 0]$$

$$ATE = E[\delta_{i}] = E[Y_{i}^{A} - Y_{i}^{N}] = ATT * P(D = 1) + ATU * P(D = 0)$$

$$POM_{D} = E[Y_{i}]$$

ATET is identified only if $E[Y^N|D=1]-E[Y^N|D=0]=0$: That is the TEs of HHs from the adopter and non-adopter groups would not differ in the absence of the improved food legume varieties.

Assumptions for Matching Methods

- Identifying assumption (untestable) selection on observables (conditional exogeneity)
 - Implies: all the relevant differences b/n treated and nontreated are captured in 'X'
 - ATT: $E[Y_i^N | X, D = 1] = E[Y_i^N | X, D = 0]$
 - ATU: $E[Y_i^A | X, D = 1] = E[Y_i^A | X, D = 0]$
 - ATE: Both
- Common support
 - Implies: We observe adopters and non-adopters with the same characteristics
 - ATT: P(D=1|X)<1
 - ATU: 0<P(D=1|X)</pre>
 - ATE: 0<P(D=1|X)<1

Treatment-effects estimators employed

- Adjustment and weighting
 - Regression adjustment [see: Lane and Nelder (1982); Cameron and Trivedi (2005, chap. 25); Wooldridge (2010, chap. 21); and Vittinghoff, Glidden, Shiboski, and McCulloch (2012, chap. 9).]
 - Inverse probability weighting [see: Imbens (2000); Hirano, Imbens, and Ridder (2003); Tan (2010); Wooldridge (2010, chap. 19); van der Laan and Robins (2003); and Tsiatis (2006, chap. 6).]
 - Inverse probability weighting with regression adjustment (IPWRA) [see: Wooldridge, 2007; Wooldridge, 2010]
 - Augmented inverse probability weighting (AIPW) [see:Robins, Rotnitzky, and Zhao (1995); Bang and Robins (2005); Tsiatis (2006) and Tan (2010).]
- Matching estimators
 - Nearest neighbor matching [see: Abadie et al. (2004); Abadie and Imbens (2006, 2011)].
 - Propensity score (treatment probability) matching [See: Rosenbaum and Rubin (1983); Abadie and Imbens (2012)].

Results and Discussion

Description of the sample population

- HHs 90% male headed and 10% female headed.
- Average land holding/hhd: 2.81 ha (reported)
- On average 37% of the farm plot is allocated to faba bean and 12% for field pea by the sample households.
- Legume producers
 - Faba bean: 50.95%
 - Field pea: 31.37%
 - Faba bean or field pea: 67.76%
- Adopters of improved faba bean and field pea varieties:
 - Improved faba bean or field pea: 23.13%

Efficiency results

Variable	Model 1	Model 2	Model 3	Model 4
Frontier				
Incultland	0.182*** (3.36)	0.17*** (2.93)	0.182*** (3.36)	0.17*** (2.93)
Inhumlabor	-0.029 (-1.65)	-0.013 (75)	-0.029 (-1.65)	-0.013 (-0.75)
Lnoxenlabor	0.308*** (7.41)	0.285*** (6.63)	0.308*** (7.41)	0.285*** (6.63)
Lntotureadapbiofe	0.027** (2.58)	0.034*** (3.25)	0.027** (2.58)	0.034*** (3.25)
Lnherbic	0.28*** (5.39)	0.27*** (5.28)	0.28*** (5.39)	0.27*** (5.29)
Lnfungic	0.18*** (4.9)	0.169*** (4.64)	0.18*** (4.9)	0.169*** (4.64)
Lnmachintime	0.067*** (7.05)	0.063*** (6.71)	0.067*** (7.05)	0.063*** (6.71)
Constant	-0.291**(-2.47)	-0.239* (-1.86)	-0.291** (-2.48)	-0.24* (-1.87)
_μ	-404.25 (-53.75)	-362.15 (-20.57)		
συ	4.76 (34.66)	4.54 (24.49)	-2.49(-9.62)	-2.71 (-8.81)
σν	-2.19 (-15.51)	-2.08 (-15.4)	-2.192 (-15.46)	-2.07 (-15.38)
Statistics				
Ν	575	575	575	575
LI	-332.62	-335.08	-332.61	-335.07
Aic	687.24	692.16	685.22	690.14
BICARDA	735.14	740.06	728.76	733.68

Science for Better Livelihoods in Dry Areas

The outcome variables

Variable	Ν	Mean	Std. Dev.	Min	Max
Efficiency measure 1	575	0.781	0.108	0.094	0.937
Efficiency measure 2	575	0.794	0.103	0.101	0.939
Efficiency measure 3	575	0.782	0.108	0.094	0.937
Efficiency measure 4	575	0.794	0.103	0.100	0.939
Total bread wheat eqvt (kcl/ha)	575	2.936	2.993	0.030	29.872
Total bread wheat eqvt (birr/ha)	575	3.047	3.137	0.030	31.648

Simple comparison of adopters and non-adopters

Simple comparison of adopters and non-adopters

Average trt effect and Average trt effect on the treated

		RA	IPW	AIPW	IPWRA	NNMATCH	PSMATCH
Efficiency measure 1	ATET	004 (-0.27)	003 (-0.25)		-0.006 (48)	008 (51)	010 (69)
	ATE	.002 (0.16)	01 (-0.49)	0.002 (0.07)	0.006 (0.56)	0.016 (1.01)	001 (04)
Efficiency measure 2	ATET	004 (-0.35)	003 (-0.3)		-0.006 (52)	008 (54)	-0.009(69)
	ATE	.001 (0.07)	01 (-0.52)	0.002(0.08)	0.005 (0.50)	0.014 (0.95)	002(09)
Efficiency measure 3	ATET	004 (-0.28)	003 (-0.25)		-0.006 (46)	008 (51)	010 (69)
	ATE	.002 (0.16)	01 (-0.49)	0.002 (0.07)	0.006 (0.55)	0.016 (1.01)	001 (04)
Efficiency measure 4	ATET	004 (-0.35)	003 (-0.3)		-0.006 (52)	008 (54)	-0.009(69)
	ATE	.001 (0.07)	01 (-0.52)	0.002(0.08)	0.005 (0.49)	0.014 (0.95)	002(09)
	ATET	.088 (0.33)	067 (16)		298 (99)	0.337 (1.03)	778 (-1.13)
Total bread wheat eqvt (kcl/ha)	ATE	109 (44)	392 (-1.50)	194 (72)	298 (-1.51)	0.117 (0.49)	113 (31)
		0.171(0.59)	046 (09)		180 (55)	0.510 (1.59)	-1.034 (-1.08)
Total bread wheat eqvt (birr/ha)	ATET	053(20)	364 (-1.21)	151 (49)	264 (-1.25)	0.215 (0.92)	109 (26)

Science for Better Livelihoods in Dry Areas

Conclusions and further questions

- Very low adoption of improved legume varieties particularly faba bean and faba bean.
 - No relationship with efficiency no matter how the latter was measured.
 - No relationship with productivity per unit of limiting factor no matter what conversion [energy or price] was used.
- We observed that complementary inputs are not being used as per the recommendations.

Conclusions and further questions

- Human labor is not rewarding in crop production in the study area. Legumes are still dependent on human labor.
 Would they have any future in mechanized farming?
- Would simply disseminating the 'improved varieties' help? How?
- Bale highlands is known for farmers heavily dependent on machinery for their crop production. How will legumes – produced manually – fit into this system?
 - Are they meant to continue as break crops?

Thank You so much!!

